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ABSTRACT

An important problem in medical image analysis is the segmentation of anatomical regions of interest. Once
regions of interest are segmented, one can extract shape, appearance, and structural features that can be ana-
lyzed for disease diagnosis or treatment evaluation. Diffusion tensor magnetic resonance imaging (DT-MRI) is
a relatively new medical imaging modality that captures unique water diffusion properties and fiber orientation
information of the imaged tissues. In this paper, we extend the interactive multidimensional graph cuts segmen-
tation technique to operate on DT-MRI data by utilizing latest advances in tensor calculus and diffusion tensor
dissimilarity metrics. The user interactively selects certain tensors as object (“obj”) or background (“bkg”) to
provide hard constraints for the segmentation. Additional soft constraints incorporate information about both
regional tissue diffusion as well as boundaries between tissues of different diffusion properties. Graph cuts are
used to find globally optimal segmentation of the underlying 3D DT-MR image among all segmentations satis-
fying the constraints. We develop a graph structure from the underlying DT-MR image with the tensor voxels
corresponding to the graph vertices and with graph edge weights computed using either Log-Euclidean or the
J-divergence tensor dissimilarity metric. The topology of our segmentation is unrestricted and both obj and bkg
segments may consist of several isolated parts. We test our method on synthetic DT data and apply it to real
2D and 3D MRI, providing segmentations of the corpus callosum in the brain and the ventricles of the heart.

Keywords: Segmentation, diffusion tensor magnetic resonance imaging, graph cuts, tensor dissimilarity metric,
Log-Euclidean, J-divergence

1. INTRODUCTION

Since Basser et al.1 presented their seminal work on diffusion tensor magnetic resonance imaging (DT-MRI), the
processing, analysis and visualization of this modality has become a primary focus in medical imaging research.
As of today, it is the only non-invasive method that allows distinguishing the anatomical structures of the
cerebral white matter by measuring local water diffusion through biological tissues. The result is an image where
at each voxel, the direction of water diffusion is locally modeled by a Gaussian probability density function whose
covariance matrix is a 3×3 symmetric positive definite diffusion tensor.

Image segmentation where regions of interest are delineated is necessary for performing subsequent quanti-
tative analysis and qualitative visualization. In medical imaging applications, it is apparent that good quality
segmentation helps radiologists extract shape, appearance, and other structural features that can be analyzed
for disease diagnosis or treatment evaluation. Analogous to scalar image segmentation, DT-MR image segmen-
tation can rely on (a) identifying nearby tensors with similar diffusion properties and grouping them into one
coherent structure, (b) identifying edges in the images and linking them to form separating boundaries between
neighboring structures, and (c) incorporating prior knowledge about shape characteristics of the different targets
to segment.

While scalar image segmentation has been studied extensively and different algorithms have been developed
over a long period of time, DT-MR image segmentation is a relatively new and challenging task. Zhukov et al.2

proposed a level-set segmentation method that operates on a scalar field derived from the anisotropic diffusion
tensors. However this method will fail to distinguish between regions of the same diffusion anisotropy magnitude
but oriented in different directions. By incorporating the directions of diffusion in addition to the magnitude
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during segmentation process, one can differentiate between regions of same anisotropic diffusion but oriented in
different directions. We show such an example using synthetic data in the results section (figure 2).

In order to improve the segmentation of DT-MRI data, one has to exploit all the information captured
by the tensors. Zhizhou and Vemuri recently proposed a level-set based curve evolution technique for DT-
MRI segmentation that operates on the diffusion tensor fields.3 However, these variational formulations with
iterative gradient descent based solutions are sensitive to parameter settings and initialization, and hence may
get stuck at suboptimal local minima of the energy functional. Further, implementing intuitive user interaction
remains a challenging goal in level set based segmentation techniques. On the other hand, interactive and
highly-automated segmentation techniques keep the user ‘in the loop’ in an attempt to bridge the gap between
the clinical users’ expert knowledge and the inner workings of the computational tools and algorithms. Other
DT-MRI segmentation techniques were proposed in the past few years.4–12

