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Abstract

We study the problem of wireless network resilience to nadkeirfes from a percolation-based perspective. In
practical wireless networks, it is often the case that tlilaraprobability of a node depends on its degree (number
of neighbors). We model this phenomenon as a degree-depiesitke percolation process on random geometric
graphs. Due to its non-Poisson structure, degree-depesierpercolation is far from a trivial generalization of
independent site percolation. Using coupling and rendratbn method, we obtain analytical conditions for the
existence of phase transitions within the degree-deperidéure model. Furthermore, in networks carrying traffic
load, the failure of one node can result in redistributiortred load onto other nearby nodes. If these nodes fail
due to excessive load, then this process can result in adiagctilure. Using a simple but descriptive model,
we show that the cascading failure problem for large-scatel@ss networks is equivalent to a degree-dependent
site percolation on random geometric graphs. We obtainydoal conditions for cascades in this model. To
our knowledge, this work represents the first investigatbrtascading phenomena in networks with geometric
constraints.

I. INTRODUCTION

In large-scale wireless networks, nodes are often vulher@battacks, natural hazards, and resource
depletion. The ability of wireless networks to maintain lgdb communication in the face of these chal-
lenges is a central concern for network designers. For thipgse, a network may be considered to be
functional if the size of the largest connected componempafrational nodes grows linearly with the size
of the network. On the other hand, if the size of the largesrajonal component vanishes as a fraction
of the network as the network size grows, then the networloiscansidered to be functional. A network
may be said to be resilient if the remaining network is fumicél even after many node and link failures.
For instance, if the wireless sensor network still managesotlect information from a constant fraction
of the sensors even after a substantial number of node akdalinres, then the network is resilient. On
the other hand, if after many node and link failures, the sengtwork breaks down into isolated parts
where even the largest component can reach only a few otligsnthen the network is not considered
to be resilient. ¢ From this perspective, the charactésizaif network resilience corresponds to the study
of the qualitative and quantitative properties of the latggwnnected component. A powerful tool for this
study stems from the theory of percolation [1]-[5]. Recgnglercolation theory, especially continuum
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percolation, has been widely used to study the coverag&enbinity, and capacity of large-scale wireless
networks [6]-[15].

A percolation process resides in a random graph structuretexnnodes or links are randomly designated
as either “occupied” or “unoccupied.” When the graph stitetresides in continuous space, the resulting
model is described by continuum percolation [1]-[3]. A midiecus of continuum percolation theory is
the random geometric graph induced by a Poisson point pgoggl constant density. A fundamental
result for continuum percolation concerns a phase tramsgifect whereby the macroscopic behavior of
the system is very different for densities below and aboweesoritical value\.. For A < \. (subcritical
or non-percolated), the connected component containiagtigin (or any other fixed point) contains a
finite number of points almost surely. Far> )\, (supercritical or percolated), the connected component
containing the origin (or any other fixed point) contains afinite number of points with a positive
probability [1]—[4].

In this paper, we study the resilience of large-scale waelaetworks to node failures from the
percolation perspective. We first consider wireless ndteawith random, independent node failures.
To see why this problem can be described by a percolatiorepsoon the network, note that in a network
with random node failures, nodes are randomly occupiedré&ip@al) or unoccupied (failed), and the
number of operational nodes that can successfully comrateiwith an extensive portion of the network
is precisely the largest component of the correspondingagtetion model. Hence, the phase transition
phenomena of the percolation model directly translates deszription of the random failures model.

In practical wireless networks, it is often the case that ftikire probability of a node depends on
its degree (number of neighbors). For instance, a wireleesa® node which must communicate with a
large number of neighbors is more likely to deplete its epeaserve. A communication node directly
connected to many other nodes in a military network is mdeelyito be attacked by an enemy seeking
to break down the whole network. Such phenomenon can beildeddry a general model where each
node fails with a probability depending on its degree. Iis fper, we study suategree-dependent node
failure problems. Specifically, by analyzing the problem as a dedependent site percolation process
on random geometric graphs, we obtain analytical conditimm percolation in this model.

In networks which carry load, distribute a resource or agate data, such as wireless sensor networks
and electrical power networks, the failure of one node ofesults in redistribution of the load from
the failed node to other nearby nodes. If nodes fail when tiael lon them exceeds some maximum
capacity or when the battery energy is depleted, then a desréailure or avalanche may occur because
the redistribution of the load causes other nodes to exdssd thresholds and fail, thereby leading to a

further redistribution of the load. An example of such a ealtg failure is the power outage in the western
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United States in August 1996, which resulted from the spofadsmall initial power shutdown in El Paso,
Texas. The power outage spread through six states as faregsi®and California, leaving several million
customers without electronic power [16], [17]. Cascadeglaso been studied in social networks [18],
[19]. In wireless sensor networks constrained by battespuiece, the system may suffer similar cascading
failure problems, though the cascading process may be mowlersthan that for power networks. In this
paper, we study cascade failures in large-scale wirelegsgones. To our knowledge, this is the first work
to address cascading phenomena in networks with geomenistraints. We show that such problems
can be mapped to a percolation process on random geomedapbgruUsing our degree-dependent site
percolation model, we obtain analytical conditions on tbeusrence of a cascading failure.

This paper is organized as follows. In Section I, we outls@me preliminary results for random
geometric graphs and continuum percolation. In Sectionwg first review independent random node
failures, and then study the general degree-dependent fadldees problem. We provide analytical
conditions for the existence of an infinite component in ¢hesodels. In Section IV, we show the
equivalence between cascading failure in large-scaldegsenetworks and degree-dependent percolation,
and investigate the conditions under which a small exogeewvant can trigger a global cascading failure.

In Section V, we present simulation results, and finally, waatude in Section VI.

