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Abstract—Displays have remained flat and passive amidst the many changes in their fundamental technologies. One natural
step ahead is to create displays that merge seamlessly in shape and appearance to one’s natural surroundings. In this paper,
we present a system to design, render to, and build view-dependent multiplanar displays, of arbitrary shape built using planar,
polygonal facets. Our system provides high quality, interactive rendering of 3D environments to a head-tracked viewer on arbitrary
planar display shapes. We develop a novel rendering scheme that creates exact image and depth at each display facet. The
facets thus align exactly at boundaries without inconsistencies in comparison with existing methods. Our approach scales well
to large numbers of display facets. This is achieved using a single-pass rendering of all facets using a parallel, per-frame, view-
dependent binning and prewarping of scene triangles. The method places no constraints on the scene or display and allows for
fully dynamic scenes to be rendered at high resolutions using a single pass of rasterization. These are implemented efficiently
on the GPUs. A general realization of our system envisions a display of an arbitrary shape built using polygonal facets. The
display is driven using one or more quilt images into which the the pixels are packed. We present a few prototype displays to
establish the scalability of our system to different shapes, form factors, and complexity: from a cube made out of LCD panels to
spherical/cylindrical projected setups to arbitrary complex shapes in simulation. Performance is shown in terms of both quality
and rendering speeds of our system for increasing scene and display facet sizes. A subjective user study is also presented to
evaluate the user experience using a walk-around display to a flat panel in a game-like setting.

✦

Index Terms—Non-rectangular displays, fish tank virtual reality, ar-
bitrary shaped displays, 3D visualization, view-dependent rendering,
fast culliung, user interaction.

1 INTRODUCTION

Displays have transformed rapidly over the past few years
and have become a common occurance in our day to day
life. They have evolved from the basic CRT to displays
based on cheaper and better technologies such as LCD,
Plasma, OLED, DLP etc. These technologies have im-
proved various aspects of a display system, including power
consumption, color gamut, vertical refresh rate and pixel
resolution amongst others. The shape and planarity of a
display, however, have not changed. Displays still remaind
flat, inactive and rectangular stand-alone windows feeding
images to an observer viewing it. This passive viewing
platform has restricted displays in many ways. These in-
clude non-intuitive interaction, lack of focus+context and
lack of three dimensional viewing to name a few. A few
attempts have been made to address these issues in recent
times. Most notable are the introduction of touch screens
and computer human interaction methods which attempt at
making displays more active.

Simultaniously, much work has gone into capturing and
creating3D content. A bulk of content shown on displays
today is three-dimensional, ranging from games to complex
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CAD simulations. With the advent of powerful computing
methods, real-time3D content capture and creation is
now possible [1]. As a result much work has gone into
understanding and improving interaction with3D content
on displays. Virtual reality, haptics and computer human
interaction all deal with the centeral idea to seamlessly
transition from the real to the virutal world. A necessary
extension of this paradigm should include displays that
seamlessly merge with the world and are natural to view
and interact with. The goal of such a display is to blur
the boundary between real and displayed objects. This
notion has two parts: (a) the display itself being part of
the viewer space and (b) content displayed on it being
accurate depictions. If the shape of the display is arbitrary,
the first part of the notion is resolved. The display can take
shape of any object in the user’s surrounding. Rendered
images on such a display must also be accurate such that
the depiction agrees with the natural perspective of the
viewer. Interaction must also be retained along with quality
rendering to provide a consistent view of the virtual world.

In this article, we present a framework to design, build
and render tomultiplanar displays, which are built out of
multiple polygonalfacets. We show prespectively correct
3D on to such a display to a single head tracked viewer.
In effect, our framework extends fish tank virtual reality
(FTVR) displays to generic polygonal shapes. Our system
scales to arbitrary shapes, which sets it apart from other
FTVR displays which are limited to a few number of facets.
Rendering to FTVR displays has a tradeoff between achiev-
able quality and the number of facets. Projective Texture
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Mapping (PTM), has been shown to produce FTVR effect
on any surface, albiet suffers from quality degradation [2].
Off-axis rendering can produce quality images at higher
rendering costs, however, suffers from depth artifacts [3].
We present a novel rendering scheme that produces correct
images on and across facet boundaries, generating a col-
lective view of the virutal world. Our rendering scheme
produces artifact free images as shown in comparison
with existing methods. Rendering cost is reduced using
a novel parallel binning of scene triangles to the display
geometry implemented on commodity GPUs, whcih helps
the system scale to arbitrary display shapes. To reduce the
rendering load we render all facet images in a single pass
of rasterization, generating a quilt of all facet images which
can be un-mapped to the display geometry either using
multiple VGA outputs or using specialized hardware. Our
system is implemented on commodity GPUs and can scale
to display shapes consisting of well over a thousand facets.
Our design provides both quality and interactivity needed in
many applications such as medical visualization, computer
aided design, simulations and games. The framework con-
tributes (a) a system to drive a generic multiplanar display
through one or more rectangular quilt images which can
be generated by standard graphics systems retaining pixel
density, (b) a method to correctly render images to a set of
arbitrarily oriented planar shapes to provide a perspectively
correct view across facets boundaries (the image as well
as the depth buffer are correct, guaranteeing consistent
views on facets), and (c) a scalable, single-pass rendering
mechanism that sorts the scene polygons to display facets
in parallel and prewarps the scene, enabling rendering
of all facets in a single pass of rasterization. Interactive
rendering rates and correct facet rendering are the guiding
concerns in designing our system. Our system is capable
of rendering fully dynamic, deformable, triangulated scenes
containing over200K triangles to a display shape consisting
of over1600 facets at35Hz. The setup uses a single Nvidia
GTX580 GPU for rendering and also for parallel sorting.

The rest of this paper describes our framework. Section 2
presents the related work covering similar technologies
to the one presented in this article. Section 3 provides
the detailed implementation of our system. The overall
system design is presented followed by rendering and
quality evaluation as compared to other rendering methods
(Section 3.1). Scalability to arbitrary shapes is presented
in Section 3.2. We validate our framework using several
prototype displays, using LCD panels, projected setups and
synthetic simulated scenarios in Section 4.1. In Section 4.2
we evaluate the individual aspects of our pipeline in terms
of rendering speeds. We also present a user study showcas-
ing the utility of an arbitrary shaped walk-around display
in Section 5.

