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Purpose: Our previous study indicated that multiprojection chest radiography could significantly

improve radiologists’ performance for lung nodule detection in clinical practice. In this study, the

authors further verify that multiprojection chest radiography can greatly improve the performance

of a computer-aided diagnostic (CAD) scheme.

Methods: Our database consisted of 59 subjects, including 43 subjects with 45 nodules and 16 sub-

jects without nodules. The 45 nodules included 7 real and 38 simulated ones. The authors devel-

oped a conventional CAD scheme and a new fusion CAD scheme to detect lung nodules. The

conventional CAD scheme consisted of four steps for (1) identification of initial nodule candidates

inside lungs, (2) nodule candidate segmentation based on dynamic programming, (3) extraction of

33 features from nodule candidates, and (4) false positive reduction using a piecewise linear classi-

fier. The conventional CAD scheme processed each of the three projection images of a subject inde-

pendently and discarded the correlation information between the three images. The fusion CAD

scheme included the four steps in the conventional CAD scheme and two additional steps for (5)

registration of all candidates in the three images of a subject, and (6) integration of correlation in-

formation between the registered candidates in the three images. The integration step retained all

candidates detected at least twice in the three images of a subject and removed those detected only

once in the three images as false positives. A leave-one-subject-out testing method was used for

evaluation of the performance levels of the two CAD schemes.

Results: At the sensitivities of 70%, 65%, and 60%, our conventional CAD scheme reported 14.7,

11.3, and 8.6 false positives per image, respectively, whereas our fusion CAD scheme reported 3.9,

1.9, and 1.2 false positives per image, and 5.5, 2.8, and 1.7 false positives per patient, respectively.

The low performance of the conventional CAD scheme may be attributed to the high noise level in

chest radiography, and the small size and low contrast of most nodules.

Conclusions: This study indicated that the fusion of correlation information in multiprojection

chest radiography can markedly improve the performance of CAD scheme for lung nodule

detection. VC 2012 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/

1.3694096]
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I. INTRODUCTION

Lung cancer is the leading cause of cancer-related mortality;

American Cancer Society estimated that 157 300 lung cancer

patients died in the United States in 2010.1 One of the rea-

sons for this high mortality is that many patients present

with advanced-stage disease, and thus miss the best opportu-

nity of potentially curative surgery. Some evidence suggests

that the early detection of lung cancer may decrease mortal-

ity, with greater than 90% ten-year survival after the surgical

resection of early-stage lung cancers.2 Thus, the early diag-

nosis and treatment of lung cancers is the key to improving

the survival rate for patients with lung cancer.

Because of its simplicity, low cost, and low x-ray dose,

chest radiography has been the most commonly used imag-

ing technique for lung cancer screening. However, in chest

radiography, the normal anatomic structures (such as rib,

mediastinum, and heart) may obscure lung cancer. There-

fore, the sensitivity and specificity for screening lung cancer

in chest radiography are very low.3,4 As the computed to-

mography (CT) has advanced rapidly, more and more hospi-

tals utilize CT to screen lung cancers. The National Lung

Screening Trail,5 a clinical study sponsored by the National

Cancer Institute, showed that 20% fewer lung cancer deaths

have been observed among those who were screened with

low-dose spiral CT than those with chest radiography. How-

ever, widespread utilization of CT as a screening tool for

lung cancer is still a highly controversial issue6 because of

the high radiation dose and high cost.

Multiprojection chest radiography has been proposed to

improve the detection performance of early-stage lung can-

cer without significant increase in the radiation dose

levels.7–9 Multiprojection chest radiography acquires multi-

ple radiographic images of the same patient at multiple

angles by moving an x-ray tube. Because the projection

images at different angles provide different geometrical per-

spectives, they can be utilized to reduce the influence of nor-

mal anatomical structures, and to detect some nodules

missed in the standard chest radiography.

A multiprojection chest radiography system10 was

designed and developed in the Department of Radiology at

Duke University and is currently under clinical evaluation.

This system was modified from a standard x-ray system, in

which the x-ray tube can move along the horizontal and ver-

tical axes. Samei et al.11 developed a computer-aided diag-

nostic (CAD) scheme to detect simulated nodules in an

anthropomorphic chest phantom based on this imaging sys-

tem. Compared to a signal-view CAD, this CAD scheme

improved the positive predictive value by 140%.

