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Abstract—The accuracy of centroid localization based on the
connectivity information between a target node and multiple
randomly scattered reference nodes is investigated. First, the
accuracy of the centroid localization is analyzed in a general
fading environment and it is shown that the ambiguity area
of this localization technique is inversely proportional to the
density of the reference nodes. Additionally, this area is at the
same order and in the best case half of the ambiguity area
provided by estimating the location of a target node as the
location of its nearest reference node. Furthermore, increasing the
transmission power of a target node will increase the accuracy of
the localization, but only up to a certain limit. Then, the findings
on centroid localization are verified by computer simulations.

Index Terms—Centroid localization, Poisson point process,
Fifth generation mobile network (5G), Internet of Things.

I. INTRODUCTION

THE EVER-GROWING number of networked devices
in 5G [1] and the emergence of ubiquitous networked

objects as the Internet of Things (IoT) [2] mandate a new
look into the conventional approaches proposed for localiza-
tion in wireless communication networks. Given the plethora
of location-based civilian and industrial services as well as
applications, large-scale localization techniques are becoming
increasingly important, especially in indoor scenarios [3].

Thanks to the rapid increase of the network densities (e.g.,
from 2.2 global connections per capita in 2015 to an expected
number of 3.4 in 2020 [4]) and the coexistence of different
communication systems, localization techniques are evolving
from infrastructure-based, passive technologies, such as the
Global Positioning System (GPS), to interactive, collaborative
and self-organized approaches to address the constraints of
cost, complexity, and scalability.

Conventional localization processes are mainly based on the
measurement of the time of arrival (TOA) [5], [6], angle of
arrival (AOA) [7], [8], and/or received signal strength (RSS)
[8], [9] to find the relative location of a target node with respect
to a set of reference nodes (RNs) having known coordinates.
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Despite their high accuracy - especially in ultra-wideband ap-
plications - the TOA and AOA are not so practical due to their
high complexity and cost [10], requiring sophisticated signal
processing and antenna arrays. Although the received signal
strength is readily available in most types of receivers, RSS
and RSS-based fingerprinting [10], [11] approaches are also
highly dependent on the precise knowledge of the propagation
scenario or of how accurate and frequently the RSS or the
fingerprinting database is updated.

Defining localization as the process of finding the location
of a target node with respect to a set of reference nodes (RNs)
having determined locations, detectability of the target node
by a group of RNs is the minimal information required for
the success of this process. The detectability or connectivity
information is typically made available in the network layer by
the routing protocols, but if not, then it can be gleaned with the
aid of a modest overhead in form of a single-bit connectivity-
flag between a target node and each RN. This allows a wireless
network to support centralized collaborative large-area-based
localization, which is of particular importance in IoT systems
relying on low-cost low-capability devices.

The simplest method of exploiting the connectivity informa-
tion to locate a target emitter is the centroid-based localization
(CL), in which the centroid of the RNs detecting a target node
is deemed to be its location. This method was first introduced
in [12] and its accuracy was evaluated for an idealized sce-
nario, where the RNs are placed on a grid and have the same
spherical communication range. Afterwards, several weighted
centroid localization schemes were introduced, in which the
coordinates of each RN detecting a target node is weighted
as a function of the received signal strength [13]–[16]. The
CL method outperforms its variants, since it does not require
any additional information other than the binary connectivity
information between the target node and each of the RNs.
Additionally, it is more robust in fading environments [7] and
particularly suitable for indoor localization.

In this paper, we analyze the accuracy of the centroid-
based localization in a Poisson field of the RNs having known
locations in a general fading environment. It is shown that
using centroid-based localization, the ambiguity area of a
target node’s location is similar to (in the best case half
of) the location of its nearest RN. Additionally, we show
that the localization mean squared distance error is inversely
proportional to the RNs density and reduces unbounded when
this density increases. However, increasing the transmission
power of the target node in order to be detected by more
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RNs will no longer increase the localization accuracy, when
the detection range becomes sufficiently large. We also verify
the accuracy of the CL estimator numerically by computer
simulations. To the best of the authors’ knowledge, there is
no analysis in the open literature on the accuracy of the
centroid-based localization taking into account both the RNs
distribution and channels randomness.