2 RELATED WORK

Our work is related to multiple previous works including
multiplanar, non-planar, curved and FTVR displays. We re-

view the literature related to these in this section, segregated
into multi-surface displays, FTVR displays and rendering
to FTVR displays.

Multisurface Displays: Multiple display panels using
monitors or projected surfaces have been used to increase
pixel resolution for various applications [4]. Tiled display
walls using LCDs or projectors scale this to extremely
high resolutions [5], [6]. Display walls allow focus and
context to be achieved simultaneously [7], which is also
achieved using non-tiled arrangements such as displaying
a high-resolution focus window within a lower resolution
context [8]. Non-planar arrangements of displays have also
been explored, an example is the fish eye view generated
using multiple projectors projecting on to a dome using
texture mapping [9], [10]. Bimber et al. [2] extended
the two pass texture mapping approach to any surface
using stereoscopic projection. Raskar et al. modified ob-
ject appearance for any given geometry in [11], which is
further enhanced in using multiple projectors to create high-
resolution appearance editing [12]. Such advancements
have spawned much work in auto-calibrating systems for
multi projector displays [13], both in terms of color and ge-
ometric corrections. Other non-planar displays that enable
users to interact with information content from all angles
have also been showcased [14], [15], [16], [17]. Multisur-
face displays usually show information with multiple parts
of the display showing different data. Single or multiple
users can interact and share the same display using touch
gestures. Multisurface displays provide novel interaction
and appearance onto arbitrary shapes, but are limited to
two dimensional or information content.

FTVR Displays: FTVR displays have extended multisur-
face displays to render volumetric data for one or more
head-tracked viewers [18]. An early immersive implemen-
tation is the CAVE virtual environment [19] that uses
four back-lit projection planes enclosing the viewer. View-
dependent images are displayed on the projection screens
by tracking the viewer’s head. Stereoscopic projection is
used to further enhance the experience. Recent FTVR dis-
plays include Cubby with three back-lit projection screens
and a head tracker for a small closed FTVR environment
that allows interaction with virtual objects using precision
tools [20], [21]. By inverting the facets of a CAVE, with
the facets of the display pointing outwards, Cubee creates
a walk-around cubic FTVR display [22]. PCubee enhances
this to a hand-held display coupled with a motion sensor
and a head tracker [23]. The display can then be moved
around and observed from any angle. FTVR displays are
limited to small number of facets, usually a cube, due to
increasing rendering load as the number of facets increase.
Iwata implemented a non-cubic, rhombic dodecahedral dis-
play using projectors to cover the full solid angle [24].

Rendering 3D Content To FTVR Displays: Off-axis
rendering is used to render 3D environments to FTVR
displays. Deering proposed accurate head tracking along
with stereo image pair generation for a single display



3

[25]. This was extended to multiple planes in the CAVE
virtual environment [19]. The method renders each facet
using an off-axis, asymmetric frustum to cover the display
rectangle. Rendering load increases linearly with the num-
ber of facets. The method, though extensively used, can
produce geometrically incorrect images at the periphery of
the frustum for an outside-to-inside display configuration
as discussed in Section 3.1. Correct view can be produced
using ray-casting at every pixel for any given display
shape albeit at high costs. Hou et al. proposes a multi-
perspective rendering method for any given surface [26].
Though not intended for FTVR displays it can be extended
and employed for the same. The method is implemented on
GPUs using appropriate shaders and can handle dynamic
scenes. It, however, interpolates barycentric coordinates
per pixel and requires back projecting of rays at every
pixel - which translates to per pixel raycasting and thus
slows down the rendering speed for large scenes. Another
alternative is to use homography pre-warping to render to
FTVR displays [27], [28]. Our previous work uses this
method to create a polyhedral walk-around display [29]. A
scalable culling pipeline is required to feed FTVR rendering
methods if arbitrary number of planes are to be used in a
display configuration.

3 MULTIPLANAR DISPLAYS

We describe the design, scaling and the rendering to mul-
tiplanar displays in this section. A general multiplanar dis-
play is piecewise planar, consisting of a number of polyg-
onal facets forming the shape. For instance, one’s personal
workspace or desk could be a multiplanar display with
horizontal, vertical, and slanted facets. In our design, each
display facet is built using an LCD panel, microprojector, or
a suitable display mechanism and can show stereoscopic 3D
based on the technology used. A standard polygonal mesh
model describes the display geometry in our scheme, with
any number, shape, and size of facets. Each pixel of the
display is addressed using a three-dimensional coordinate
(f, i, j), where f is the facet id, ranging from1 to the
number of facets, and(i, j) is the pixel id within the facet.
Facets can be controlled independently using a graphics
channel for each. This, however, does not scale well to
a large number of facets. Multiple facets can be driven
together by assigning a mapping from each facet to a
rectangular quilt image, generated by a single graphics
channel. By segregating facet packing into multiple quilt
images quality can be improved further if needed (Figure
1). Un-maping of facet images given the quilt image can
be achived using multiple VGA outputs or specialized
hardware. We consider the un-mapping to be a part of the
display hardware. This scheme ensures quality rendering on
display facets as the facet resolution dictates the size and
number of quilt images needed and not vice-versa, thus
mentaining pixel density on each facet.

The inputs to our system are the display configuration
(as a mesh model), mapping to the quilt image, scene to
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Fig. 1. The multiplanar display system. Top: Rendering
pipeline. Bottom: Driving the display using quilt images.

be rendered and the user location. The system generates
the quilt images based on the user location and sends
these to the display hardware for un-mapping. The process
is described in Figure 1. As the first step, the scene is
sorted to display facets in parallel (Section 3.2). This
helps scale our rendering mechanism to arbitrary shapes,
reducing the rendering load per facet and retaining inter-
activity of dynamicaly changing scenes. Next, the scene
is rendered using facet-specific homography and per-pixel
depth correction, which guarantees a consistent, artifactfree
view of the scene on the display (Section 3.1). A pre-
warping based quilt image generation facilitates single-pass
rendering (Section 3.2.2). The system is implemented using
CUDA GPUs, which perform both the parallel sorting and
rendering in a single pass of rasterization. The presented
pipeline generates quality views from the user’s perspective
at interactive frame rates and can also be used for an inside-
to-outside display configuration such as the CAVE.