The CAD scheme mentioned above was based on two

projection images. In this study, we horizontally moved the

x-ray tube to acquire a PA image and two images at oblique

views of 63� for each subject, and employed these three

images to detect nodules. Preliminary results of observer

study indicated that the multiprojection chest radiography

achieved a sensitivity of 86% compared to a sensitivity of

71% for the PA view only, and the total number of false pos-

itives was reduced by 35%. Therefore, the multiprojection

chest radiography can improve the performance of nodule

detection in clinical practice.

The purpose of this study was to verify that the multipro-

jection chest radiography can also improve the performance

of a CAD scheme for lung nodule detection. We developed a

conventional CAD scheme and a new fusion CAD scheme to

detect lung nodules. The conventional CAD scheme proc-

essed each of the three images of a subject independently

and discarded the correlation information between the three

images, as other CAD schemes did.12–22 The fusion CAD

scheme included the conventional CAD scheme and two

additional steps for registering all nodule candidates of a

subject and integrating correlation information between the

registered candidates to reduce false positives.

II. MATERIALS AND METHODS

II.A. Image database

This study was approved by IRB at Duke University. The

data were clinically obtained using a multiprojection chest

radiography equipment developed in the Department of

Radiography at Duke University.10 Figure 1 shows the sche-

matic geometry for the acquisition of multiprojection chest

radiography. The multiprojection chest radiography of each

subject comprised of three images, including a PA image

and two images acquired at oblique views of 63�; they were

acquired in a continuous acquisition mode with the tube

moving speed of 2.5 cm/s. The detector was an amorphous

silicon indirect flat-panel sensor (Paxscan, 4030CB series,

Varian Medical Systems, Palo Alto, CA). The tube voltage

was fixed at 120 kVp, and the tube exposure time product

was varied between 1.25 and 6.40 mAs depending on the

patient size. The radiation dose for acquiring each of the

three projection images was approximately a third of that for

acquiring a standard PA radiograph. Therefore, the total

radiation dose of the multiprojection radiography was

approximately equal to that of a standard PA radiograph.

The source-to-image distance was 200 cm, and the center of

the x-ray beam was 2.5 cm in front of the detector. The

image had a pixel size of 0.194 mm and a matrix size of

2048� 1536. Compared with the size of pixels in the origi-

nal image, the size of a nodule was very large. Therefore, we

resampled the multiprojection chest radiography by averag-

ing 16 pixels in a 4� 4 region to reduce the processing time.

The resampled image had a pixel size of 0.776 mm and a

FIG. 1. The schematic geometry for the acquisition of multiprojection

images.
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matrix size of 512� 374. In the resampled images, a nodule

still contained many pixels for us to reliably detect it.

Our database consisted of 59 subjects, including 43 sub-

jects with 45 nodules ranging from 5 to 20 mm in diameter

and 16 subjects without nodules. The 45 nodules included 7

real and 38 simulated ones generated by use of an algorithm

developed by Alessandro et al.24 For simulated nodules, the

truth was known a priori per insertion of the simulated nod-

ules in the chest images. For cases with real nodules, the

truth was established by confirming the presence of the nod-

ules with CT images of the subjects.

For both simulated and real nodules, the nodules as

depicted in chest radiographs were reexamined by an expe-

rienced chest radiologist and were scored according to their

subtlety from 1 (too faint-subtle) to 5 (too apparent). Only

nodules scored between 2 and 4 were judged to be at the

proper level of subtlety to be incorporated in the study. The

subtlety scores of all the seven real nodules were between

2 and 4. The subtlety scores for some simulated nodules

were initially either 1 or 5. For these simulated nodules

with a score of 1 or 5, each of them was recreated until its

score was between 2 and 4. We employed simulated nod-

ules in this study as the number of real nodules was

limited.

II.B. Identification of initial nodule candidates

Figure 2 is the diagrams of our conventional CAD scheme

and fusion CAD scheme for lung nodule detection. The con-

ventional CAD scheme consisted of four steps in the top of

the Fig. 2, and the fusion CAD scheme included two addi-

tional steps in the bottom of Fig. 2.

II.B.1. Lung segmentation and nodule enhancement

We first employed an existing profile analysis algorithm

developed in the Department of Radiography at Chicago

University25,26 for accurate delineation of lung boundaries.

The top edges of lungs were identified by analyzing the sec-

ond derivative of vertical profiles of the chest images, and

the left and right ribcage edges were identified by analyzing

the second derivative of horizontal profiles of the images.25

Then, the right and left mediastinum boundaries were deter-

mined by analyzing the edge gradient in the mediastinum

regions.26 Finally, the lung areas were determined by using

the delineated ribcage edges and the right and left mediasti-

num boundaries.