In this work, we extend the intuitive, interactive and globally optimal graph cuts scalar field segmentation
technique proposed by Boykov and Jolly13 to DT-MRI data. In our extension, the graph vertices correspond
to the tensor voxels in the DT-MR image and the graph connectivity edge weights are computed using recently
proposed mathematical frameworks of tensor dissimilarity metrics. Two such metrics are utilized in our work:
the Log-Euclidean tensor calculus framework proposed by Arsigny et al.14 and the affine invariant square root
of the J-divergence proposed by Wang and Vemuri.15 Seed points provided by the user give clues about the
location of the object of interest and the background. The locations of the seed points are encoded into the
graph providing hard constraints for the segmentation. The user can interactively modify the seed points as
needed in order to improve the segmentation results. Using the max-flow algorithm, we efficiently compute the
global minimum graph cut guaranteeing an optimal DT-MRI segmentation.

The paper is organized as follows. In section 2.1, we review graph cuts and optimal maximum flow algorithms
for computing minimum cuts. In addition, the connection between minimizing energy functions and computation
of minimum cut is discussed. Scalar image segmentation using graph cuts is briefly reviewed in section 2.2. In
section 2.3, we present our extension of scalar image segmentation using graph cuts to DT-MRI data segmenta-
tion. We present experimental segmentation results on both synthetic and real cardiac and brain DT-MRI data
in section 3. We summarize and draw concluding remarks in section 4.

2. METHOD

We first present the mathematical background of graph cuts and its use for energy minimization and show the
construction of graphs for scalar image segmentation. We then provide the details of our method extending
graph cuts to DT-MRI segmentation.

2.1. Graph Cuts Overview

Suppose G = (V, E) is an undirected graph with vertex set V and edge set E. Two special terminal vertices
denote the source s and the sink t. An edge in E connecting u, v ∈ V is assigned a cost c(u, v). An s − t cut
C(S, T ) partitions V into two disjoint sets S and T , such that s ∈ S and t ∈ T . The cost of the cut is the sum
of all edge costs connecting a vertex in S to a vertex in T :

C(S, T ) =
∑

u∈S,v∈T

c(u, v) (1)

The minimum s− t cut is the cut C with the smallest cost. Due to the theorem of Ford and Fulkerson,16 finding
the minimum cut is equivalent to computing the maximum flow from the source to the sink, which is solvable in
polynomial time.17

Since each cut of a graph G has a cost associated with it, we may view the graph G as an energy function
mapping from all cuts on G to the set of nonnegative real numbers. Any cut can be described by |V | binary
variables x1, ..., x|V | corresponding to vertices in G (excluding the source and the sink), such that xi = 0 when
vertex vi ∈ S, and xi = 1 when vi ∈ T . An energy ξ can be represented by G, where ξ is viewed as a function of
|V | binary variables ξ(x1, ..., x|V |), and whose value is equal to the cost of the cut defined by the configuration
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x1, ..., x|V | (xi ∈ {0, 1}). Such energy function ξ can be efficiently minimized by computing the minimum cut of
G or simply the “graph cut”.18

The standard form of the energy function can be written as

ξ(x1, ..., x|V |) =
∑

p∈{1,2,...,|V |}
ζp(xp) +

∑
p,q∈{1,2,...,|V |}

vq∈Np,q �=p

ζp,q(xp, xq) (2)

where where Np is the neighborhood of vertex vp.

The first term ζp(xp) measures the cost of assigning a binary value xp to a vertex vp, which designates whether
vp belongs to the set S or T after the minimum cut is computed. From a segmentation point of view, this term
is derived from the image data and is computed by measuring the similarity between the voxel corresponding to
vp and other known object or background voxels. The second term ζp,q(xp, xq) measures the cost of assigning
xp and xq to the adjacent vertices vp and vq. Once again, from a segmentation point of view, this cost reflects
conformance to boundary properties. The cost function is computed in such a way that similar neighboring image
voxels are associated with graph vertices that are connected by higher cost edges, whereas dissimilar voxels are
associated with lower cost edges. At the borders of objects, adjacent voxels should have different labels and it is
important that the energy function ξ not over penalize such labeling.