3.1 Accurate View Dependent Rendering

In this section, we describe a novel scheme to render to
multiplanar display facets. Our scheme generates quality
images per facet without artifacts, eliminating inconsisten-
cies across facet boundaries. Quality comparison with other
rendering methods is also presented.

Given the viewer position and a look-direction, a symmetric
frustum about the view direction preserves maximum detail.
A virtual viewer cameraCv can be assigned to the viewer
for generality. The position ofCv is tracked and known in a
common frame of reference to that of the display. Avirtual
view plane normal to the view direction passing through
the center of the display can also be assumed without loss
of generality, as shown in Figure 2. The view-dependent
virtual plane intersects multiple facets of the display. Each
faceti can be assigned a facet cameraCi; its imageIi can
then be related to the viewer camera imageIv by a 3× 3
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Multiplanar Display
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Display Facet

Fig. 2. Viewer camera Cv viewing the display and the
virtual plane passing through the center of the display.
C1, C2, C3 are cameras corresponding to each display
facet.

homography matrix as given below [30].

Ii = Hiv Iv, ∀ i ≤ #facets (1)

Each visible facet will have such a homography relating its
image to the virtual plane. RenderingIi collectively using
the above equation produces the illusion of the image lying
on the virtual plane when observed fromCv. To ensure
exact rendering, we renderIi such that the appearance and
depth corresponds toCv at every visible pixel.

Computing Facet Homography: Given the rotation matrix
R and the translation vectorT betweenCi andCv, normal
n, distanced of the virtual plane, and intrinsic parameters
Ki andKv of the cameras,Hiv can be computed directly as
Hiv = Kv[R− TnT /d]Ki

−1 [30] (Figure 3). We compute
the homography for each facet independently in each frame
based on the viewer position. Homographies are computed
in parallel on the GPU from known information aboutCv

andCi using a thread for each facet.

Facet Homography in Canonical Space: Facet images,
Ii, can be generated by applying the homography to the
viewer image,Iv. This approach has its limitations. It is
an expensive per pixel operation and requiresIv to be
available ahead of time. It can also produce holes in the

Distance 
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Ci Frame
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Camera Cv
Camera Ci

[R|T] to Camera Ci

Fig. 3. Computating Homography transformation be-
tween two cameras.

Model View
Transformation

Projection
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Perspective
Division

Viewport
Scaling
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Fig. 4. Graphics pipeline with canonical space. The
perspective division and viewport scaling stages only
modify the scale of the point in canonical space.

facet image as pixels inIv may not map to any pixel in
Ii, and may require additional interpolation to fill. The
homography is also not affine, i.e., its last row is not of
the form [0 0 1]. This produces an arbitrary homogeneous
scale factor per pixel, removing which warrants per pixel
normalization of the facet image,Ii. These problems can
be solved by integrating homography into the rendering
process to perform interpolation and pixel normalization
using the graphics pipeline.

The homography can be equivalently computed and used in
the normalized device coordinates, canonical space, since
the relative positions of pixels do not change after it in
the graphics pipeline (Figure 4). This avoids pixel normal-
ization and interpolation since the perspective division and
viewport scaling stages follow the canonical space in the
graphics pipeline. This idea was outlined in the context of
correction of an off-axis projection by Raskar [28]. The
process of transforming a scene pointX to the faceti can
now be given as

Ii = V PdHivPMvX, (2)

where Pd represents perspective division transformation
and V the viewport transformation.P and Mv are the
projection and modelview matrices of cameraCv.

Depth Correction: Depth values at pixels may go out
of the canonical space range of [−1, 1] using the above
scheme. For a point(Xc, Yc, Zc) ≡ MvX in the camera
frame when multiplied by projection and homography
matrices, the effect can be understood as follows:
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The matrix to the left of(Xc, Yc, Zc) is a standard OpenGL
projection matrix. The final depth valuez′/w′ after apply-
ing the homography may not lie in the[−1, 1] range as
Iz ≡ z′ (depth without homography) belongs to[−1, 1]
andw′ is now a function ofIx and Iy. Uniformly scaling
the depth by az-scale factor less than1 can bring the depths
within range, but will not guarantee correct ordering. This
can lead to poor depth resolution and push through artifacts
as seen in Figure 5(a). Raskar [28] suggests a scale factor of
(1−|h31|−|h32|). This reduces the depth resolution and can
suffer from near plane clipping. Multiplanar displays can
have serious artifacts at facet junctions using this method
as shown in Figure 5(b).
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(a) Scale< 1 (b) Raskar (c) Our method

Fig. 5. The depth problem: comparison of approaches.
(a) depth errors due to reduced z-range at eye, lip and
ear. (b) error due to near plane clipping artifacts. (c) our
method without artifacts

The problem can be solved exactly by setting the depth
values at each pixel as

zv =
Iz
Iw

=
z′

Iw
=

z′

−Zc

∈ [−1, 1]. (4)

The depth buffer for each facet will have the same depths
from the viewer cameraCv. The depth resolution is exactly
same on all facets, ensuring uniformity at facet junctions.
We change the depth of each pixel in a fragment shader,
which has access toz′. The Z values of the vertices are
sent by the vertex shader and are interpolated to makeZc

available at each pixel. The shader computeszv as a ratio
of these two and sends it to the framebuffer. Figure 5(c)
shows the correct image using our scheme. Early-z culling
is avoided by setting a constant depth value of−1 at all
vertices. Rasterization is not affected by this and the correct
depth values are computed later by the fragment shader.
Algorithm 1 outlines the vertex and fragment shaders used
in our rendering scheme.