Because the shapes of most nodules can be approximated

by Gaussian functions, we employed two Difference of

Gaussian (DoG) filters11 to enhance relatively small and

large nodules. The output of a DoG filter was the difference

between two Gaussian filters with two different scales. The

scales (the sigmas in Gaussian functions) are the important

parameters for enhancing nodules with specific sizes. In this

study, we empirically employed a set of scales (2.4 and 3.6

mm) for enhancing small nodules, and another set (4.0 and

6.0 mm) for enhancing large nodules. In the nodule-

enhanced image, the circular objects, such as nodules, were

enhanced considerably, and objects of other shapes were not

well enhanced. Therefore, the nodules could be detected

more reliably in the enhanced images than in the original

images. Figure 3(a) is an original PA image of a subject with

a nodule indicated by a circle. Figures 3(b) and 3(c) show

the nodule-enhanced images by use of the small and large

scales, respectively.

II.B.2. Segmentation of initial nodule candidate

Because the contrast of nodules varies from one nodule to

another, a fixed threshold would not provide a good perform-

ance for detecting nodules. Therefore, a multiple threshold-

ing technique was employed to segment the nodules with

different contrast. First, the gray values of a nodule-

enhanced image were linearly transformed to the range

between 0 and 1023. An empirical initial threshold of 900

was then used to segment the nodule-enhanced image, and a

connected-component labeling algorithm was employed to

identify all segmented components inside lungs. The labeled

components with areas between 10 and 100 pixels (7.8–77.6

mm2) were retained as initial nodule candidates, and other

labeled components were discarded. The above process pro-

vided a binary image with identified nodule candidates.

Please note that the areas of nodules in the nodule-enhanced

image appeared smaller than their actual sizes, and that the

very large nodules would be detected at certain thresholds.

Finally, we decreased the threshold by a step of 5, and

repeated the above procedure until one of two conditions

was met (a) the threshold was less than 400 and (b) the total

number of the pixels whose gray scale values were greater

than the threshold was larger than 90% of the entire image.

We obtained a binary image at each threshold level. The

time to segment an image by using the multiple thresholding
FIG. 2. Overall schemes of the conventional CAD scheme and the fusion

CAD scheme for lung nodule detection on multiprojection chest radiography.

2003 Guo et al.: Lung nodule detection in multiprojection chest radiography 2003
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technique is about 6 s on a PC with 2.66 GHz Intel Core 2

CPU and 3GB RAM using MATLAB programming language.

A sum image was determined by adding corresponding

pixels in all binary images of the two nodule-enhanced

images. In the sum image, the value of each pixel indicated

the times that it was identified as a pixel in an initial nodule

candidate in the binary images. If a pixel in the sum image

was equal to or larger than 3, it was considered as a pixel in

FIG. 3. Identification of initial nodule candidates. (a) An original PA image of a subject with a nodule indicated by a circle, (b) nodule-enhanced image with a

small scale, (c) nodule-enhanced image with a large scale, (d) sum image of multiple binary images obtained by use of multithreshold segmentation of the two

nodule-enhanced images in (b) and (c), and (e) initial nodule candidates.

2004 Guo et al.: Lung nodule detection in multiprojection chest radiography 2004
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the initial nodule candidate. Figures 3(d) and 3(e) show the

sum image and the image of initial nodule candidates,

respectively. Although the number of false positives in the

sum image was large, the shape of most false positives was

different from that of nodules, and could be removed later

using simple features (such as circularity).

II.C. Segmentation of nodule candidates based on
dynamic programming

Because the shape of a nodule in the nodule-enhanced

image was a little different from the actual shape in the origi-

nal image, we attempted to segment nodule candidates accu-

rately in the original images by use of dynamic programming.

II.C.1. Polar-coordinate transformation

First, a small region of interest (ROI) of 41� 41 pixles

(31.8� 31.8 mm2) was defined at the center of each nodule

candidate. To minimize the effect of background trend, a

bilinear function (plane) was fitted to all pixels in the small

ROI image, and then the corresponding value of bilinear

function was subtracted from the pixel value of the original

ROI image. Figures 4(a) and 4(b) show the original ROI

image of a nodule and the image after background trend re-

moval, respectively.

