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Abstract

While existing works about non-orthogonal multiple aco@é®MA) have indicated that NOMA can
yield a significant performance gain over orthogonal midtgccess (OMA) with fixed resource alloca-
tion, it is not clear whether such a performance gain willidish when optimal resource (Time/Frequency/Power)
allocation is carried out. In this paper, the performancapgarison between NOMA and conventional
OMA systems is investigated, from an optimization point afw Firstly, by using the idea of power
splitting, a closed-form expression for the optimum sumne raf NOMA systems is derived. Then,
with rigorous mathematical proofs, we reveal the fact th@MM\ can always outperform conventional
OMA systems, even if both are equipped with the optimal resmallocation policies. Finally, computer

simulations are conducted to validate the accuracy of tladytical results.
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I. INTRODUCTION

Recently, non-orthogonal multiple access (NOMA) has ramkiextensive research interests
due to its superior spectral efficiency compared to conweati orthogonal multiple access
(OMA) [L]-[B]. For example, NOMA has been proposed to dowklscenarios in 3rd generation
partnership project long-term evolution (3GPP-LTE) syste/4]. Moreover, NOMA has also
been anticipated as a promising multiple access techniquehke next generation cellular
communication networks [5]L[6].

Conventional multiple access techniques for cellular camications, such as frequency-
division multiple access (FDMA) for the first generation (1@me-division multiple access
(TDMA) for the second generation (2G), code-division npl#iaccess (CDMA) used by both 2G
and the third generation (3G), and orthogonal frequencisidin multiple access (OFDMA) for
4G, can all be categorized as OMA techniques, where diffareers are allocated to orthogonal
resources, e.g., time, frequency, or code domain to avoitipteuaccess interference. However,
these OMA techniques are far from the optimality, since thatspectrum resource allocated to
the user with poor channel conditions cannot be efficiensigad.

To tackle this issue and further improve spectrum efficietiey concept of NOMA is proposed.
The implementation of NOMA is based on the combination ofesppsition coding (SC) at the
base station (BS) and successive interference cancallggi€) at users [1], which can achieve
the optimum performance for degraded broadcast charifelf8[7Specifically, take a two-user
single-input single-output (SISO) NOMA system as an examphe BS serves the users at
the same time/code/frequency channel, where the signalsugrerposed with different power
allocation coefficients. At the user side, the far user,(tree user with poor channel conditions)
decodes its message by treating the other's message aswhbikethe near user (i.e., the user
with strong channel conditions) first decodes the messagts gfartner and then decodes its
own message by removing partner’s message from its obgsrvén this way, both users can
have full access to all the resource blocks (RBs), moredkiernear user can decode its own
information without any interference from the far user. fdiere, the overall performance is

enhanced, compared to conventional OMA techniques.

A. Related Literature

As a promising multiple access technique, NOMA and its vdasidave attracted considerable
research interests recently. The authors in [1] firstly gmésd the concept of NOMA for cellular
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future radio access, and pointed out that NOMA can achiegbdni spectral efficiency and
better user fairness than conventional OMA. [In [2], the penance of NOMA in a cellular
downlink scenario with randomly deployed users was ingas¢éid, which reveals that NOMA
can achieve superior performance in terms of ergodic sues.réi [9], a cooperative NOMA
scheme was proposed by fully exploiting prior informatiothe users with strong channels about
the messages of the users with weak channels. The impaceofpaging on the performance
of NOMA systems was characterized in [10]. In[11], a new eatibn criterion was developed
to investigate the performance of NOMA, which shows that NOkan outperform OMA in
terms of the sum rate, from an information-theoretic poinview.

To further improve spectral efficiency, the combination @MA and multiple-input multiple-
output (MIMO) techniques, namely MIMO-NOMA, has also beeteasively investigated. In
[12], a new design of precoding and detection matrices fal@INOMA was proposed. A novel
MIMO-NOMA framework for downlink and uplink transmissionas proposed by applying the
concept of signal alignment in [1L3]. To characterize thdqrerance gap between MISO-NOMA
and optimal dirty paper coding (DPC), a novel concept termpeasi-degradation for multiple-
input single-output (MISO) NOMA downlink was introduced [@4]. Then, the theoretical
framework of quasi-degradation was fully established #&],[Including the mathematical proof
of the properties, necessary and sufficient condition, arwdimence probability. Consequently,
practical algorithms for multi-user downlink MISO-NOMA stems were proposed in [16], by
taking advantage of the concept of quasi-degradation.ly,ate optimize the overall bit error
ratio (BER) performance of MIMO-NOMA downlink, an interesg transmission scheme based

on minimum Euclidean distance (MED) was proposed_in [17].