Algorithm 1 Depth Correcting Shaders

1: {Vertex Shader(V)}
2: Perform fixed-pipeline operations
3: Compute camera space vertex coordinatesVc

4: SendVc to pixel shader with interpolation
5: Setz coordinate of output vertex as−1
6:

7: {Fragment Shader(V)}
8: Perform fixed-pipeline operations for color
9: TransformVc to canonical space asV ′

c

10: Set depth as the ratio ofz coordinate ofV ′

c andVc.

3.1.1 Comparison with Other Approaches

We compare our rendering scheme with alternative methods
used to render to FTVR displays. The goal of our system is
to provide quality rendering at interactive frame rates. The
comparison thus focuses on quality, both on the facet and
the combined effect from the user’s perspective. Off-axis
rendering renders the scene directly to the facet and thus
is capable of producing quality images. It is the primary
alternative to our method. Projective Texture Mapping
(PTM) can also be used to generate a similar effect to that

Fig. 6. Top view of CAVE and multiplanar display
setups with off-axis frustas. The view angle is large for
multiplanar display using this approach.

(a) Off-Axis (b) Our method

Fig. 7. Comparing off-axis projection with our render-
ing scheme. Scene consists of two proximate rectan-
gles and a push-through sphere.

of our system. It produces an intermediate image which is
mapped to multiple facets using interpolation. This can lead
to quality degradation due to image re-sampling. A detailed
visual comparison with Projective Texture Mapping can be
found in the Appendix at the end of this article.

Off-axis rendering [25] has been the rendering mechanism
for FTVR based displays like the CAVE, Cubby, etc. The
method renders each facet using a view plane parallel to
the facet using oblique frustum boundaries (Figure 6). The
rendering is not geometrically correct due to depth errors.
Depth for each facet varies with the viewer location and is
not consistent across facet boundaries. Akeley and Su report
that the error increases linearly with the angle of view and
is particularly large if the scene resides in corners of the
frustum [3]. In a display configuration like the CAVE, this
angle of view is small and errors are rarely visible. In an
outside-to-inside configuration, the scene always residesin
one corner of the frustum and the angles could be large
(Figure 6). This results in visual artifacts that can be seen
across facet boundaries. Figure 7(a) shows the rendering
of two proximate planes using off-axis rendering. Depth
errors can be seen as opposed to our rendering scheme
(Figure 7(b)). Figure 8 shows depth variation for various
methods across a facet boundary for a scene consisting
of a single line. We see that only our method ensures
consistent views at the junction of two facets. Multiplanar
display rendering to arbitrary display shapes requires this
property to avoid artifacts. Correct image and depth at each
facet ensures quality rendering needed for visualization
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Fig. 8. Comparing depth buffers for various ap-
proaches at the boundary of two facets. Note no sud-
den change in depth values for the shader approach,
ensuring continuity at facet boundaries.

applications. The rendering load for our scheme is minimal
as evaluated in Section 4.2, Figure 19.

3.2 Scaling to a Large Number of Display Facets

Current FTVR rendering methods need to render the scene
to each facet independently. This leads to a linear increase
in the rendering load with the number of facets and may
become impractical beyond a few tens of display facets.
We propose two load balancing ideas to aid our rendering
scheme in this section: (i) A parallel scene sorting algorithm
which sorts the triangles of the scene to the display facets
quickly on the GPU per frame. (ii) A rendering scheme that
renders the quilt of multiple facet images in a single pass
of rasterization. These can be combined with our rendering
mechanism to achieve real-time rendering of fully dynamic
scenes for displays consisting of thousands or more facets.
Methods based on spatial hierarchies have been shown to
cull the scene to reduce the rendering load per facet but are
hard to extend to dynamic/deforming scenes due to their
static design. Because of our parallel design, our method
outperforms spatial hierarchies as reported in Section 4.2.

3.2.1 Visibility Determination and Triangle Sorting

We sort the geometry of the scene at the triangle level,
with triangles of the scene sorted in parallel to respective
facets of the display per frame. This provides flexibility to
our system in handling dynamically changing scenes. The
parallel implementation also scales well to a large number
of display facets. Per vertex ray-casting implemented on
the GPU is used to achieve this in real-time. Figure 9
shows our sorting approach for a large number of facets.
A ray is shot from the viewer location to each scene
vertex. The intersection of the ray with a given facet of the
display determines its facet id. The information is stored
on the GPU memory in a temporary arrayfacetid. Three
situations can arise from per vertex ray casting as shown in
Figure 10. In most scenes, case1 yields maximum number
of triangles. The second and third cases yield fewer number
of triangles, but require more expensive computations. We

Display FacetDisplay

Scene

Scene Triangles

Viewer Camera

Rays from Scene 

Vertices to Viewer 

Camera

Fig. 9. Triangle sorting based on per vertex raycasting

divide our sorting into two passes based on this observation.
The first pass handles the first case while the second pass
deals with residual triangles.

Pre-Processing: To reduce the number of tests performed
per ray, we pre-process the display facets into a static octree
structure, with each octree leaf assigned facets it intersects
spatially. We use a depth level3 with 512 leaf nodes, stored
as an array in the GPU shared memory for fast access [31].
Each ray first emulates the octree leaf nodes it intersects
and performs the relative tests with facets present in these
leaves only.

First Pass: The first pass assigns a facet id to triangles
based on facet ids of its vertices. Each triangle gets assigned
a single facet id if all its vertices have the same facet id, as
shown in Algorithm 2. The scene triangle id and its facet id
are stored as a tuple in a temporary array TFID on the GPU,
which is later used to bring all triangles of a facet together.
For typical scenes, this pass assigns facet ids to80% to
90% of the total scene triangles. The remaining triangles
have different facet ids at their vertices and undergo the
second pass. Figure 11(a) depicts triangles passing the first
pass for the Bunny model on a spherical display.