Sixty radial lines (6� apart) of 21 pixels (16.3 mm) long

were evenly drawn from the center of the ROI of a nodule

candidate. We arranged all pixels on the 60 radial lines

sequentially to form a transformed polar-coordinate image as

shown in Fig. 4(c). The outline of a nodule was approximately

a horizontal curve in the transformed image, and could be

accurately delineated by use of dynamic programming.

II.C.2. Dynamic programming

II.C.2.1. Forward calculation of cumulative cost. Dynamic

programming is an optimization method, and often used for

tracing the optimal outline of an object.27,28 In this study, we

employed dynamic programming to determine the outlines

of nodule candidates in the multiprojection chest radiogra-

phy. The optimal outline consisted of 60 edge points (one

and only one edge point on each of sixty columns) in the

polar-coordinate image shown in Fig. 4(c). The optimal out-

line connecting the 60 edge points would have the lowest cu-

mulative cost compared with all other possible outlines.

The cumulative cost of a nodule outline was defined as

the sum of local costs of all edge points on the outline. The

local cost was defined as the weighted sum of the internal

and external costs. We empirically set the weighing factors

of the internal and external costs to 30 and 1, respectively.

The internal cost measured the smoothness between edge

points on the adjacent columns, and it was defined as the ra-

tio of the difference to the sum of the y-coordinates of the

two edge points on two adjacent columns. The external cost

measured the strength of change in gray scale at an edge

point, and it was defined as the difference in gray scale

between the two pixels above and below the edge point of

interest in the polar-coordinate image.

The cumulative cost of an outline was dynamically calcu-

lated column-by-column from the first column to the last col-

umn in the polar-coordinate image.28 The cumulative cost of

a pixel on the first column in the polar-coordinate image

consisted of only the external cost of the pixel, and the cu-

mulative cost of a pixel on the ith column was defined as the

sum of the cumulative cost at the (i� 1)th column and the

local cost at the pixel.

Because the previous column of the first column was

actually the sixtieth column, and the smoothness between

these two columns was not included in the internal cost, a

large “jump” would occur between two edge points on the

sixtieth and first columns. In order to overcome this problem,

we extended the polar-coordinate image by repeating the

original polar-coordinate image twice, as shown in Fig. 4(d).

The optimal outline of the nodule candidate was obtained

from the second half of the extended polar-coordinate

image.

II.C.2.2. Backward search of the optimal outline. After

the calculation of the cumulative costs of all points on the

last column, a backward search strategy28 was employed to

determine the optimal outline. First, we selected the pixel

with the lowest cumulative cost on the last column. From the

FIG. 4. Major steps of accurate nodule segmentation

using dynamic programming. (a) Original small image

of a nodule, (b) image after background trend removal,

(c) polar-coordinate image, (d) extended polar-

coordinate image, and (e) segmentation result in the

extended polar-coordinate image.

2005 Guo et al.: Lung nodule detection in multiprojection chest radiography 2005
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selected pixel on the last column, we traced the outline one

step backward to the “optimal” edge point on the second col-

umn from the last. This procedure was repeated to find the

pixels on the optimal outline all the way back to the first col-

umn. The white curve in Fig. 4(e) is the optimal outline

obtained by dynamic programming.

The pixels on the optimal outline of a nodule candidate

were then transformed back to the small ROI image, and ad-

jacent edge pixels on the optimal outline were connected by

straight lines to form a closed and continuous curve. Figure

5 shows the original and segmented images of three nodules

and three false positives. The first nodule was the one shown

in Fig. 4. It is apparent from Fig. 5 that dynamical program-

ming provided quite accurate segmentation results for nod-

ules, and less accurate segmentation results for false

positives due to their fuzzy boundaries. The large difference

in segmented shape between nodules and false positives

would enable us to remove most false positives while main-

taining a relatively high sensitivity.

II.D. Feature determination

II.D.1. Features based on gray scale and edge
gradient of nodule candidates

We determined 33 features based on gray scale, edge gra-

dient, shape, symmetry, and locations of nodule candidates

as shown in Table I. The features based on gray scale

included the mean and standard deviation of the gray scale

and the mean of the edge gradient for the pixels inside the

initially detected regions and accurately segmented regions

of nodule candidates. The interval for calculating edge gra-

dients was 2 pixels.

II.D.2. Features based on shape of nodule candidates

We determined as features the degree of circularity, com-

pactness, area, eccentricity, effective diameter, the ratio of

the length of the minor axis to the length of the major axis of

the ellipse that had the same second moments as the region

of the nodule candidate, the logarithm of the first three

moment invariants, and the maximum absolute value of the

Fourier descriptors. The definitions and meanings of these

features are provided in Ref. 29.