The remainder of this paper is organized as follows. In
Section II, the localization scenario is presented. The centroid-
based localization is analyzed in Section III. Numerical results
are presented in Section IV. Finally, the paper is concluded in
Section V.

II. SYSTEM MODEL

We consider a field of networked RNs, such as Wi-Fi access
points, where the RN locations constitute a homogeneous
Poisson point process (PPP) with density λ. As shown in
Fig. 1, a target node T at (x0, y0) is detected by (or is
connected to) each RN provided that the RN lies within its
connectivity range R. The range R is a random variable
and depends on several parameters, including the transmission
power and the channel’s fading gain. If the distance between T
and an RN is r, T is detected by that RN with the probability
of

Φ(r) = Pr{R > r} . (1)

We also assume that the connectivity range in any direction
around T is independent of the other directions and that the
function Φ(·) is determined. Additionally, we assume that
E[R4] (and consequently E[R2]) are finite, where E[·] denotes
the expectation operator.

The locations of the RNs detecting the target node T is
indexed as {(Xk, Yk)}Nk=1, where the indices k for the abscissa
Xk and ordinate Yk are not the proximity indices, since we
do not know which RN is closer to T and which one is farther
away from T. In fact, due to the fading effects, {(Xk, Yk)}Nk=1

are not necessarily the locations of the N nearest RNs to T
and the node indexing can be arbitrary.

Furthermore, it should be noted that although we assume
that the RNs are distributed over the entire plane, our analysis
also holds, when they are distributed uniformly over a large
region with density λ, where the target node and the N
detecting RNs are located sufficiently far from the region
boundaries.

In the next section we analyze the accuracy of the centroid-
based localization scheme in a generalized fading environment
of the above-mentioned system model, which is the main
problem considered in this paper.

III. CENTROID-BASED LOCALIZATION

Perhaps the simplest unbiased location estimator of the
target node T is constituted by the arithmetic mean of the
RN locations detecting T, which is given by

(X̂ , Ŷ ) =
( 1

N

N∑
k=1

Xk ,
1

N

N∑
k=1

Yk

)
. (2)

y

x

(X1, Y1)

(X2, Y2)

(X3, Y3)

(X4, Y4)

(X5, Y5)

(X6, Y6)

(X7, Y7)

(X8, Y8)

(XN , YN)

T(X0, Y0)

T̂(X̂, Ŷ )

Fig. 1. The target node T in a Poisson field of reference nodes is connected to
(detected by) the nodes in the target connectivity (detectability) region (blue
region). The reference nodes connecting to T are indexed in an arbitrary
fashion.

Since (X̂, Ŷ ) is the centroid of points {(Xk, Yk)}Nk=1
1, this

localization scheme is the centroid-based localization, hence
we simply refer to it as the centroid estimator.

For the centroid localization, the distance error between the
estimated location of the target node T and its exact location
is obtained as

De =

√(
X̂ − x0

)2
+
(
Ŷ − y0

)2
. (3)

Given De = d, the exact location of T is within a circular
region of radius d, centered at (X̂, Ŷ ). Hence, we define the
effective ambiguity area as

Ae = E
[
πD2

e

]
= πE

[
D2

e

]
. (4)

The following theorem provides measures for the accuracy
of the centroid localization method.

Theorem 1: The centroid localization given by (2) is unbi-
ased. Additionally, the mean squared distance error (MSDE)
and the effective ambiguity area for the location of the target
node T are given by

E
[
D2

e

]
= G

(
λπR2

) R4

2R2
(5)

and
Ae = G

(
λπR2

)πR4

2R2
(6)

respectively, where we have

Ri , E
[
Ri
]

=

∫ ∞
0

iri−1Φ(r)dr, i = 2, 4 (7)

and

G(z) ,
1

ez − 1

∫ z

0

ex − 1

x
dx (8a)

=
Shi(z) + Chi(z)− ln(z)− γ

ez − 1
(8b)

1Note that the localization accuracy is meaningful when the target node is
detected by at least one RN. Hence, our analysis is conditioned on N > 1,
as N = 0 means that no target node has been detected and the centroid
estimator in (2) is undefined.
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for z > 0, in which Shi(·), Chi(·), and γ = 0.57721 are the
hyperbolic sine integral function [17, eq. 5.2.3], hyperbolic
cosine integral function [17, eq. 5.2.4], and Euler’s constant
[17, p. 3], respectively.