Algorithm 2 First Pass
1: tid← GetThreadID() {thread id = triangle id}
2: count←size of(TFID)
3: if for all verticesvid of triangle tid, facetid[vid] is

samethen
4: TFID[count]←(tid, facetid[vid])
5: count← count+ 1
6: end if

Case 1: All scene vertices 

have same facet id
Case 3: Scene triangle vertices 

have different facet ids

Scene Triangle Display Facet

Case 2: Facet lies inside 

a scene triangle

Fig. 10. Cases occurring from per vertex ray casting
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Algorithm 3 Second Pass Kernel
1: tid← GetThreadID() {thread id = triangle id}
2: count←size of(TFID)
3: Project scene triangle using Viewer CameraCv

4: for all facetsfid ∈ Emulated Octree Nodesdo
5: Project facetfid using viewer cameraCv

6: if triangle-facet intersection [32] OR projected facet
lies inside projected scene trianglethen

7: TFID[count]←(tid, fid)
8: count← count+ 1
9: end if

10: end for

Second Pass: The second pass examines all triangles that
remain (Figure 11(b)). In this pass, scene triangles and
display facets are projected using viewer camera, and a 2D
triangle-facet intersection test is performed using Möller’s
procedure [32]. Overlap test shown in case2 of Figure 10 is
also performed. Facet ids are assigned to the triangle if any
of the tests are positive. Multiple facet ids may be assigned
to a single triangle during this pass. Each such triangle-
facet ids tuple is added to the TFID array. Algorithm 3
summarizes these steps. We also reduce the work done
by the GPU for the second pass of the algorithm using
thread compaction [33], ensuring only as many threads are
executed on the GPU as the number of residual triangles.

The TFID array holds the triangle–facet id tuples for all
possible triangle-facet intersection cases after the second
pass. We bring all triangles belonging to a facet together by
performing a split [34] operation on TFID using the facet id
as the key. A kernel runs over the length of the split TFID
array and copies the scene triangle data to the independent
VBOs per facet in parallel. VBOs thus created undergo
the rendering process reported in Section 3.1 to produce
accurate views for each facet as shown in Figure 11(c),
with colors indicating different facet ids.

The Scene Sorting Procedure: The overall sorting proce-
dure is described in Algorithm 4. Our algorithm increases
the number of triangles to be rendered, replicating triangle
data to facets in which they appear during the second pass,
but this increase is small in practice and emperically the
rendering is faster than both spatial hierarchies and inde-
pendent rendering for each facet as reported in Section 4.2.
An average increase of4 − 5% is seen for the number of
triangles.

(a) First Pass (b) Second Pass (c) Rendering

Fig. 11. The stages of our triangle sorting algorithm

Algorithm 4 The Scene Sorting Algorithm
1: for all scene triangles in paralleldo
2: Perform the first pass
3: Compact triangle ids that failed the first pass
4: Perform the second pass
5: Store scene triangle-display facet pair in TFID
6: end for
7: Split TFID using display facet as the key
8: for all entries of TFID in paralleldo
9: Copy scene triangle data to display facet id VBO

10: end for

3.2.2 Rendering the Quilt Image for all Display Facets

In this section we describe a method for reducing the
facet image rendering load for a large number of facets.
Rendering to each facet independently requires a setup
phase of the graphics pipeline. This overhead can increase
significantly as the number of facets increase. For speed, we
render all facet images in a single pass of rasterization. A
trade-off exists between the required resolution and number
of rasterization passes, as high facet resolution can dictate
facet packing into multiple quilt images – each requiring
a separate rasterization pass. An optimal packing is thus
needed to utilize the quilt image space efficiently.

From Equation 2, we observe that each display facet has
a different projection matrix (HivP ). The difference in
projection matrix warrants independent rasterization, setting
independent viewports and projection matrices for each
facet. This can slow the rendering as the number of facets
increase. We can avoid this by pre-warping each pointX
for each facet. The mapping for a facet imagei in the
quilt image is a fixed 2D transformation (Figure 1). Let
Yi denote this in the canonical space. The pointX per
facet is modified by the facet-specific quilt image mapping
(Yi), homography (Hiv) and the projection and modelview
matrices (PMv) to {YiHivPMvX}. This modified point
can be thought of as a point in another canonical space with
its modelview and projection matrices set as identity. The
point in this space depends on facet idi, but the pipeline

X
Y

Z

+1, -1, +1

+1, +1,-1

(a) Scene in Canonical Space (b) Rendered Quilt Image

Fig. 12. The canonical space triangle separation and
the corresponding rendered quilt image
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parameters are same for all facets. This enables the same
rendering pipeline to render all facets to the quilt image in
a single pass of rasterization using

Quilt = V PdIMv
IP

#facets
∑

i=1

YiHivPMv{V BOi}, (5)

where V is the viewport for the quilt image,Pd the
perspective division stage andIMv

and IP the modelview
and projection matrices respectively set to identity.

A vertex X in the list of faceti can be pre-warped to
YiHivPMvX after the scene sorting stage. The facet VBOs
created at the end of the sorting phase are thus modified
while copying the data from the TIFD array. Figure 12(a)
shows such a transformed scene in the canonical space,
with colors indicating facet ids. It can be seen that VBOs
deform under these transformations. However, projecting
them to the quilt image generates the correct image per
facet as shown in Figure 12(b). For a display with1600
facets, a15−20% decrease in rendering time is seen using
this method compared to setting up the graphics pipeline
for each VBO at the same facet resolution.

3.2.3 Packing Facets Into the Quilt Image

Facet packing transformationYi is a 2D transformation
matrix per facet that maps a facet image to the quilt
image. This can be done without any interpolation using
equal number of pixels in each.Yi differs from texture
mapping as a result. Optimal packing of polygonal shapes
in a 2D plane is an NP hard problem [35]. We can use a
heuristic packing arrangement that attempts to utilize the
quilt image space optimally. This is a preprocessing step
done while designing the display configuration. A simple
packing algorithm would be to assign a bounding rectangle
to each facet polygon and pack them in a linear order across
the dimensions of the quilt image, as used in Figure 12. This
scheme may not utilize the image space efficiently. Better
packing using a BFS tree can be used to generate a tighter
quilt image as shown in Figure 13.