II. RANDOM GEOMETRIC GRAPHS AND CONTINUUM PERCOLATION

We use random geometric graphs to model wireless netwottkat i€, we assume that the network
nodes are randomly placed over some area or volume, and a wagation link exists between two
(randomly placed) nodes if the distance between them iscgrifly small, so that the received power
is large enough for successful decoding. A mathematicalenfut this is as follows. Let]| - || be the
Euclidean norm, angf(-) be some probability density function (p.d.f.) d&f. Let X;, X,,..., X, be
independent and identically distributed (i.i.d-dimensional random variables with common dengity),
where X; denotes the random location of nodén R?. The ensemble of graphs with undirected links
connecting all those pairgx;, x;} with ||x; — x;|| < r,r > 0, is called arandom geometric grapks],
denoted byG (X, r). The parameter is called the characteristic radius.

In the following, we consider random geometric graghst,,, 7) in R?, with X, X, ..., X,, distributed
i.i.d. according to a uniform distribution in the squase= [0, \/7]*. Let A = | A| be the area ofA. In
this case, ignoring border effects, as—+ oo and A — oo with % = X fixed, G(X,,,r) converges to an
infinite random geometric grapi(#,, ) induced by a homogeneous Poisson point process with density
A > OH Due to the scaling property of random geometric graphs [],ip the following, we focus on
G(Ha, 1).

IMore precisely, this convergence is in distribution sindedBnial distribution converges to Poisson distribution.
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Consider a grapli = (V, E), whereV and E' denote the set of nodes and links, respectively. Given
u,v € V, we sayu andv are adjacentif there exists a link between andv, i.e., (u,v) € E. In this
case, we also say thatandv are neighbors

Let Hyo = H,U{0}, i.e., the union of the origin and the infinite homogeneous$m point process
with density . Note that in a random geometric graph induced by a homogesneoisson point process,
the choice of the origin can be arbitrary. As discussed leefaiphase transition takes place at the critical
density. More formally, we have the following definition:

Definition 1: For G(H.0,1), the percolation probabilityp..(\) is the probability that the component

containing the origin has an infinite number of nodes of thephbr Thecritical density \. is defined as
Ae = inf{\ > 0 : p(N) > 0}. (1)

It is known that if A > )., then there exists a unique infinite componentii(i,, 1). A fundamental
result of continuum percolation states tliak \. < oo [2]. Exact values of\. and p,.(\) are not yet
known. Simulation studies show thau3 < A\. < 1.44 [20].

I1l. RANDOM NODE FAILURES

A. Independent Random Node Failures

As we mentioned in the introduction, the problem of netwa&ilience to random node failures can be
described by a percolation process on the graph modelliagétwork. Suppose the network modelled
by G(H,,1) is subject to random node failures where each node failsigataith all associated links,
with probability ¢, independently of other nodes. Wherstays below a certain threshold, there still
exists a connected component of operational nodes that gp@nentire network. When > ¢., the
network disintegrates into smaller, disconnected opamati parts. Since each node fails randomly and
independently with probability, according to Thinning Theorem [2], [3], the remaining drap still a
random geometric graph with density — ¢)A. Thus, given\ > \., the remaining graph is percolated if

(1 —¢)A > A, and not percolated ifl — ¢)\ < A.. Therefore, we have

C )\C
@=1-"=1-5, (2)
"

whereu. (u. = A\.m) and u are the critical mean degree and the mean degre®(#f,, 1), respectively.

B. Degree-Dependent Node Failures

We have thus far considered wireless network resiliencedependent random node failures. As we
mentioned before, in practical wireless networks, it isesofthe case that the failure probability of a

node depends on its degree. We therefore study networkeres! in the face of degree-dependent node
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failures. Let the original random geometric graph®€H ,, 1) with density A > \.. Suppose each node
with degreek in G(#,,1) fails, along with all associated links, with probability%),0 < ¢(k) < 1.
Denote the remaining graph consisting of operational n@sesassociated links b&(#, 1, 4(+)). We
sayG(Ha, 1, ¢(-)) is percolated if there exists an infinite componenti(t,, 1, ¢(+)).

Note that in wireless networks, a node with more neighboigh@r degree:) may suffer from more
interference. If we take the failure probabiligyk) to be increasing irk, then the effects of interference
can be captured by our failure model.

To study the percolation-based connectivity @f#,, 1,4(-)), we consider a degree-dependent site
percolation process for random geometric graphs. Similablpms have been studied in the context of
Erdods-Renyi random graphs and random graphs with giveredadjstributions using generating function
methods [19], [21]-[23]. Due to clustering effects and getmm constraints, however, generating function
methods are not applicable for random geometric graphs STN&-based percolation model for wireless
networks studied in [11], [12] involve dependent percalatbut not degree-dependent percolation. In [24],
a degree-dependent site percolation model is studied.eThke authors propose a topology control
mechanism for sensor networks where each sensor staye fmtia% fraction of the time, where is a
constant and: > ¢. The authors obtain a sufficient condition for the existeofcan infinite component
within this model. A more general model is studied in [13]. iAg[24], the authors in [13] obtain only
a sufficient condition for the existence of an infinite comg@ain In this paper, in addition to a sufficient
condition, a necessary condition for the existence of amiteficomponent is found for our model. The

main results are as follows.

Theorem 1:(i) For any iy > pu. andG(H,, 1) with 1 > u4, there existsy, < oo which depends om,

such that if

gk) <1 - forall 1<k <k, (3)

7]
then with probability 1, there exists an infinite connectechponent inG(H,, 1, ¢(+));

(i) Given G(H., 1) with A > \., if either

—%+§:(%—)k—% (k—l)k>1—i (4)
CoTL T 27
when (k) is non-decreasing i, or if
o k o
(2) s~ PV2ZHT™ osia !
; 2! e 22_:0 — 6)‘(2‘/§+)(1—q(m+k—1)k)<2—7 (5)

when ¢(k) is non-increasing irk, then with probability 1, there is no infinite connected cament in
G(H)\v 17 Q())
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An interesting implication of Theorefd 1-(i) is that even lif @odes with degree larger than fail with
probability 1, an infinite component still exists in the rémiag graph as long a$(3) is satisfied.