Proof: See Appendix.

The argument of function G(·) in (5) and (6), i.e.,

λN = λπR2 (9)

represents the average number of RNs detecting T. To analyze
the performance of the centroid estimator, we first have to
characterize the behavior of the function G(z) in terms of z.
It can be shown that limz→0+ G(z) = 1, limz→∞ zG(z) = 1,
and G′(z) < 0 for z > 0. Therefore G(z) has the following
properties:

1) G(0+) = 1;
2) G(z) ∼= 1

z for z � 1;
3) G(z) is a monotonically decreasing function of z > 0.
Here, we consider two extreme cases for the average number

of nodes detecting T, namely, very small values and very large
values of λN .

A. Very small values of λN
When the density of RNs is low or the connectivity range

is statistically speaking small so that λN � 1, taking the
expectation over the cases where at least one RN detects T,
the MSDE and the effective ambiguity area are, respectively,
reduced to

E
[
D2

e

]
=

R4

2R2
, Ae =

πR4

2R2
(λπR2 � 1) . (10)

In this case, T is only detected by its nearest neighbor with a
probability close to 1 and the centroid estimate of the location
of T is the location of its nearest neighbor. To verify this fact,
we assume R = RNN, where RNN is the distance to the nearest
neighbor of T. Thus, we expect De = RNN and using (10), we
have:

E
[
R2

NN

]
=

E
[
R4

NN

]
2E
[
R2

NN

] . (11)

It may be readily shown (using [18, eq. (10)]) that this is the
case for the distance measured for the nearest neighbor in a
homogeneous two-dimensional PPP.

B. Very large values of λN
When λN is sufficiently large so that the approximation

G(z) ∼= 1
z becomes accurate enough, from (5) and (6) we

obtain

E
[
D2

e

]
=

1

2πλ

R4

(R2)2
, Ae =

1

2λ

R4

(R2)2
(λπR2 � 1) .

(12)

Using numerical values of G(·), the approximation errors
involved in using the simplified expressions (12) are less than
10%, 5%, and 1%, when λN is higher than 12.26, 22.12, and
102.02, respectively.

An immediate result of (12) is that if the connectivity range
is scaled as cR for a constant c > 0, which is achieved by in-
creasing the transmit power of T, the localization accuracy will
not change. Note that this holds as long as λN is sufficiently
large. On the other hand, λN becomes arbitrarily large when c
is sufficiently high (see (9)). Therefore, increasing the transmit
power of T beyond a certain threshold so that T is detected by
more RNs will no longer improve the accuracy of the centroid
localization. For instance, when λπR2 > 12.26, increasing
the transmission power will no longer reduce the effective
ambiguity region by more than 10%. However, increasing the
RNs density λ will monotonically and unboundedly improve
the accuracy of the localization.

Using [18, eq. (10)], the average squared distance to the
nearest-neighbor RN is given by E

[
R2

NN

]
= 1/(πλ). Addition-

ally, since var(R2) = R4 − (R2)2 > 0, we have R4 > (R2)2

and the equality holds when R is constant, i.e., in the absence
of fading. Hence, the MSDE and the effective ambiguity area
in (12) satisfy

E
[
D2

e

]
>

1

2
E
[
R2

NN

]
, Ae >

1

2
E
[
πR2

NN

]
(λπR2 � 1) .

(13)

As a result, in a dense network, the effective ambiguity area
of the centroid localization is at best half of the effective
ambiguity area provided by the nearest neighbor localization,
where the location of the nearest neighbor RN is considered
to be the target location. However, note that since the location
of the target node is not known, its nearest neighbor RN
cannot be determined from the information constituted by its
connectivity to the RNs. Conversely, based on our discussion,
the centroid-based localization can be used for determining,
which RN the target is likely to be close to.