Fig. 13. Display as seen from user’s point of view and
its facet packing into the quilt image using a BFS tree

3.3 The Rendering Pipeline

Figure 14 describes the overall rendering process for our
multiplanar display system. The scene being displayed can
be completely dynamic since triangle sorting and VBO
creation takes place every frame. We can use one or more
commodity GPUs for the processing and rendering, keeping

GPU

Head Tracker

Dynamic Model VBO

Parallel Sorting

VBO1 VBO.. VBOn

Rendering Quilt Image

Mapping To 
Facets

Depth Correcting

Shaders

YiHivPMv 

Transformations

CPU

Update Model VBO

Update 

Viewer Location
Compute Parallel Hiv

VGA Outputs

Fig. 14. The Overall Rendering Process

the cost low. Our setup allows us to render scenes with
up to 200K triangles in real-time to a display made up of
up to 1600 facets on current generation GPUs. For larger
scenes the framerate drops to below interactive rates as
shown in Figure 21. Multi-GPU solutions can be used
to enhance the speed in such cases, as the problem is
parallel-friendly. Distribution of the quilt image to physical
facets can be done using appropriate electronics in the
display system [23] or using a system with multiple display
channels and coordinated rendering. We use VGA outputs
and texture mapping for our prototype diplays.

4 DISPLAYS AND PERFORMANCE

In this section, we describe prototype displays that we
built and simulated to validate our multiplanar display
framework. We also give performance results for different
form factors comprising of varying number of facets and
orientations along with scene complexity to study the
scalability of the framework across different factors.

4.1 Display Prototypes

Building a multiplanar display of a general shape requires
engineering at the display device level that only a dis-
play company can undertake. The objective of considering
different prototypes is to establish (a) the generality of
the multiplanar display framework, (b) the correctness of
displaying 3D information using our method on challeng-
ing display configurations, and (c) the scalability of the
approach to arbitrarily large displays. We use three types
of display prototypes for this. Examples showing dynamic
three dimensional scenes and information on our prototypes
can be found in the accompanying video.

4.1.1 LCD based Setup

We prototype a cube display using off the shelf LCD
panels with up to5 display facets located around the cube.
The prototype is similar to the Cubee [22], but uses our



9

Fig. 15. LCD based display showing various static and
dynamic scenes

rendering scheme as opposed to off-axis rendering. The
display follows our rendering process with facet mapping
achieved using VGA outputs. The cube is setup by loosely
placing LCD panels in the desired configuration. Off the
shelf LCDs are used to construct the display shown in
Figure 15. We can take a fixed geometry file to specify the
display or infer it using a calibration step. Viewer location is
tracked using an infrared based head tracker, TrackIR5 [36],
intended for use in gaming applications. With a refresh rate
of 120Hz the latency is minimized and the location of the
viewer is given within an error of5− 10%.

Calibration: We calibrate the cube using a simple pro-
cedure based on ARToolkit [37] markers. We establish
transformations from an origin marker to facet markers
using a camera. This helps recover the plane of the display
and its center point. Combined with the display dimensions,
the facet’s corners are now fully known. The cube can be
calibrated in less than a minute, with no special hardware
or equipment. The procedure can be easily extended to a
general polygonal display.

Brightness Correction: Brightness/color correction is an
important issue for tiled display setups [38]. For LCDs,
intensity and colors fadeout with increasing viewing angle.
We use a simple method to compensate for this; we change
intensity of pixels based on the dot product of the facet
normal and the view vector with maximum intensity at
oblique viewing angles. The scheme produces a satisfactory
visual experience.

Hardware Details of the 3D Cube: We used a PC with
two Nvidia Quadro FX5600 cards to drive a4-panel cube
display. The display supports anaglyphic stereo display
and monoscopic walk-around display. Shutter-based stereo
using Nvidia 3DVision glasses can be built using high-
frequency LCDs as the GPUs are genlocked. The LCDs
have visible and thick borders, which affect the quality of
view. However, the display areas are modeled correctly.
Thus, the borders appear like supporting bars of the box
in which the object is kept (Figure 15).

4.1.2 Projection based Setups

Since LCD based curved surfaces consisting of thousands
of facets are hard to physically implement, we show the
scalability of our system using projection based setups.
These setups use our pipeline to generate the quilt image
by following the stages of parallel sorting, facet rendering,

Fig. 16. Projection Based setups showing various
scenes on sphere, cylinder and desktop form factors

quilt image rendering and depth correcting shaders. The
inverse mapping stage is absent as there is no hardware
un-mapping for these setups. We replace this step with
texture mapping to generate the final output. It should be
noted that though we use texture mapping in these setups,
a physical display will not require this, as images will be
directly mapped to facets. The overall display resolution is
also affected because of this, since the final image is shown
using an off-the-shelf projector, of which only about40%
pixels lie on the given shape.

To maintain the resolution quality, as if built using LCD
panels, we render all projection based setups to a constant
quilt image resolution of64M pixels (maximum texture
size supported on current GPUs). This can be further
improved by changing facet mapping and using more than
one rasterization pass. These prototypes are intended to
demonstrate the scalability of our system to various form
factors with large number of display facets and to provide
an estimate of system performance if implemented using
proper electronics. Figure 16 shows projection based setups
displaying static and dynamic scenes on spherical (840
facets), cylindrical (216 facets) and desktop (816 facets)
form factors.

4.1.3 Simulated Display Setups

We also demonstrate rendering to display surfaces that may
be concave or self intersecting using simulated setups. For
these setups we render to facets using our pipeline, map
the rendered images to the display geometry and observe
from the user’s perspective. Thus, system performance in
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Fig. 17. Simulated setups showing various scenes on
teapot, spring and knot form factors

terms of rendering time and scalability of the simulated
display is a conservative estimate of a real display of the
same shape, if built. A64M pixel quilt image is rendered
for each of these setups since the final image is viewed
on a low resolution display. Figure 17 shows form factors
shaped like a teapot (1024 facets), spring (902 facets) and
a knot (1200 facets). The system is capable of rendering
to these shapes in real time. In the triangle sorting stage,
ray-casting finds the facet nearest to the viewer location.
This ensures correct depth ordering for facets and allots
triangles to the correct facet even when the surface is self
intersecting, as is the case in knot and spring.