Note that although[{3) resembles the percolation condifiwrindependent node failures, Theoréin 1
is far from a straightforward generalization of the resoit independent failures. Indeed, in the degree-
dependent model, for genera@lk), the spatial distribution of the operational nodes (orefdihodes) is
no longer homogeneous Poisson or even nonhomogeneousiRdisvertheless, if the resulting point

process dominates the Poisson point process with critieasity in the sense that

/ AX)dx > AA|
A

for every aread C R?, where)\, is the critical density of the Poisson point process afx) is the density
function of the point process resulting from the degreeedelnt failure modg,then using Strassen’s
Theorem [25], we can couple the two point processes to shatilik resulting graph is always percolated.
Given the general form of(k), however, computing the density function of the resultimanp process
is difficult.

To tackle this problem, we use a renormalization argumeat #mploys a mapping between the
continuum model and a discrete percolation model. A sintdéahnique was used in [10], [12]. Using
the fact that this mapping is one to one, we can bound the tgeolithe point process resulting from
the degree-dependent failure model, and then resort toliogumethods. In particular, we will couple
G(Ha, 1, ¢(-)) with another random failure model which is percolated. W4 sliow that when[(B) is
satisfied, there existg < oo such that all the operational nodes having degree less thaqual tok, in
the random failure model are operationalGifi#,, 1, ¢(-)), and these operational nodes form an infinite

component inG(H, 1,4(+)).

Proof of Theoreni]1-(i)To prove Theorem]1-(i), consider a square lattite- d - Z2, whered is the
edge length. The vertices df are located afd x i,d x j) where (i, j) € Z*. For each horizontal edge
a, let the two end vertices bel x a,,d x a,) and(d x a, + d,d x a,).

Now consider a random failure model @#(7#,,1) where each node fails (with all associated links)
independently with probability — % Let G1(H,, 1) be the remaining graph. By the Thinning Theorem,
G1(Hx, 1) is a random geometric graph with density = £ > \.. Consequently(+,(#,, 1) is in the
supercritical regime.

Define event4,(d) for edgea in £ as the set of outcomes for which the following condition igsfieed:

%Precisely, given the point process resulting from the degiependent failure model(x) = lims_,o Pr(3 one nodec A(x, §)), where
A(x, §) is the circular region centered atwith radiusé.
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(a) Good Rectangle (b) Complete Rectangle

Fig. 1. Examples of good and complete rectangles (edges)

the rectangleR, = [a,d — %, a,d + 3] x [a,d — 4, a,d + 9] is crosseHI from left to right by a connected
component inG1(H,, 1). If A,(d) occurs, we say that rectangl, is agoodrectangle, and edge is a
goodedge. Let

Py(d) £ Pr(Aq(d)).

Define A,(d) similarly for all vertical edges by rotating the rectanghe #0°. An example of a good
rectangle and a good edge is illustrated in Figure 1-(a).
Further define evenB,(d) for edgea in £ as the set of outcomes for which both of the following
occur:
(i) A.(d) occurs;
(i) The left squareS, = [a,d — 4, a,d + 4] x [a,d — %,a,d + %] and the right squar&,| = [a,d +
3 a,d+ 2] x la,d — 4, a,d + 4] are both crossed from top to bottom by connected components i
G1(Ha, 1).

If B,(d) occurs, we say that rectangle, is a completerectangle, and edge is a completeedge. Let
pe(d) = Pr(B,(d)).

Define B,(d) similarly for all vertical edges by rotating the rectanghe 49°. An example of a complete
rectangle and a complete edge is illustrated in Figlire 1-(b)

Note that the event$B,(d)} are not independent in general. However, if two edgemd b are not
adjacent, i.e., they do not share any common end vertices,Ah(d) and B,(d) are independent.

As illustrated in Figuré 2, edgdsandc are vertically adjacent to edge It is clear that when events
A,(d), Ay(d) and A.(d) occur, eventB,(d) occurs. Moreover, since events,(d), A,(d) and A.(d) are

3Here, a rectangleR = [z1,z2] X [y1, 2] being crossed from left to right by a connected componenifiH,1) means that there
exists a sequence of nodes, vz, ..., vm € G1(Ha,1) contained inR, with ||x,, — Xy, .|| < 1,i=1,..,m —1, and0 < z(v1) — z1 <
1,0 < 2 — z(vm) < 1, wherez(vi) and z(vy,) are thez-coordinates of nodes; andv,,, respectively. A rectangle being crossed from
top to bottom is defined analogously.
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.
I

Fig. 2. EventsA.(d), Ay(d) and A.(d) imply eventB,(d).

increasing everHs according to the Fortuin-Kasteleyn-Ginibre (FKG) inelityg2]—[4],

pc(d> = ( a(d>>

> Pr(Au(d) N Ay(d) N Ac(d))

> Pr(Aa(d)) Pr(Ay(d)) Pr(Ac(d))
).

3

= (py(d)

According to Corollary 4.1 in [2], the probability,(d) converges to 1 ag — oo whenG;(H,,1) is
in the supercritical phase. In this ca$g,(d))* converges to 1 ag — oo as well. Hencep,(d) converges
to 1 asd — oo whenG1(H,, 1) is in the supercritical phase.

Now, define

d()\)éinf{d>4:pc(d)_(d+2)(13_6l+2)>\>1—q0}, (6)

where ¢, £ Now choose the edge length df asd = d()\). We further define complete events

9+2\/_
{B!(d)} with respect toG(H,,1,¢(-)) in the same way as we defined complete evets(d)} with
respect taG;(Hy, 1).