2.2. Scalar Image Segmentation Using Graph Cuts

As explained in the previous section, a cut is a binary partition of a graph and can be viewed as a labeling
of the graph. Binary segmentation, which is a binary partition of image voxels, can therefore be performed by
first creating a graph with vertices corresponding to the image voxels and edges with proper weights, and then
employing efficient polynomial time minimum graph cut algorithms.17 While there are generalizations of the
minimum s − t cut problem that involve more than two terminals, such as the multiway cut problem,19 such
generalizations are generally NP-hard.

Boykov and Jolly13 proposed an interactive technique for segmenting N-dimensional scalar images using graph
cuts. In this method the user imposes hard constraints for segmentation by indicating certain pixels (seeds) that
absolutely have to be part of the object and certain pixels that have to be part of the background. Intuitively,
these hard constraints provide clues on what the user intends to segment. The rest of the image is segmented
automatically by constructing a cost function whose minimization results in a globally optimum segmentation
among all segmentations satisfying the hard constraints. The cost function is defined in terms of edges that form
boundary and region properties. The boundary property ensures that voxels on either side of a boundary are
dissimilar while the region property ensures voxels belonging to the same region are similar to each other and
dissimilar to voxels (seeds) known to belong to different image partitions.

2.3. Extending Segmentation Using Graph Cuts to DT-MRI Data

In the proposed DT-MRI graph cuts interactive segmentation technique, the user first selects certain tensor
voxels belonging to the structure or object to be segmented, henceforth denoted by “obj”, and background tensor
voxels belonging to the background, henceforth denoted by “bkg”. These so called seed tensors constitute hard
constraints for the segmentation, i.e., after segmentation obj seeds must remain labeled as belonging to the object
of interest while bkg seeds must remain labeled as background. Since typically more than one solution can satisfy
these hard constraints, these conditions are considered insufficient for defining a single optimal segmentation and
additional soft constraints are used to automatically label all remaining tensors in the image. The soft constraints
are incorporated into the energy function through edge weights, reflecting both boundary and region properties.

2.3.1. Energy Function

Consider an arbitrary N-dimensional tensors field T . Let A = (A1, A2, ...A|T |) be a binary vector that defines
a segmentation of T , where each element Ai specifies whether tensor Ti belongs to the object or background.
This is the same as the binary labeling problem described in section 2.1 for which an energy functional can be
constructed and minimized efficiently using graph cuts.
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We define an energy functional ξ(A) as13

ξ(A) = λ · R(A) + B(A) (3)

where
R(A) =

∑
Ti∈T

RTi
(Ai), and (4)

B(A) =
∑

i,j∈{1,2,...,|T |}
Tj∈Ni,i �=j

B(Ti,Tj) (5)

where Ni is the set of tensors neighboring tensor Ti. The coefficient λ ≥ 0 in (3) specifies a relative importance
of region properties term R(A) versus the boundary properties term B(A). The boundary term B(Ti,Tj) is
interpreted as the penalty for discontinuity between neighboring tensors (Ti, Tj). Normally B(Ti,Tj) is large when
the neighboring tensors are similar and close to zero when they are dissimilar. The regional term R(A) sums
up the individual penalties RTi(Ai) of assigning a tensor Ti as obj or bkg and is computed by examining the
dissimilarity measure of tensor Ti compared to the obj and bkg seed tensors.

2.3.2. Graph Construction

We now construct a graph G as follows. Each tensor voxel of the DT-MR image corresponds to a non-terminal
node in the graph. We add two terminal nodes, namely source s and sink t so that a flow is pushed from s
to t (figure 1). Neighboring tensors (Ti, Tj) are connected by edges with edge weights of B(Ti,Tj). In our work
we have considered 8-connectivity neighborhood for 2D data and 26-connectivity for 3D data. Moreover, each
non-terminal node is connected to the terminal nodes with edge weights given as in table 1.