4.2 Performance Evaluation

A single Nvidia GTX 580 with 1.5GB of RAM on an
Intel Core i7 930 processor with4GB RAM is used as
a testbed for the following experiments. All experiments
are reported at64 mega pixel quilt image resolution with
times are averaged over a1000 frame walk-through.

Comparison with Spatial Hierachies: To compare our
method with spatial hierarchies, we implemented a dynamic
octree structure. The octree is built every frame over the
scene triangles on the GPU. Each triangle is assigned to
a thread. Each thread finds the octree leaves its triangle
intersects spatially and sets it as a part of the VBO of the
respective octree leaf nodes. The scene hierarchy is culled
to facet frustums in parallel and VBOs of the intersected
leaf nodes are rendered to the corresponding facets. We use
an octree depth of three, with512 leaf nodes. Increasing
the depth reduces triangles rendered per facet but increases
the culling time and hence overall performance is reduced.
Dynamic scenes require building the entire structure every
frame, which slows down this approach for larger scenes.
We found spatial hierarchies to be slower than our method
due to the increase in computation as the number of facets
increase, as shown in Figure 18. The number of triangles
rendered per facet increased by a factor of2 compared to
our sorting. Fast sorting on today’s GPUs make our method
faster than a spatial hierarchy based method, which has
more irregular operations that may not map well to the
data-parallel hardware.

Figure 18 shows an increase in rendering time as the
number of facets increase for both octree hierarchy and
the independent rendering approach. Our method, however,
exhibits uneven per-frame times due to view dependent
sorting. The topology of the display surface and visible
facets decide the sorting time, which dominates the overall
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Fig. 19. Time breakup for our system, showing time
taken by each step of our rendering pipeline.

time taken by our system as shown in Figure 19. We see
that even on a larger display with1600 facets (sphere2)
our method can take less time than on a display with fewer
number of facets (teapot,1024 facets) because of a more
even topology. In case of teapot the sorting times vary with
the viewpoint when the handle and the nose are in view.
This observation can help design a better display. Almost
equal number of facets across various views will provide a
better performance.

Figure 19 gives the time breakup of our system for the
same experiment reported in Figure 18. We see the sorting
time dominates the overall pipeline, more specifically the
second pass of sorting takes maximum time. This is because
of the expensive triangle-facet overlap tests performed in
this step. Even though the number of threads used is less,
this pass requires projections of facets and triangles and
computes intersection of these projections in camera space.
The times also vary with the viewer location as more facets
and triangles can come in view at various viewpoints. The
figure clearly shows triangle sorting to be critical in our
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Fig. 21. Scalability of our system with increasing scene
complexity for various display configurations.

scheme. We also note that depth correcting shaders are not
expensive as one additional parameter is interpolated by
the rasterizer and only one division is computed per pixel.
Similarly, the homography computation, transformation of
vertices and splitting of triangles to facet VBOs are not
limiting factors.

Figure 20 examines the rendering time for increasing num-
ber of pixels for our method. Rendering depends on facet
packing and typically for a closed shape only about25 to
40% pixels are rendered per frame. The fill rate of current
generation GPUs is high and thus even increasing the quilt
image size to very large dimensions does not affect the
rendering times by much.

In Figure 21, we examine the scalability of our system
with increasing number of scene triangles (16K–871K)
and increasing number of facets (20–1620). Increasing the
number of scene triangles increases the number of threads
needed for sorting stages. This results in larger sort times
and increases the overall rendering time. At871K triangles

we see the frame rate drops to about7-10 frames per
second. For larger models the sorting load can be distributed
to multiple GPUs driving thousands of facets. It can be seen
that our system produces real-time frame rates only up to
200K triangles for various display configuratons on a single
GPU.

4.3 Limitations of the Display

The main drawback of our framework is its view depen-
dence. Correct perspective is available only to a single
viewer. Others see a distorted image due to a view depen-
dent homography being applied to facet images. This is,
however, a common feature of all head-tracked displays.
The scene triangle sorting step is the most time-consuming
of all steps, especially the second pass. Performance can,
however, be improved using multiple GPUs to sort the
scene to multiple facets and to generate multiple quilts,
as the steps are highly parallel. An implementation of our
system requires hardware un-mapping of the quilt image at
the display end. A display manufacturer can easily create
such a setup using suitable electronics. Our LCD-based
system used different VGA outputs instead. Our projected
system sacrificed resolution to avoid this un-mapping. Our
framework is highly scalable inspite of these issues.

5 USER STUDY: UTILITY OF A SPHERICAL
WALK-AROUND DISPLAY

We study user interaction with a spherical display to
evaluate the ease of use of a walk-around monoscopic
display in this section. Rendering is not evaluated since
the display used in this study is a projected setup - which
only provides a mock platform for look and feel of our
system if implemented using proper electronics. Please see
Section 3.1.1 for comparison of various rendering methods.
The aim of this study is to see if walk-around displays
provide a more natural way to view and interact with virtual
objects as compared to flat screens. The focus is on user
experience and thus a full implementation of our system is
non essential. The spherical shape is chosen for its natural
viewing properties. A WiiMote is used to interact with the
display, to move the cursor in camera space and also to
select objects shown inside the display. We design a simple
path-finding task with a hollow connected cube structure
with marked start and finish nodes (Figure 22). The goal

Fig. 22. Hollow cube structure used for user evalua-
tion. Goal is to find a path from green to red node
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is to find a path between two specially marked nodes
through the edges of the cube. Moving around the display
is essential to evaluate a path in this exercise. The same
experiment is also conducted on a flat display with the same
mode of input, with additional buttons assigned to move
user viewpoint. The rotation angle and the rotation speed
are also restricted to simulate walking around scenario on
the flat panel.