Define eventC,(d) for each horizontal edge in £ as the set of outcomes for which the following

condition is satisfied: The number of nodes(@fH,, 1) in R, is strictly less than

k0é2<@+2) (%(/\)j%)k 7)

where R, = [a,d(\) — 2 — 1, q,d + 20 4 1] x [q,d(\) — 20 — 1,q,d(N) + DN 4 1], i.e., R, is
the rectangler, extended by 1 in all directions. Rectangi is shown in FiguréI3. Note thai?)| =

(2+9) ()

“An event A is called increasing if4(G) < I4(G’) whenever graplt is a subgraph ofy’, whereI, is the indicator function ofA.
An eventA is called decreasing ifl° is increasing. For details, please see [2]-[4].
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Fig. 3. RectangleR, is the rectangleR, extended by 1 in all directions.

Define C,(d) similarly for all vertical edges by rotating the rectanghe %°. If C,(d) occurs, we call
rectangleR, and edge: efficient Let
pe(d) £ Pr(Co(d)).

Note that the event§C,(d)} are not independent in general due to potential overlapsieMer, if d > 4
and two edges andb are not adjacent, i.e., they do not share any common encegrthenC,(d) and
Cy(d) are independent.

We say an edge in £ is openif and only if it is both complete and efficient, i.e., when et&eB,(d)
and C,(d) both occur, anclosedotherwise.

When C,,(d) occurs for edge: in £, no node ofG(#,, 1, ¢(-)) in R, has degree strictly greater than
ko in G(H, 1). In addition, if ¢(k) satisfies[(B), a node i&(H,, 1) with degreek, 1 < k < kg, survives
with a probability greater than or equal t—”ﬂé in the degree-dependent failures model. On the other hand,
for the independent random failures model, a nodé'{f,, 1) survives with probability exactly equal to
£ Thus we can couplé&/(H,, 1, ¢(-)) with G1(#,, 1) so that the existence of crossings defined in events
{B.(d)} for G1(#H,,1) implies the existence of crossings defined in evd#§(d)} for G(Ha, 1,q(+)).
Hence, if edges of £ is open, there exists at least one left-to-right crossind &wo top-to-bottom
crossings inR, in G(H,, 1, q(+)). Therefore, a path of open edgesdnimplies a connected component
in G(H,1,q(+)). This is illustrated in Figurél4.

Although eventsB,(d) and C,(d) are not independent, we have

Po(d) & Pr(Bu(d) N Cu(d))
= Pr(By(d)) + Pr(Ca(d)) — Pr(Ba(d) U Ca(d))
Z pc(d) + pe(d) -1 (8)

Let N be the number of nodes ¢f(#,,1) in R,. ThenN has a Poisson distribution with mean

E[N] = (@ +2) (%(A) +2) A
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Fig. 4. A path of open edges ii implies a path of connected componentGit#H , 1, q(+))

Note thatk, = 2E[N]. By Chebychev’s inequality, we have

pe(d) = Pr(N < k)

— 1-Pr(N > 2E[N])
Var(N)
= BT
1
- E
_ 1 9
- _(@H)(%A)H)X ©)
By (€), (8) and [(®), we have
Po(d) > pe(d) + pe(d) — 1> 1 — go. (10)

Now consider thedual lattice £ of £. The construction ofZ’ is as follows: let each vertex of’ be
located at the center of a squarefflLet each edge of’ be open if and only if it crosses an open edge

of £, and closed otherwise. It is clear that each edgé€’iirs open also with probability,(d). Let

q = 1 _po(d)>

and choos@m edges inL’. Because the states (i.e., open or closed) of any set of tjawent edges are
independent, we can chooseedges among thesen edges such that their states are independent. As a
result,

Pr(All the 2m edges are closed ¢™.

Now a key observation is that if the origin belongs to an inéiropen edge cluster ig, for which

the event is denoted bk, then there cannot exist a closed circuit (a circuit comgisof closed edges)
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Fig. 5. If the origin belongs to an infinite open edge clusterj then there cannot exist a closed circuit surrounding thgiroin £’, and
vice versa.

surrounding the origin irC’, for which the event is denoted hy,., and vice versa. This is demonstrated
in Figure[5. Hence
PI"(EE) > (0 < PI‘(EE/) < 1.

Furthermore, we have
Pr(Ep) = Z Pr(30.(2m)) < Zv(Qm)q

m=2

whereO.(2m) is a closed circuit having lengthm surrounding the origin, angl(2m) is the number of
such circuits.

By Lemmal3 in Appendix A, we have

S semt <Y om0

m=2
4 - m = m
= 5 [Z m(99)™ = > (9q) ]
m=2 m=2
4120997 - (99)*  (99)°
27| (1—9g)2 1 —9q
12¢>
= 11
(1 —99)? ()
Because
1
—l—po(d)<gp=—o,
q po(d) < qo 91 23
we have2f‘1 <1, and hence(llqu) < 1. Thus the origin belongs to an infinite open edge clustef in

with a positive probability. The existence of an infinite apedge cluster inC implies the existence of

an infinite connected component @ #.,, 1, ¢(+)), and this completes our proof for Theorém 1-(i).C]
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@ (b) ©

Fig. 6. Examples of open edges: in (a) and (&), S, and S. are open, while in (c)Sa, Sy, Sc and S, are all open.

The first part of Theoreni]1 provides a sufficient condition &(#,,1,¢(-)) to have an infinite
component. The second part of Theorem 1 provides a sufficgendition for G(H,,1,4(:)) to have
no infinite component. Thus, it provides reecessarycondition for G(#H,,1,¢(-)) to have an infinite
component. To show this, we use another mapping betweemttimmaum model and a discrete percolation

model.