We found that the last four moment invariants represented

very subtle details, and lacked power to represent the main

characteristics of nodule candidates. Thus, they were not

able to well distinguish nodules from false positives, and

were discarded. The logarithm was used to reduce the

extremely large dynamic range of moment invariants. The

maximum absolute value of the Fourier descriptors was used

for its excellent ability in representing the shape of nodule

candidates.

II.D.3. Features based on symmetry of nodule
candidates

Most segmented areas of nodules were in the middle of

the images, and were approximately symmetric about the

center of the ROI images. However, the segmented areas of

false positives were often shifted away from the center of the

ROI images because most of false positives did not have

FIG. 5. The original and segmented images of (a) three nodules and (b) three non-nodules.

TABLE I. Features of nodule candidates.

Features based on gray scale and edge gradient

(features 1–6)

Mean and standard deviation of the gray scale and mean of the edge gradient

of the initial detection area (features 1–3) and the accurately segmented area (features 4–6)

Features based on shape (features 7–26) Degree of circularity, compactness, area, eccentricity, effective, diameter,

the ratio of the length of the minor axis to the length of the major axis of the

ellipse that had the same second moments as the region of the nodule candidate,

the logarithm of the first three moment invariants, and the maximum absolute

value of the Fourier descriptors of the initial detection area (features 7–16) and

the accurately segmented area (features 17–26)

Features based on symmetry (features 27–30) (Features 27 and 28) the symmetry of the shape of the nodule candidate in the vertical

and horizontal direction, (features 29–30) the maximum and mean value of features 27 and 28

Features based on location (features 31–33) (Features 31–33) the horizontal, vertical, and total distances from the center of a

nodule candidate to the center of the ROI image

2006 Guo et al.: Lung nodule detection in multiprojection chest radiography 2006

Medical Physics, Vol. 39, No. 4, April 2012



clear and well defined boundaries. Therefore, the symmetry-

based features were defined to distinguish between nodules

and false positives. First, Counttop, Countbottom, Countleft, and

Countright were calculated to represent the total number of the

pixels in the segmented nodule candidate in the top, bottom,

left, and right halves of the ROI image, respectively. The fol-

lowing four symmetry-based features were then computed:

R1 ¼
jCounttop � Countbottomj
Counttop þ Countbottom

; (1)

R2 ¼
jCountleft � Countrightj
Countleft þ Countright

; (2)

R3 ¼ max R1;R2ð Þ; and (3)

R4 ¼ ðR1 þ R2Þ=2; (4)

where R1 and R2 represent the symmetry of the shape of

nodule candidates in the vertical and horizontal direction,

respectively, and R3 and R4 represent the maximum and

mean value of R1 and R2, respectively. The smaller the four

features, the more symmetric the nodule candidate, and the

more likely the nodule candidate is a nodule.

II.D.4. Features based on locations of nodule
candidates

Three features based on locations of nodule candidates in

the small ROI images were determined, and they represented

the horizontal, vertical, and total distances between the cen-

ter of a nodule candidate and the center of the ROI image.

The nodule candidate with small distance values was more

likely to be a nodule.

II.E. False positive reduction by use of a stepwise
linear classifier

A stepwise linear classifier with minimized overtraining

effect was employed for false positive reduction.30 Features

were first selected based on the ratio of the within-class dis-

tance and between-class distance of features for nodules and

false positives. The five most selected features were degree

of circularity, compactness, eccentricity, effective diameter

of the accurately segmented area, and the distance from the

center of a nodule candidate to the center of the ROI image.

A linear classifier was then used to classify the nodule candi-

dates into nodules and false positives. For the output of the

classifier, an “optimal” threshold was employed to remove

some nodules and many false positives for minimizing the

overtraining effect.31 Finally, the remaining nodule candi-

dates were input into the linear classifier again, and the above

steps were repeated until an expected sensitivity was reached.

The above four sections comprise the conventional CAD

scheme, and the output of the classifier indicated the nodule can-

didates detected by the conventional CAD scheme. We added

the following two steps to construct the fusion CAD scheme.

II.F. Registration of the nodule candidates

Given our image acquisition geometry, a nodule in the

three projection images of a subject should have the same

y-coordinate but different x-coordinate. The coordinates of

the centers of a real nodule in the three images in Fig. 6 were

(412, 303), (428, 303), (449, 303). Therefore, the difference

in the x-coordinate between the three images was quite large.