As an example, assume that the centroid-based localization
is used in a Rayleigh fading environment so that the power
received by an RN at distance d from T is given by

Pr = Pth

(d0
d

)α
Ω (14)

where Pth is the minimum received power required for reliable
communication, d0 is the maximum communication range in
the absence of fading (i.e., Ω = 1), α is the path-loss exponent,
usually obeying 2 6 α 6 7, and Ω is a unit-mean exponential
random variable. From (14) associated with Pr = Pth, the
maximum communication range is also a random variable
obeying

dmax = d0Ω
1
α . (15)

Hence, the connectivity function Φ(·) is given by

Φ(r) = Pr{dmax > r} = Pr
{

Ω > (
r

d0
)α
}

= e−(
r
d0

)α (16)

By substituting Φ(r) from (16) into (7) and using [19, eq.
2.3.18.2 & Appendix II.1], we arrive at:

R4 =
4

α
Γ
( 4

α

)
d40 , R2 =

2

α
Γ
( 2

α

)
d20 (17)

and, therefore, eqs. (5) and (12) are reduced to

E
[
D2

e

]
= G

(
2λπd20Γ(2/α)/α

)Γ(4/α)

Γ(2/α)
d20 (18)
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Fig. 2. RMSDE, normalized to d0, in terms of the density λ, for different
values of the paht-loss exponent α and in a Rayleigh fading environment. The
analytical results were computed from Eq. (18).

and
E
[
D2

e

]
=

α

2λπB(2/α, 2/α)
, λN � 1 (19)

using [17, eq. 6.2.2], where B(·, ·) is the beta function [17,
eq. 6.2.1].

IV. NUMERICAL RESULTS AND SIMULATION

In this section, we evaluate the performance of the centroid-
based localization and verify the accuracy of the analytical
results obtained. Our Monte Carlo simulation results in this
section are based on 106 independent realizations of the
system.

Fig. 2 shows the root mean square distance error (RMSDE),
normalized to d0 = 1, of localizing a target node in a network
having the density λ, for different values of the path-loss
exponent α. The simulation results of this figure are for a
Rayleigh fading environment, while the analytical results are
based on equation (18). As observed, the simulation results
confirm the accuracy of the analytical results. Furthermore,
when λ becomes small, the normalized RMSDEs become
almost constant. Using (10) with (17), we find the normalized
RMSDEs for small values of the RN densities as 1.00, 0.85,
and 0.75 for α = 2, 3, and 6, respectively, which are consistent
with the results shown in this figure. On the other side of
the curves, when the network density becomes sufficiently
high, the normalized RMSDEs decrease linearly in a log-log
plot upon increasing the network’s density, which is expected
from (19). In other words, in a dense network, the RMSDE is
proportional to the network’s density as 1/

√
λ. Moreover, the

normalized RMSDE attained for higher values of the path-loss
exponent is reduced. of it. This is because when α increases,
the maximum communication range fluctuations in different
directions are statistically reduced, as seen in (15). Hence,
for a fixed density, the variation of T to RNs distances is
decreased, which leads to reduced localization errors.

In Fig. 3, the RMSDE for the centroid estimator to localize
a target node having Rayleigh fading channels with respect to
the RNs is shown versus the increased transmission power. The
results are for RN density λ = 1, and d0 = 1 when the power
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α=2, simulation

α=3, simulation

α=4, simulation
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R
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S
D
E

Fig. 3. The RMSDE of the centroid estimator in terms of the increased
power for different values of the path-loss exponent α and in a Rayleigh
fading environment (λ = 1, and d0 = 1 for 0 dB increased power). The
analytical result was computed from Eq. (18). Dotted lines are the asymptotic
values computed from Eq. (19).

increase is 0 dB. Hence, using (14), when the transmission
power increases p dB, d0 increases to 10

p
10α d0. As shown in

this figure, the localization error slightly increases, when the
transmit power is increased from low values. This is due to
the fact that when the transmit power is low, it is more likely
that the target node is not detected by any of the network
nodes. However, if they are detected by chance, the detecting
node(s) are likely to be very close to the target node and
the detection RMSDE would be low. When the transmission
power increases, the detection probability increases, but the
detecting nodes will not necessarily be close to the target node.
Additionally, the normalized RMSDE becomes asymptotically
constant, when the transmission power value is sufficiently
increased, as also observed in (19). The dotted lines show the
asymptotic values obtained from (19). Note that the analytical
results obtained from (18) for different values of the path-loss
exponent are corroborated by the simulation results.