Proof of Theorem1-(ii))Map G(H,, 1) to a square lattic& with edge lengthi = @ Let the square
centered at vertex with edge lengthl be S,,.. Let N(S,) and N’(S,) be the number of nodes 6f(H,, 1)
and G(H,,1,4(+)) in S,, respectively. We says, is openif and only if either one of the following
conditions holds:

(i) N'(S.) =1

(i) There is a link of G(H,, 1, ¢(+)) crossingS, which directly connects two nodes 6f(#,, 1,q(-))
outsidesS,,.

In Figure[6, we illustrate the possible examples of open uan L. If S, is open only becaus§,

satisfies condition (ii), we say it iype-2 openotherwise, we say it isype-1 open

The probability thatS, is type-1 open can be expressed as
p1 = Pr(N'(S,)>1)

_ i Pr(N(S,) =k, N'(S,) > 1)

= Y Pr(N(S,) = k) Pr(N'(S,) > 1|N(S,) = k). (12)
k=1
Whenq(k) is non-decreasing ik, by Appendix B,
_2A > (%)k _2A k
pr<1l—e2— T 2q(k —1)". (13)

k=1
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Fig. 7. An open path in lattic&

If () holds, we havey; < 2—17 Whengq(k) is non-increasing irk, by Appendix C,

- (%)ke—% i [)\(2\/5 + W)]me—)\(Z\/i-Hr) (1 _ q(m +k— l)k) ) 14

| |
pet k! — m!

p1 <

If (BE) holds, we havey; < % as well. Therefore, in both cases, we haye< %

If there is an infinite component iG(#,, 1, q(+)), there must exist an infinite path consisting of nodes
in G(H,, 1,q(-)). Furthermore, this infinite path must pass through an ifinitmber of open squares in
L, as illustrated in Figurgl7. This is because along the imfipath inG(#,, 1,4(+)), each square of
contains at least one node G{*,, 1, ¢(-)) or is crossed by a link of7(#,, 1, ¢(-)) that directly connects
two nodes ofG(#,, 1, ¢(-)) outsides,,.

Now choose a path if starting from the orig% having length3m. From Figurd B, we can see that a
link from any given node inG(H,,1,4(:)) can go through at most three open squares in addition to the
open square containing the given node. As a result, alongalle among every three consecutive open

squares, there exists at least one type-1 open square. iausve
Pr(All the 3m edges are oper< p"+t. (15)

Now
Pr(30,(3m)) < &(3m)p*, (16)

where O,(3m) is an open path irC starting from the origin with lengt3m, and£(3m) is the number
of such paths. For a path i from the origin, the first edge has four choices for its digactand all
other edges have at most three choices for their directibmstefore, we have

£(3m) < 4.3, (17)

Note that the choice of the origin is arbitrary.
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Fig. 8. Critical value ofp obtained by condition (21)

and
4
Pr(30,(3m)) <4- gdm—dpmtl — §p1(33p1)m. (18)
Whenp, < 5, the RHS of [(IB) converges to 0 as— co. This implies that with probability 1, there is

no infinite path starting from the origin (which is arbitraip £. Therefore, with probability 1, there is

no infinite component irG(#H,, 1, ¢(-)) either. O

As an example of degree-dependent failures one may conaiddrategy where an attacker sets a
threshold¢ and destroys all nodes having degree strictly greater thaBiven G(#,,1) and an integer
¢, all nodes with degree strictly greater tharand their associated links fail, and all other nodes remain

operational. That is

q(k‘)Z{? Z§£+1 (19)

Let the remaining graph be denoted &Y#.,, 1, ¢). By directly applying Theorerhl 1-(i), we know that
there existsy; < oo, such that whem > ki, G(H,, 1, ¢) is percolated.
We can also apply Theorelm 1-(ii) to obtain a lower bound orctiteal value of¢. By substituting[(19)

into (@), we see that ity satisfies

e + i (%)ke_% >1— 1 (20)
k! 27’
k=¢'+2
then for any¢ < ¢/, G(H,, 1, ¢) is not percolated. Conditio (P0O) can be simplified as
¢'+1 (A)k 1
2 —e2
; S <geet L (21)

For any given\, we can usel(21) to find the critical value of Figure[8 plots the maximal’ against\
satisfying [(21).
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IV. CASCADING NODE FAILURES

As we pointed out before, in networks which carry load, distie a resource or aggregate data, such
as wireless sensor networks and electrical power netwdnksfailure of one node often results in the
redistribution of the load from the failed node to other tganodes. If nodes fail when the load on them
exceeds some maximum capacity or when the battery energgpietdd, then aascading failureor
avalanche may occur because the redistribution of the laades other nodes to exceed their thresholds
and fail, thereby leading to a further redistribution of tbad.

Cascades have been used in social networks to model pheamsueh as epidemic spreading, belief
propagation, etc. Although they are generated by diffeme@thanisms, cascades in social and economic
systems are similar to a cascading failure in physical stftecture networks [16], [17] in that initial
failures can increase the likelihood of subsequent fasluteading to eventual dramatic global outages.
Usually, such cascading failures are extremely difficulptedict, even when the properties of individual
components are well understood. In [18], [19], the autheestigate such cascading failures in social
networks by modelling the problem as a binary decision gatiam process on random networks where
the links between distinct pairs of nodes are independent.

In contrast to previous work, we study cascading failurelige-scale wireless networks modelled by
random geometric graphs. To our knowledge, this is the fingegtigation of cascading phenomena in
networks with geometric constraints. In particular, we sidar the following model. Consider a network
modelled by a random geometric gra@ti?{,, 1) with A > \., where an initial failure seed is represented
by a single failed node. This initial failure seed is an exuges event (shock) that is very small relative
to the whole network. We are interested in whether thisah&mall shock can lead to a global cascade
of failures, which is technically defined as follows.