To reduce the large difference in x-coordinate of a nodule in

the three images, we registered and shifted the two images at

63� with respect to the PA image.

FIG. 6. Three multiprojection images (a) at 3�, (b) 0� (posterior anterior),

and (c) �3�.

2007 Guo et al.: Lung nodule detection in multiprojection chest radiography 2007
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We first corrected the difference in x-coordinate for nod-

ule candidates by registering the image at oblique view of 3�

with the PA image. The central half of the PA image was cut

out and considered as the template image, which included

most of the lung area and a small part of nonlung area.

According to the imaging principles, the image at 3� should

be shifted to the left of the PA image by 5–25 pixels,

depending on the distance between the object to be imaged

and the x-ray detector. Therefore, the image at 3� was moved

rightward for 5–25 pixels, and thus obtained 21 search

images (the central half of the shifted image at 3�) with the

same size as the template image. The absolute difference in

pixel value between each of the 21 search images and the

template image was then calculated. The search image with

the minimal absolute difference was considered as the

“optimal” search image registered with the template image,

and the shift value of the optimal search image was deemed

as the offset value of the image at 3�. Finally, the image at

3� was translated by the offset value to register it with the

PA image. We also registered the image at �3� with the PA

image by using a similar method.

After the registration of the two projection images, the

lung areas were well matched, but the horizontal location of

a nodule in the two images could still differ by a small

amount, depending on the distance between the nodule and

the flat-panel x-ray detector. Taking into account of this

small difference and errors caused by noise, the permissible

error ranges in the x- and y-coordinate for registering a nod-

ule candidate in the two matched images were set to 10 pix-

els (7.8 mm) and 5 pixels (3.9 mm), respectively. We then

used these permissible error ranges to find registered nodule

candidates in the two projection images.

Specifically, for a nodule candidate at location (x,y) in

the PA image, if there was no nodule candidate in a rectan-

gular area of 20� 10 pixels centered at (x,y) in the trans-

lated image at 3�, the nodule candidate in the PA image

would have no matching nodule candidate; if there was a

single nodule candidate in the rectangular area, the two

nodule candidates were considered as the same one in the

two images; if there were more than one nodule candidate

in the rectangular area, all of them were potential matching

nodule candidates. Therefore, one candidate was randomly

selected as the registered one, and the other nodule candi-

dates would be used to match with remaining nodule

candidates.

In this study, we first registered the detected nodule can-

didates in the PA image with the nodule candidates in the

images at 3� and �3�, and then registered the nodule candi-

dates in the two images at 63�.

II.G. False positive reduction by use of correlation
information between nodule candidates

After the registration, a nodule candidate could be

detected once, twice, or three times in the three images. If a

nodule candidate was detected more than once in the three

images of a subject, it was retained as a “true” nodule. Oth-

erwise, it was removed as a false positive.

Figure 7 shows the detection result of the conventional

CAD scheme in the three projection images of a patient at

the 60% sensitivity. The circles and squares represent the

FIG. 7. Nodule detection results of the conventional CAD scheme for a

patient in (a) the image of 3�, (b) PA image, and (c) image of �3�. The

circles and squares represent the nodule candidates detected only once and

more than once, respectively, by the conventional CAD scheme, and the dia-

monds indicates the true nodule. On average, there were 4.3 false positives

(circles) in each image reported by the conventional CAD scheme; all these

false positives were removed by the integration of correlation information

between the nodule candidates in the three projection images.

2008 Guo et al.: Lung nodule detection in multiprojection chest radiography 2008
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nodule candidates detected only once and more than once,

respectively, by the conventional CAD scheme, and the dia-

monds indicates the true nodule. On average, there were 5.3

nodule candidates (including 4.3 false positives) in each

image reported by the conventional CAD scheme; however,

when the correlation information between the three images

was employed, only one candidate (the true nodule indicated

by the diamonds) was reported as nodules by the fusion

CAD scheme. It is apparent that integrating correlation infor-

mation between the nodule candidates in the three images

would significantly improve the detection performance of

the fusion CAD scheme.