In the simulations given by Figs. 2 and 3, it was assumed
that the target is detected by at least one RN. Additionally, the
RNs are randomly scattered as a PPP. Here, we perform the
same simulations but with including the effect of the cases
where the target is not detected or the RNs have a regular
placement. The results for α = 4 are given by Figs. 4 and 5,
respectively. In the new simulations, we assumed that the target
node has a symmetrical distribution in a wide area around a
center point, with a root mean square distance to that center
point of RMSD = 5. Whenever the target is not detected, its
location is estimated as the center point. We also considered
the square grid placement of the RNs in our simulations, where
the center point is a randomly selected point with respect to
the square grid.

As observed in Figs. 4 and 5, when the RN density or
the target transmission power become sufficiently high, the
RMSDE for all cases and the target-detected cases are almost
the same. This is indeed expected, because increasing either
of these two parameters results in increasing the probability
of target detection. Furthermore, Fig. 4 indicates that, similar
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Fig. 4. RMSDE, normalized to d0, in terms of the density λ, among
all simulated (All) and target-detected (Det.) cases. The reference nodes
have Poisson distribution and square-grid placement in a Rayleigh fading
environment with α = 4.
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Fig. 5. The RMSDE of the centroid estimator in terms of the increased power
among all simulated (All) and target-detected (Det.) cases, for α = 4 and in a
Rayleigh fading environment (λ = 1, and d0 = 1 for 0 dB increased power)

to the PPP case, the RMSDE for the square-grid placement
case decreases asymptotically as 1/

√
λ for large λ, but it has

a better accuracy at the expense of the regular RNs placement.
When λ is very small, both distributions of the RNs have the
same performance, since the target node either is not detected,
or it is detected by one RN and hence it makes no difference
what the distribution of the RNs is. Moreover, Fig. 5 shows
that similarly to the PPP case, the localization error becomes
asymptotically constant in the square-grid placement of RNs,
when the target transmission power becomes sufficiently high,
but this constant RMSDE is lower than that of the PPP
scenario.

V. CONCLUSIONS

We have evaluated the performance of the connectivity-
based localization in which the only information used for the
localization process is whether a target node is connected to
each RN or not. It has been shown that in a dense network,
if a target node’s position is estimated by the centroid of RNs

detecting that target node, the squared distance error of the
localization is inversely proportional to the density of the RNs.
Furthermore, this error is improved by increasing the transmit
power up to a certain limit. Moreover, the ambiguity area
of this localization method is on the same order and in its
best case half of the ambiguity area provided by mapping the
location of the target node at the location of its nearest RN.

This work can be extended in several directions. For ex-
ample, the performance of the centroid localization can be
analyzed for other path-loss models and other distributions
of the RNs. Our techniques can also be invoked both in
indoor and outdoor experimental tests. Another interesting
extension is to analyze the performance of the weighted
centroid localization schemes within the same system model
considered in this paper.

APPENDIX

Without losing generality, we assume that T is at the
origin, i.e., (x0, y0) = (0, 0). By thinning [20, Def. 3.6] the
homogeneous PPP of the location of all RNs to the PPP of the
location of RNs detecting T, we obtain the intensity function of
the latter PPP as λ2D(r) = λΦ(r) [20, Prep. 3.7] in polar (r, θ)
coordinates. Therefore, the total number N of RNs detecting
T is a Poisson random variable with a mean of

λN =

∫ 2π

0

∫ ∞
0

λ2D(r)rdrdθ = 2πλ

∫ ∞
0

rΦ(r)dr . (20)

From the definition of Φ(·) in (1), we find that Φ(·) is
the complementary cumulative distribution function of R.
Therefore, using [21, Sec. 1.10.2-(d)], the equalities in (7)
hold and we can write λN in (20) as given by (9).