Note that in characterizing cascading failure, the esakptint is to assess whether the network has
been affected in a global manner, rather than in an isolateal manner. For this reason, cascades cannot
be easily characterized by, for instance, what percentagigeanetwork nodes have failed. Instead, after
some thought, one is led to the conclusion that percolatlfmméxistence of an infinite failed component) is

an appropriate notion with which to characterize cascafiiitgres. Thus, we have the following definition.

Definition 2: A cascading failure is an ordered sequence of node failuiggered by an initial failure

seed resulting in an infinite component of failed nodes inrteevork.

To describe cascading failures, we use the following sinbpkedescriptive model. We assume that due
to redistribution of the load, each nodéails if a given fractiony; of its neighbors have failed, where the

Y;’s are i.i.d. random variables with probability density étion f(«)). The order of the failure sequence
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(d) (e) (®

Fig. 9. An example of cascading failures (solid nodes areaimmal and empty circles are failed)

is then the topological order determined by the locationhefinitial failure and the threshold; of each
nodes.

Unlike the degree-dependent scenarios studied earlisgadang failure processes exhibit dynamic
evolution. This is illustrated in Figuid 9. The simple netw Figure[9-(a) has nine nodes:b, ..., 7 with
failure thresholds), = 0.8,v, = 0.7,¢, = 0.1,¢4 = 0.3,¢. = 0.4,¢; = 0.5,9, = 0.2,¢,, = 0.6,¢; =
0.9. At the beginning, as shown in Figuré 9-(b), an initial fadloccurs at nod¢. Then, since). = 0.1
and one ofc’'s three neighbors has failed, noddails. Similarly, nodeg also fails. This is illustrated in
Figure[9-(c). Since); = 0.3, d does not fail until two of its five neighbors have failed (Fig(8-(d)).
This process continues (Figuré 9-(e)) until no furtherui@bs can occur in the network (Figureé 9-(f)).
The resulting network is denoted I6y(#,, 1, ), which, in this example, has failed nodesb, ..., g, and
operational nodeé and:. The ordered sequence of failures in this examplé is, g}, d, {b, e}, a.

For two adjacentnodesu andwv, we say that node’s failure is causedby nodew’s failure if and only
if node u’s failure immediately follows node’s failure in the ordered failure sequence. In the example
of Figure[9, node’’s failure is caused by nod¢’s failure, and nodel’s failure is caused by nodés
failure.

Now observe that the initial failure can grow only when sonegghbor, sayj, of the initial failure
seed has a threshold satisfyitig < % wherek; > 1 is the degree of. We call such a nodeulnerable

The probability of a node being vulnerable is

= (7)) = [ 1w 22
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where F,(-) is the cumulative distribution function af;. In the example of Figurgl 9, nodese and g
are vulnerable.

When the initial failure seed is directly connected to a comgnt of vulnerable nodes, all nodes in this
component fail. The extent of the failure, and hence thdieese of the network, depends not only on
the number of vulnerable nodes, but also on how they are ctehéo one another. In the context of this
model, a cascade of failed nodes forms when the network hasfiaite component of vulnerable nodes
and the initial failure seed is either inside this compor@nadjacent to some node in this component.

On the other hand, if nodehas a threshold satisfying, > ’“3;1, wherek; is the degree of, then node
7 will not fail as long as at least one neighbor is operatiodé. call such a nodeeliable. Otherwise, if

P < ’“‘,;1, we call nodei unreliable For & > 1, the probability of a node being reliable is given by

B 1
n=1-5 (2) = [ s (29

For k = 0, we setoy = 1. Intuitively, a node: with no neighbors should be reliable, since it remains
operational no matter what; is, unless nodé itself is the initial failure. This also agrees with {23) by
applying the conventiof’(—oc) = 0. In the example of Figure]9, nodes » and: are reliable, and all
the other nodes are unreliable. Note that when two reliabldes are adjacent and neither is an initial
failure seed, no matter what else happens in the networl, rraain operational. This is illustrated by
nodesh andi in Figure[9. When a reliable node has only unreliable neighbors, nodefails if and
only if all its unreliable neighbors fail, unless nodeis the initial failure. We call such a reliable node
anisolated reliablenode.

The following theorem presents our main results on casgafditures in wireless networks. It provides
a sufficient condition for the existence of an infinite comgainof vulnerable nodes, as well as a sufficient
condition for the non-existence of an infinite component ofeliable nodes. The theorem asserts that
when there exists an infinite component of vulnerable nodesthe initial failure is either inside this
component or adjacent to some node in this component, theme fh a cascading failure iG(#,, 1).
On the other hand, when there is no infinite component of iaiiel nodes, then there is no cascading

failure no matter where the initial failure is.

Theorem 2:(i) For any iy > u. andG(#H,, 1) with 1 > u4, there existd, < oo depending onu such
that if

1 H1
Fol—) >, 24
¢<k‘o)_ﬂ @4)

then with probability 1, there exists an infinite componehvolnerable nodes irG(#,, 1). Moreover,
if the initial failure is inside this component or adjacent $ome node in this component, then with

probability 1, there is a cascading failure (HH, 1).
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(il) For any G(H,, 1) with x> p,, if
- (ﬁ)k = IN2V2 4 )™ m+k—2\1" 1
2 _% —)\(2\/5+7T) _ _ _
kz:; IR D ! {1 Fy <m+k—1)] <o @

m=0

where F,,(—o0) = 0 by convention, then with probability 1, there is no infinitentgponent of unreliable
nodes. As a consequence, with probability 1, there is noaclsg failure inG(H,,1) no matter where

the initial failure is.

Proof: To prove (i), we view the problem as a degree-dependent redlded problem where a vulnerable
node is considered “operational” and a non-vulnerable nedensidered a “failure.” In this model, each
node with degreé fails with a probabilityl — p,. Then, by applying Theorei 1-(i) directly, we have for
any u; > p. andG(Hy, 1) with g > pq, there existsyy < oo such that if

1

then with probability 1, there exists an infinite componehvanerable nodes i+ (#,, 1). If the initial
failure is inside this component or adjacent to some nodéig component, then there is a cascading
failure in G(H,, 1).