II.H. Evaluation methodologies

The registration of the three images of a patient was a

critical step for the fusion CAD scheme. In this study, we

employed the percentage error in the pixel value between the

two registered images f1 and f2 to evaluate the accuracy of

the registration algorithm as follows:

E¼

1

nm

X

x¼1;2;:::n;y¼1;2;:::;m

jf1ðx; yÞ�f2ðx; yÞj

1

2nm

X

x¼1;2;:::n;y¼1;2;:::;m

jf1ðx; yÞj þ jf2ðx; yÞj
� 100%; (5)

where m and n are the width and height of the two images,

respectively. A large percentage error value indicates a poor

registration.

The performance of our CAD schemes for nodule detec-

tion was evaluated by comparing the computer-identified

locations with the predetermined locations of the centers of

nodules. If the distance between the center of a candidate

and that of a true nodule was less than 15 pixels (11.6 mm),

the nodule was considered as a detected one; otherwise, it

was considered as one missed by the CAD schemes. The dis-

tance of fifteen pixels (11.6 mm) above was empirically

selected based on our experience in lung nodule detection. It

is important to note that, in addition to using this fixed

threshold of 15 pixels, we have visually confirmed whether

each true nodule was indeed detected by the fusion CAD.

A leave-one-subject-out method was employed to evalu-

ate the performance of our CAD schemes. The three images

of a subject were selected as test images, and the images of

other 58 subjects were used to train our CAD schemes. The

trained CAD schemes were then applied to the three selected

test images for detecting nodule candidates. This process

was repeated 59 times, each for a specific subject, to con-

clude the leave-one-subject-out evaluation method.

The performance levels of our CAD schemes were measured

with a free-response receiver operating characteristic (FROC)

curve.32 The number of false positives per images at the three

detection sensitivities 70%, 65%, and 60% were also reported.

III. RESULTS

III.A. Result for image registration

Figure 8 shows the percentage errors for the registration

algorithm for all 59 subjects. For the percentage errors

between the PA image and the image at 3�, 24, 31, 1, 2, and

1 patients were in the ranges of [0%, 1%], [1%, 2%], [2%,

3%], [3%, 4%], and >5%, respectively. For the percentage

errors between the PA image and the image at �3�, 25, 29,

3, 1, and 1 patients were in the above ranges. The percentage

errors for 92.4% subjects were below 2%. This ensures the

correct registration of nodule candidates in the three images

as well as a good performance for the fusion CAD scheme.

III.B. Performance of initial identification of nodule
candidates

Table II shows how the decrement value of the threshold

for initial nodule identification affects the performance of

initial nodule detection in Sec. II B. A small decrement value

generally leads to a high detection sensitivity and a large

number of false positives. In order to achieve a high sensitiv-

ity, we set the decrement value to 5, at which 96.3% nodules

were detected along with 216.4 false positives per image.

III.C. Performance of the conventional and fusion CAD
schemes

Figure 9 shows the FROC curves of our conventional and

fusion CAD schemes. Compared with the conventional CAD

scheme, the fusion CAD scheme markedly improved the

FIG. 8. Number of patients with different levels of percentage error for

image registration between PA image and images at oblique angles of 3�

and �3� in 59 patients.

TABLE II. The relationship between the decrement of threshold and the per-

formance of initial nodule detection.

Decrement of

threshold

Sensitivity

(%)

Number of false

positives per image

5 96.3 216.4

10 94.1 199.1

15 91.1 183.2

20 91.9 170.6

25 88.9 156.1

30 85.2 144.9

2009 Guo et al.: Lung nodule detection in multiprojection chest radiography 2009
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performance of nodule detection. Table III indicates that at

the sensitivities of 70%, 65%, 60%, our conventional CAD

scheme reported 14.7, 11.3, and 8.6 false positives per

image, respectively, whereas our fusion CAD scheme signif-

icantly reduced the number of false positives to 3.9, 1.9, and

1.2 per image, and 5.5, 2.8, and 1.7 false positives per

patient, respectively.

IV. DISCUSSION

A low sensitivity and a large number of false positives

are main issues of current CAD schemes for nodule detec-

tion in chest radiography. It is more so if the nodules to be

detected are small and of low contrast. These issues have

severe negative impact on clinical application of CAD

schemes. In this study, we developed a new fusion CAD

scheme to markedly improve the performance of nodule

detection by use of the correlation information between the

nodule candidates detected by the conventional CAD

scheme. To our knowledge, this is the first study of its kind

in the field of computer-aided diagnosis.