Each user is given the same three tasks to perform on LCD
and Sphere with a mock task on each to get familiarized
with the display and input modes. We store the selected
path length (PL), number of backtracking steps (Undos),
viewpoints and the overall time taken to perform the task
that are later used to evaluate a subjective measure defining
ease of use. A questionnaire comprising three aspects of the
experiment is also rated by the user: (i) Ease of visibility,
which rates how easy it is to perceive the object/path based
on moving around the object on a spherical display as
opposed to rotating the object on a flat panel, (ii) Ease of
interactivity rates the user input, moving viewpoints using
buttons as opposed to physically moving around and (iii)
an overall rating which states the user preference.

We defineease of use (EOU) based on recorded parameters
using a penalizing and rewarding mechanism. Time taken
should be penalized along with deviation from the optimum
path length (OPL) for each task. Motions help in perception
and thus should be rewarded. Backtracking should also
be penalized. Considering these we define ease of use as
follows

EOU =
OPL

PL+ Undos
+

Motions

T ime Taken
(6)

The first term captures the perceptual aspect whereas the
second term captures interaction with the display. Both
terms are normalized to have a maximum value of0.5
and are given equal weightage. The metric gives a measure
of how easy it is to move around, interact and perceive
objects in a display based on our experiment. Fifteen test
subjects evaluated EOU on an LCD and on the spherical
display. Figure 23(a) states their achieved EOU averaged
over three tasks. It can be seen that both flat panel and
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Fig. 23. Results of our user study

spherical display show nearly the same deviation from
the optimal path length. This is expected as both use
monoscopic viewing and are only aided by motion for depth
cues. It can also be seen that it is easier to move around

the sphere than on the LCD. Motions should also help in
depth cues and improve perception. However, because of
lower resolution on the sphere, users complained about low
quality of viewing adversely affecting perception on the
sphere. Users also indicated that perception might also be
affected because of their familiarity with LCD. Figure 23(a)
favors motion on the sphere for70% of the users indicating
that it is easier to move around a spherical display.

Subjectively, an overwhelming majority of users preferred
sphere over LCD as shown in Figure 23(b). They indicated
it was easier to plan the path on the sphere, and depth
variations were much clearer on the sphere. Interaction is
also favored suggesting moving around a display to be more
comfortable than moving using buttons, also confirmed by
the result of Figure 23(a).

6 CONCLUSIONS AND FUTURE WORK

We presented a framework to correctly render 3D scenes
to multiplanar displays with a large number of facets.
Our approach produces correct rendering and maintains
interactivity of the application even when the facet count
increases to over a thousand facets. We also demonstrated
the scalability of our system with increasing resolution,
scene complexity, and number of facets. The framework
facilitates rendering to virtually any display configuration
as shown in simulation. Practical setups using LCD panels
are not hard to build into any shape using appropriate elec-
tronics. This can provide a whole new interaction paradigm
with the virtual world. With current display technology and
advancements in motion-in-gaming our framework ideally
suits the needs of interactive applications at minimal cost.
Users like the additional interactivity of such displays over
flat panels.

Visualization applications can benefit from quality render-
ing and interactive frame rates provided by our system.
Medical visualization, design prototyping, molecular inter-
actions etc. require high quality rendering. Our system can
provide a glass box interactive display for such applications.
Participative games is another area that general polyhedral
displays can invigorate, especially walk-around displays.
With the advent of new motion capture technologies like
the Microsoft Kinect, Sony Move and Nintendo Wii, games
benefit greatly from novel user interactions. Head tracking
is integral to these technologies and hence can drive 3D
displays for a single viewer. Pairing this technology with
flat displays limits its potential.

We would like to explore interactions on such displays
using touch panels. Such a setup could then enable natural
user interfaces for currently challenging problems. For
example, with the use of a touch panel spherical walk-
around display an artist could sculpt a virtual object as
though he were actually working on a real statue. Many
3D displays are about to become practical in the coming
years. Our framework combined with these can provide a
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truly enhanced visual experience of 3D environments and
interactivity to the users of the future.
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[32] T. Möller, “A fast triangle-triangle intersection test,”Journal of
graphics, gpu, and game tools, vol. 2, no. 2, pp. 25–30, 1997.

[33] P. Harish, V. Vineet, and P. J. Narayanan, “Large Graph Al-
gorithms for Massively Multithreaded Architectures,” Tech. Rep.
IIIT/TR/2009/74, 2009.

[34] S. Patidar and P. J. Narayanan, “Scalable Split and Gather Primitives
for the GPU,” Tech. Rep. IIIT/TR/2009/99, 2009.

[35] S. Liao, M. A. Lopez, and D. Mehta, “Constrained polygontrans-
formations for incremental floorplanning,”ACM Trans. Des. Autom.
Electron. Syst., vol. 6, pp. 322–342, 2001.

[36] TrackIR5, “NaturalPoint TrackIR5,
www.naturalpoint.com/trackir/products/trackir5/,” 2009.

[37] ARToolkit, “www.hitl.washington.edu/artoolkit/,”2002.

[38] A. Majumder, “Contrast enhancement of multi-displays using human
contrast sensitivity,” inCVPR’05, ser. CVPR ’05, 2005, pp. 377–382.

Pawan Harish received his bachelors
degree in computer science and en-
gineering from Uttar Pradesh Tech-
nical University, Lucknow, India, in
2005. He is currently working towards
the PhD degree in computer science
at the Center for Visual Information
Technology, International Institute of

Information Technology, Hyderabad, India. His research
interests include novel dispalys, computer graphics, visu-
alization, parallel algorithms and GPU computing.



14

P. J. Narayananis a Professor and
Dean of Research at the IIIT, Hy-
derabad. He got his bachelors from
IIT, Kharagpur and his PhD from the
University of Maryland. He was a re-
search faculty member at the Robotics
Institute of Carnegie Mellon Univer-
sity from 1992 to 1996 and a scientist

at the Centre for Artificial Intelligence and Robotics, Ban-
galore till 2000. His research interests include Computer
Vision, Computer Graphics, and GPU Computing. He was
made a CUDA Fellow in 2008. He was the General Chair
of ICVGIP 2000 and the Program Co-Chair of ACCV 2006
and ICVGIP 2010. He currently Co-Chairs the ACM India
Council.