To prove (ii), we first show (a): if[(25) holds, then with prdiility 1, there is no infinite component
of unreliable nodes. We then show (b): if there is no infinikenponent of unreliable nodes, then with
probability 1, there is no cascading failure no matter whaeeinitial failure is.

To show (a), we apply the result of Theoréin 1-(ii). Regard areliable node as “operational” and a
reliable node as a “failure”. Them,,—the probability of a node with degréebeing reliable—becomes
the failure probabilityg(k) in the context of Theoreml 1-(ii). Sinceg, is non-increasing irk, we replace
g(m+k—1)in @) with 0,541 = 1 — F, (2t=2) and obtain[(25). By Theoref 1-(ii), whell {25) holds,

m+k—1

with probability 1, there is no infinite component of unréla nodes in the network.

In order to show (b), we will show that if there is a cascadiaidufe, i.e., there is an infinite component
W of failed nodes, there must exist an infinite component okligiole nodes in the network. Assume
the initial failure takes place at node and consider two cases: (1) noddas an unreliable node or an
isolated reliable node; (2) nodeis a non-isolated reliable node.

For case (1), if there is an infinite component of failed nomethe network, all the failed nodes are
either unreliable or isolated reliable. This is because-isofated reliable nodes do not fail no matter
what happens in the network. Furthermore, except for thealirailure, an isolated reliable node fails if
and only if all its (unreliable) neighbors fail. This impdiehat except for the initial failure, the failure of
any isolated reliable node does not cause any other failimesther words, except for the initial failure,
the failure of any unreliable node is caused by the failjrefsother unreliable node(s). Thus, all the

unreliable nodes il belong to the same component.
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Fig. 10. For any nodé, the number of its isolated reliable neighbors cannot hietlstrgreater than 6. This is because any two nogles
and k inside one of six fan-shaped regions are adjacent to eaahn. athus, nodeg and k& cannot be isolated reliable by definition. By the
same argument, whenis the initial failure, the number of induced isolated rbl&anodes cannot be strictly greater than 6.

Now suppose there is only a finite number of unreliable noded’i Then there must be an infinite
number of isolated reliable nodes . Note first that an isolated reliable node cannot be adjatent
another isolated reliable node by definition. Furthermaseillustrated in Figure 10, each unreliable node
cannot have strictly more than 6 isolated reliable neigbb®herefore, it is impossible to have a finite
number of unreliable nodes but an infinite number of isolatble nodes iNA’. This contradiction
ensures that the component of unreliable nodel/iims infinite.

For case (2), a non-isolated reliable node fails if and ohly)iit is adjacent to the initial failure, (ii)
not adjacent to any other reliable nodes, and (iii) all ouseliable neighbors fail. We call a non-isolated
reliable node satisfying condition (i)—(ii) anduced isolated reliableode. As illustrated in Figufe 10, the
number of induced isolated reliable nodes cannot be stripgtater than 6. Except for the initial failure
and a finite number of induced isolated reliable nodes, &léewofailed nodes il are either isolated
reliable or unreliable. Observe that as in the failure of solated reliable node, the failure of an induced
isolated reliable node does not cause any other failuresther words, except for the initial failure,
the failure of any unreliable node is caused by the failjrefsother unreliable node(s). Thus, all the
unreliable nodes iM” belong to the same component. Then by the same argumengeféirghcase, there

must exist an infinite component of unreliable nodeslin 0J

V. SIMULATION STUDIES

We illustrate degree-dependent node failures with two gtasin Figure_Ill. The original network
hasn = 1600 nodes uniformly distributed inf0, 252, and mean degreg = 8.04. In Figure[11-(a),
q(k) = max{0,1—£= — =}. This function satisfies conditiofil(3) and the remainingueek of operational
nodes still has a large connected component spanning akmesihole network, where empty circles
represent failed nodes. In Figurel 11-(bjk) = 0,k < 4, andq(k) = 1,k > 4. This function satisfies

condition [4) and the remaining network of operational reodensists of small isolated components.
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.
%}; solid: operational nodes

(@) q(k) = max{0, 1— L= —
empty: failed nodes

Fig. 11. Degree-dependent node failuresG(#H 5, 1) with u = 8.
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(b) g(k) = 0,k < 4, andq(k) = 1,k > 4; solid:

operational nodes, empty: failed nodes
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In Figure[12, we illustrate cascading failures. Figuré apdepicts a wireless network with= 1600

nodes uniformly distributed if, 15]%, and mean degree = 19.64. Each node has a probability density
function f(¢;) for the threshold);, where f(v;) = £ for 0 < ¢; < 0.1, and f(¢;) = X for 0.1 < ; < 1.
The v);'s are assumed to be i.i.d. Figurel 12-(b) depicts the largasiponent of vulnerable nodes (which
are represented by empty circles) spanning the networkré&lifi2-(c) indicates an initial failure caused by

exogenous event, which is represented by a black solid noiegol to by an arrow. From Figutel12-(d),

we see that the resulting network suffers from a cascadihgdawhere the failed nodes are represented

by empty circles.

Figure[13 illustrates an example where no cascading faidemirs. The network is the same as the
one shown in Figurg_12-(a). Here, each naed®s a probability density functiofi(«;) for the threshold
¥;, wheref(vy;) = E}g for 0 < v; <0.999, and f(¢;) = 999 for 0.999 < v¢; < 1. The),’s are assumed to
be i.i.d. This function satisfies the conditidn{25). Figl&(a) shows that there is no large component

of unreliable nodes (which are represented by empty cirgeanning the network. After the same initial

failure as shown in Figure_12-(c) takes place, we see fronurEid.3-(b) that the initial failure cause

no other failures (failed nodes are represented by emptjesiy, and no cascading failure occurs in the

network.