Because the nodules were real target objects for our con-

ventional CAD scheme, they were more likely to be detected

multiple times in the multiprojection chest radiography than

non-nodules. Therefore, the true nodules had strong correla-

tion information, and they were more likely to be retained as

nodules by our fusion CAD scheme. On the other hand, the

false positives were caused by either noise or non-nodule

objects, and they were less likely to be detected multiple

times in the multiprojection chest radiography. Therefore,

the false positives had weak correlation information, and

they were more likely to be removed as false positives by

our fusion CAD scheme, as shown in Fig. 7.

We compared the detection performance levels of the

fusion CAD for real and simulated nodules. At the overall

sensitivities of 71.1%, 66.7%, and 60.0%, the fusion CAD

scheme detected 3 of 7 real nodules; and 29, 27, and 24 of

38 simulated nodules, respectively. Please note that the

detection rate for real nodule was quite low because the

CAD scheme was primarily trained with simulated nodules

and real nodules had very limited impact on the training of

the CAD scheme. The only effective way to improve the

detection rate for real nodules is to markedly increase the

number of real nodules for training, which is an impractical

task for this preliminary study.

We analyzed all false positives reported by the fusion

CAD scheme at the sensitivity of 70%. We found that the

main sources of false positives were ribs (40%), blood ves-

sels (40%), intercostal (inter-rib) space mainly caused by

random noise (18%) and soft tissue in mediastinum (2%).

In order to have as many nodules registered in different

views as possible, we registered the nodule candidates using

location information only. We verified that none of the true

nodules was incorrectly removed by use of this registration

method (i.e., all true nodules were registered correctly). We

also found that when the sensitivity of the fusion CAD

scheme was set at 75%, only three false positives in one

view were matched to multiple false positives in other views.

Therefore, this simple nodule registration method seems to

be a good one, and adding other information such as nodule

size to the registration method would have minimal effect on

the performance of the fusion CAD scheme.

In this study, we used three projection images from each

subject. If we used more projection images from each sub-

ject, we should have achieved a higher performance level for

our fusion CAD scheme, because nodules have stronger

correlation in multiprojection images than false positives.

However, an increase in the number of projection images

would lead to an increase in radiation dose to subjects.

The high noise level, along with the small size and low

contrast of the nodules, would be the three primary reasons

for the low performance of our conventional CAD scheme.

The radiation dose for acquiring each of the three projection

images was a third of that for acquiring a standard PA radi-

ography. Therefore, the noise level is higher in the multipro-

jection radiography than in regular PA radiography. The

mean diameter of the nodules in this study was 6.4 mm,

which is much smaller than the mean diameter (17 mm) of

the nodules in a public database33 that was used by many

existing CAD schemes.12–17 The contrast of the simulated

nodules ranged from 5% to 15%.

Due to the small number of real nodules, many simulated

nodules were used to train and test our CAD schemes. We

randomly added the simulated nodules into the images of

different patients, and adjusted the size and contrast of the

FIG. 9. FROC curves of the conventional CAD scheme and fusion CAD

scheme. By integrating correlation information in multiprojection chest radi-

ology, the performance of the fusion CAD scheme was markedly improved

over that of the conventional CAD scheme.

TABLE III. The performance of nodule detection of the conventional CAD

scheme and the fusion CAD scheme.

Sensitivity

70% 65% 60%

Number of false positives for

conventional CAD scheme

14.7/image 11.3/image 8.6/image

Number of false positives

for fusion CAD scheme

3.9/image 1.9/image 1.2/image

5.5/patient 2.8/patient 1.7/patient

2010 Guo et al.: Lung nodule detection in multiprojection chest radiography 2010
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simulated nodules. Although the images themselves were the

real chest images of patients, and the shape, gray scale, and

contrast of simulated nodules were similar to those of real

nodules, the readers should be aware that the performance

levels achieved in this study may be quite different from the

performance levels if real nodules were used. However, we

strongly believe that, if we used real nodules rather than

simulated nodules to train and test our CAD schemes, the

conclusion of this study would not change; that is, the per-

formance of nodule detection can be markedly improved by

use of correlation information between the registered nodule

candidates in multiprojection images.

V. CONCLUSIONS

In this study, we developed a conventional CAD scheme

and a fusion CAD scheme for lung nodule detection in multi-

projection chest radiography. The fusion CAD scheme regis-

tered the nodule candidates in multiprojection images, and

markedly removed the false positives by use of correlation

information between the registered nodule candidates. Com-

pared with the conventional CAD scheme, the fusion CAD

scheme achieved a markedly higher performance for nodule

detection.
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