Table 1. Edge weight assignment table for the graph G

Edge Weight For
(Ti, Tj) B(Ti,Tj) (Ti, Tj) ∈ N , Tj ∈ Ni, i �= j

λRTi
(bkg) Ti /∈ O ∪ B

(Ti, s) K Ti ∈ O
0 Ti ∈ B

λRTi
(obj) Ti /∈ O ∪ B

(Ti, t) 0 Ti ∈ O
K Ti ∈ B

where
K = 1.0 + max

Ti∈T

∑
i,j∈{1,2,...,|T |}

Tj∈Ni,i �=j

B(Ti,Tj) (6)

and O and B denote the set of obj and bkg seed tensors respectively.

The edge weight of a non-terminal tensor Ti to the source terminal node s is the penalty of assigning the
tensor Ti as bkg tensor denoted by RTi

(bkg). Similarly, the edge weight of a non-terminal tensor Ti to the sink
terminal node t is the penalty of assigning the tensor Ti as obj tensor denoted by RTi

(obj).

By assigning the weight K, which is greater than the sum of all edge weights of a seed tensor to its neighbors,
to the edges connecting each obj and bkg seed points to s and t respectively, we ensure that the hard constraints of
the segmentation will always remain intact after segmentation. This comes from the fact that the minimum graph
cut always severs the least weight edges. Moreover by definition, this cut will sever one and only one terminal
link from each tensor; thus resulting in an optimal segmentation. Also note that the region and boundary terms
are not yet defined and their definition will rely on tensor dissimilarity metrics detailed in the next section.
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Figure 1. Simple illustration of graph construction from 2D 3×3 DT-MR image (a). The cost of each edge is reflected
by the edge’s thickness (b). Low cost edges are attractive choices for the minimum cut. The cut (c) separates the tensors
into object and background classes (d). The 3D ellipsoids are used to visualize diffusion tensors where the directions and
lengths of the major axes correspond to the eigenvectors and eigenvalues of the diffusion tensors.
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2.3.3. Tensor Dissimilarity Measures

In order to fully utilize all the information in the tensors while computing the edge weights of the graph, the
dissimilarity measure of tensors should incorporate both diffusion magnitudes and directions in the DT-MR
image. We utilize the Log-Euclidean or the Affine Invariant tensor distance measure for computing these edge
weights.14,15

The Log-Euclidean tensor distance, dLE , and the Affine Invariant, dAI , tensor distances between tensors Ti

and Tj are computed as in equations 7 and 8 respectively, where tr(.) denotes the trace of a matrix, log is matrix
logarithm and n is the size of the tensors Ti and Tj (which is 3 in DT-MR images).

dLE(Ti, Tj) =
√

tr((log(Ti) − log(Tj))2) (7)

dAI(Ti, Tj) =
1
2

√
tr(T−1

i Tj + T−1
j Ti) − 2n (8)

We compute the boundary link weights B(Ti,Tj) as the inverse of tensor distance between Ti and Tj .

B(Ti,Tj) = f(d(Ti, Tj)) (9)

where d is either dLE or dAI and f is a monotonically decreasing function that maps the range of tensor-
dissimilarity values to the interval (0, 1].

The weights of the terminal links connecting a non-seed tensor to the terminal nodes are obtained by com-
puting the distance of each such tensor from all seed tensors and averaging these distances. Specifically, the edge
weight of a non-seed tensor Ti to the source terminal node s, which is the penalty of assigning the tensor Ti as
bkg tensor, is given by

RTi
(bkg) =

∑
Tj∈B d(Ti, Tj)

|B| (10)

Similarly, the weight of a non-seed tensors Ti to the sink terminal node t, which is the penalty of assigning the
tensor Ti as obj tensor, is given by

RTi
(obj) =

∑
Tj∈O d(Ti, Tj)

|O| . (11)

3. EXPERIMENTAL RESULTS

In this section, we present some simulation results of the proposed segmentation technique for both synthetic and
real data. Both Log Euclidean and Affine Invariant tensor dissimilarity measures were tested and gave similar
results.