VI. CONCLUSION

In this paper, we studied network resilience problems fropecolation-based perspective. To analyze

realistic situations where the failure probability of a ratepends on its degree, we introduced the degree-

dependent failures problem. We model this phenomenon ag@eldependent site percolation process

on random geometric graphs. Due to its non-Poisson steyctlegree-dependent site percolation is far
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(a) original network (b) large component of vulnerable nodes; solid: non-
vulnerable nodes, empty: vulnerable nodes
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Fig. 12. Cascading failure
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Fig. 13. No cascading failure

from a trivial generalization of independent site perdolat Using coupling methods and renormalization

arguments, we obtained analytical conditions for the aenae of phase transitions within this model.
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Fig. 14. An example of a circuit surrounding the origin intilzet £’

Furthermore, in networks carrying traffic load, such as lesg sensor networks and electrical power
networks, the failure of one node can result in redistrdoutof the load onto other nearby nodes. If
these nodes fail due to excessive load, then this processesait in cascading failures. We analyzed
this cascading failure problem in large-scale wirelessvagts, and showed that it is equivalent to a
degree-dependent percolation process on random geongeaphs. We obtained analytical conditions
for the occurrence and non-occurrence of cascading failuespectively. To our knowledge, this work

represents the first investigation of cascading phenomematworks with geometric constraints.

APPENDIX A

The following lemma is similar to the one used in [4], [10]2]1For completeness, we provide the

proof here.

Lemma 3:Given a square latticé’, suppose that the origin is located at the center of one squat
the number of circui&surrounding the origin with lengtbm be~(2m), wherem > 2 is an integer, then
we have

1(2m) < oo(m — 1) 27)

Proof: In Figure[14, an example of a circuit that surrounds the origiillustrated. First note that the
length of such a circuit must be even. This is because theaeige-to-one correspondence between each
pair of edges above and below the lime- 0, and similarly for each pair of edges at the left and righthef t
line z = 0. Furthermore, the rightmost edge can be chosen only fronnbe!; : = = i—%,i =1,...,m—1.
Hence the number of possibilities for this edge is at most 1. Because this edge is the rightmost edge,
each of the two edges adjacent to it has two choices for iectiim. For all the other edges, each one

has at most three choices for its direction. Therefore thebar of total choices for all the other edges

8A circuit in a lattice £’ is a closed path with no repeated verticesCin
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is at most3?™~3, Consequently, the number of circuits that surround thgimiand have lengthm must
be less or equal tom — 1)223?"~3, and hence we have (27). O

APPENDIX B

By (12), the probabilityp, can be written as

no= f: Pr(N(S,) = k) Pr(N'(S,) > 1|N(S,) = k)
= Y Pr(N(S,) = k)[1 = Pr(N'(S,) = 0[N(S,) = k)]

0o (A\F N
= Z %6_2[1 —Pr(l; =1,..., ) = 1|N(S,) = k)] (28)
k=1 ’
where [; is the indicator random variable indicating the failure bé t-th node. Because(k) is non-

decreasing ink, the event{/; = 1|N(S,) = k} is an increasing event. Hence, according to the FKG
inequality,
Pr(ly =1,..,I; = 1|N(S,) = k) > [Pr(I; = 1|N(S,) = k)]". (29)
Sinced = @ all the nodes of7(#,, 1) in S, are adjacent to each other. Hence if there /ar@des in
S., every node ofG(H,,1) in S, has degree greater than or equalkte- 1. In addition, sincey(k) is
non-decreasing ik, we have
Pr(; = 1N(S,) = k) > q(k — 1), (30)

By (28)-(30), we have

P < i (;%?ke_g (1—q(k—1)")
e
= 1—¢2 —;%e_éq(k—l)k. (32)
APPENDIX C

Let 7, be the shaded area shown in Figlré 15. THEfH = 2v/2 + 7. Let N(T,) be the number of
nodes ofG(H,, 1) in T,. SinceS, andT, do not overlap,N(S,) and N(7,) are independent. By (12),

we can writep; as
pro= Y Pr(N(S.) =k) > Pr(N(T.) = m)Pr(N'(Ss) > 1|N(S,) =k, N(T.) = m)

= ) Pr(N(S,) =k) Y _ Pr(N(T,) = m)[L — Pr(N'(S,) = 0|N(S,) = k, N(T,,) = m)]

k=1 m=0

S (3) ¢™2 Y Pr(N(T,) = m)[1 — Pr(ly = 1,..., Iy = 1N(S,) = k, N(T,) = m)], (32)
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Fig. 15. T, and S,

where J; is the indicator random variable indicating the failure bé t-th node. Because(k) is non-
increasing ink, the event{/; = 1|N(S,) = k, N(1,) = m} is a decreasing event. Hence, according to
the FKG inequality,

Pr(l, = 1, .., I, = 1|N(S,) = k, N(T,) = m) > [Pr(I; = 1|N(S,) = k, N(T,) = m)|*.  (33)

For any nodeu inside S,, all of u’s neighbors are withiri}, U S,. Given N(S,) = k and N(T,,) = m,
any nodeu inside S, has degree less than or equalbitot+ k£ — 1. In addition, since;(k) is non-increasing
in k, we have

Pr(I; = 1|N(S,) = k, N(T,,) = m) > q(m + k — 1). (34)

By (32)-(34), we have

9] A k R 00
p < Z (2? e 2 Z Pr(N(T,) = m) (1 —qglm+k — l)k)
k=1 =0
= (3 ‘ A > )
- ; (Z? e 2 mZ:O [A(Q\/EJL )] o~ A(2V2+) (1—gq(m+k—1)%). (35)
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