The abscissas of the RNs detecting T, i.e., {Xn}Nn=1 con-
stitute a one-dimensional PPP with density

λx(x) =

∫ ∞
−∞

λ2D

(√
x2 + y2

)
dy = 2λ

∫ ∞
0

Φ
(√

x2 + y2
)
dy .

(21)

Since the integrand in (21) is symmetric with respect to x,
using the change of variable y = |x| tan(θ), we obtain

λx(x) = 2λ

∫ π
2

0

Φ
( |x|

cos(θ)

) |x|
cos2(θ)

dθ . (22)

Conditioned on N = n, the distribution of each RN,
independent of the other RNs, has the following distribution
[20, Def. 3.2-(ii)]

fXk(x) =
λx(x)∫∞

−∞ λx(x)dx
(23)

for k = 1, 2, . . . , n. The denominator of (23) gives the average
number of RNs detecting T, i.e., λN . Consequently, using (9),
we have

fXk(x) =
2

πR2

∫ π
2

0

Φ
( |x|

cos(θ)

) |x|
cos2(θ)

dθ . (24)

The second moment of Xk is derived from (24) as

E
[
X2
k

]
=

∫ ∞
−∞

x2fXk(x)dx

=
4

πR2

∫ π
2

0

∫ ∞
0

Φ
( x

cos(θ)

) x3

cos2(θ)
dxdθ . (25)
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Using the change of variable r = x/ cos(θ), we arrive at:

E
[
X2
k

]
=

1

πR2

∫ π
2

0

cos2(θ)dθ
∫ ∞
0

4r3Φ(r)dr =
R4

4R2
, (26)

where in the last equality we used (7). Since E
[
X2
k

]
is finite,

E[Xk] is also finite and due to the fact that fXk(x) is a
symmetric function with respect to x, we get

E[Xk] = 0 . (27)

A direct result of (27) is that X̂ is an unbiased estimator
for the abscissa of T. The mean squared error (MSE) of this
estimator is obtained as follows

E[X̂2] = E
[( 1

N

N∑
k=1

Xk

)2 ∣∣∣∣N > 1

]

= EN
[

1

N2

N∑
k=1

N∑
j=1

E
[
XkXj

∣∣N = n > 1
] ∣∣∣∣N > 1

]
. (28)

From the properties of PPPs, given N = n > 1, random
variables Xi and Xj are independent when i 6= j. Thus, using
(27), the summand term in (28) is equal to zero if i 6= j and
is given by (26) when i = j. Hence, (28) is reduced to

E[X̂2] = EN
[

1

N2
×N R4

4R2

∣∣∣∣N > 1

]
=

R4

4R2
E
[

1

N

∣∣∣∣N > 1

]
.

(29)

Since N is a Poisson random variable with mean λN , the
probability mass function of N , given N > 1, is derived as

PN (n|N > 1) =
1

1− e−λN
e−λN

λnN
n!
, n = 1, 2, . . . . (30)

Therefore, the expectation term in (29) is obtained as

E
[

1

N

∣∣∣∣N > 1

]
=

∞∑
n=1

1

n
PN (n|N > 1) =

1

eλN − 1

∞∑
n=1

λnN
n!n

=
1

eλN − 1

∫ λN

0

ex − 1

x
dx (31)

where we have used [19, eq. 5.2.8.3] in the last equality.
Hence, (29) is reduced to

E[X̂2] = G(λN )
R4

4R2
= G

(
λπR2

) R4

4R2
, (32)

where G(z) is given by (8). Function G(·) can also be written
in terms of Shi(·) and Chi(·) as given by (8b), using [17, eqs.
5.2.3 and 5.2.4].

Using the same approach, it can be shown that Ŷ is an
unbiased estimator for the ordinate of the location of T and
E[Ŷ 2] is obtained equal to E[X̂2] given in (26). Therefore,

E[D2
e ] = E[X̂2 + Ŷ 2] = 2E[X̂2] (33)

and (5) and then (6) are obtained by substituting (32) into
(33), and the proof is complete.
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