3.1. Synthetic Data

Figure 2 shows a noisy synthetic DT-MR image segmentation performed with the proposed technique. This
example is used to demonstrate that full tensor information must be used to achieve quality segmentation for
tensor fields. The inner circle contains anisotropic diffusion with a preferred direction pointing left (in the figure)
while the outer circle contains anisotropic diffusion tensors of the same magnitude with preferred direction of
diffusion pointing downward. In order to test the strength of our segmentation algorithm, random Gaussian
noise was added independently to the three eigenvalues of the DT-MR image20 in addition to random rotation
(in azimuth and elevation) perturbing the three eigenvectors by the same amount to retain orthogonality. Scalar
quantities derived from tensors such as fractional an isotropy would not discriminate such image as having
distinct diffusion properties. By considering the diffusion direction in addition to the magnitude however, we
could correctly interpret the image as having two distinct structures with entirely different diffusion properties
and thus segmented the image accordingly.

In figure 3, we show that the proposed method is capable of segmenting an object of interest made up of
several disconnected parts.
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Figure 2. Segmentation of a noisy synthetic 2D DT-MRI slice. (left) The DT-MRI slice visualized using only the scalar
first entry of the tensor field T (1, 1). The inner ‘white’ disk contains tensor pixels with eigenvectors (1, 0, 0), (0, 1, 0), (0, 0, 1)
and corresponding eigenvalues (10, 1, 1). The outer disk contains tensors with eigenvectors (0, 1, 0), (1, 0, 0), (0, 0, 1) and
corresponding eigenvalues of (10, 1, 1). Gaussian noise is then used to corrupt the eigenvalues and to rotate the eigenvectors.
(middle) Manually selected object seed points (red) and background seed points (blue). (right) Segmentation result shown
in green.

Figure 3. Segmentation of a synthetic noisy DT-MRI slice containing an object comprising several disconnected parts.
(left) The DT-MIR slice visualized using T (1, 1). (middle) Object (red) and backgrounds (blue) seed points. (right)
Segmentation result in green. The tensors inside the object and the tensors forming the background were created in a
manner similar to those in figure 2.

3.2. Real Data

While the synthetic example demonstrated the quality of segmentation results obtained by the proposed tech-
nique, the practicality of the proposed technique was evaluated using real brain and cardiac DT-MRI data as
shown below. Figure 4, shows segmentation result of brain corpus callosum where white matter is segmented
out from the remaining part of the brain. No regularization, smoothing or interpolation was performed prior to
segmentation. Figure 5 shows the segmentation result for the cardiac ventricles.

4. CONCLUSIONS

We extended graph cuts to segment DT-MR images. We made use of tensor calculus and tensor dissimilarity
metrics to define edge weights in the graphs. We applied the results to segmenting real and synthetic DT-MRI
data. The method was successful in the experiments we performed. Future work includes more comprehensive
quantitative evaluation, comparison to other methods, and speed enhancement. Another future research direc-
tion is to investigate DT-MRI visualization techniques that allow the user to view and explore the complete
information in the diffusion tensors during the interactive seed placement stage.
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Figure 4. Corpus callosum (CC) segmentation from a DT-MRI slice of the brain. (left) The DT-MRI slice visualized using
T (1, 1). (middle) Manually selected CC seed points (red) and background seed points (blue). (right) CC segmentation
result shown in green.

Figure 5. Cardiac wall segmentation from a DT-MRI slice of the heart. (left) The DT-MRI slice visualized using T (1, 1).
(middle) Manually selected heart seed points (red) and background seed points (blue). (right) Cardiac segmentation
result shown in green.
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