B. Contributions

While existing works about NOMA have indicated that NOMA oaeld a significant perfor-
mance gain over OMA with fixed resource allocation, it is neac whether such a performance
gain will diminish when optimal resource allocation is @adrout. In this paper, the performance
comparison between NOMA and OMA is evaluated, from an oation point of view, where
optimal resource allocation is carried out to both multiptzess schemes. In this paper, two
kinds of OMA systems are considered, i.e., OMA-TYPE-I and ®WYPE-II, which represent,

respectively, OMA systems with optimum power allocationl dixed time/frequency allocation,
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and OMA systems with both optimum power and time/frequeritycation. The contributions
of this paper can be summarized as follows.

1) The optimization problems for both NOMA and OMA systems &ormulated, with con-
sideration of user fairness. Particularly, more sophastid OMA systems with joint power
and time/frequency optimized are also considered.

2) The closed-form expression of the optimum sum rate for MQdyistems is given, by taking
advantage of the power splitting method.

3) By introducing the minimum required power for differepstems, it is pointed out that the
minimum required power of NOMA is always smaller than thaboth OMA-TYPE-I and
OMA-TYPE-II systems.

4) It is revealed that the optimum sum rate of NOMA systemsiusags larger than that of
both OMA-TYPE-I and OMA-TYPE-II systems, with various udairness considerations,
by rigorous mathematical proofs.

C. Organization

The remainder of this paper is organized as follows. Sedlidoriefly describes the system
model and the problem formulation. Section Il provides tpimal power allocation policies
as well as their performance comparison. Simulation resuk given in Section IV, and Section

V summarizes this paper.

[I. PROBLEM FORMULATION

Consider a downlink communication system with one BS &nhdsers, where the BS and all
the users are equipped with a single antenna. By using NOM#sinission, the received signal
at useri is

y=hix+n;, i=12,.. K, Q)

where h; denotes the channel coefficient, and~ CN (0, Ny) is the additive white Gaussian
noise (AWGN) at usel. x = Zfil V/P;s; is the superposition of;’s with power allocation
policy P = {(Py, P», ..., Px)| S.& | P, = P}, s, represents the data intended to convey to user
1, P; denotes the power allocated to ugeand P denotes the total power constraint. For ease
of analysis, we assume thgt;| > |hs| > ... > |hg| and the total bandwidth is normalized to

unity in this paper.
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In consideration of user fairness, herein, we introducenti@mum rate constraint*. Math-

ematically, the power allocation policy should guarantee following constraint:
minr; > r*,

wherer; is the achievable rate of usélin nats/second/Hz, which is given by
P |hi|? )
No+ [mil> 352 B/

For the special case of= 1, the summation in the denominator becordeasnd the corresponding

(@)

T'Z:hl(l—'—

rate becomes
lDi‘hiP)
Ny ’

Note thatr; is achievable since the channels are ordered and the udestning channels can

rlzln<1+

decode those messages sent to the users with weaker channels
Therefore, the optimization problem of maximizing the tetam rate with the user fairness

constraint for NOMA systems can be formulated as follows:
K

Ry £ max Zri
‘ i=1
Phi[?
s.t. rizln(ljt [P — ),
No + [hil* 32520 P 3)
K
Y p<p
i=1
minr; > .

In traditional OMA systems, e.g., frequency division mpii access (FDMA) or time division
multiple access (TDMA), time/frequency resource allomatis non-adaptively fixed, i.e., each
user is allocated with a fixed sub-channel. For notatiomap8city, we refer to this type of OMA

as OMA-TYPE-I in this paper. Consequently, to optimize tlogvpr allocations, the optimization
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problem of OMA-TYPE-I assuming equal resource (time or @rexacy) allocation to all users

can be formulated as follows:

KP|h|2
s.t i:_ )
R X
ZP
minr; > r*.

Since the sub-channel allocations among users are notiaptinsome users may suffer from
poor channel conditions due to large path loss and randomgadhus, the optimization problem
for jointly designing power and sub-channel allocationsassidered next. Specifically, the total

time/frequency is divided intdV sub-channels to be orthogonally shared Ayusers, and this

optimization problem can be formulated as follows:

Rox & max ZZ’F”L

L s Z

i=1 nes;
st ri,= iln (1 + M)

in =N No% )

N K

Y>> p.<P

n=1 i=1 (5)

P,,>0, Vin

Tin >,
nes;

Sl, Sg, e Sk are dISJOInI

S1USU...USk ={1,2,..,N},
whereP; ,, andh; ,, are the power allocated to and the channel coefficient of seub-channel
n, respectively.S; is the set of indices of sub-channels assigned to iser
Note that the optimization problem ihl(5) is not a convex peah Fortunately, it is observed

that it can be upper-bounded by the following optimizationlgpem by replacing the discrete
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time/frequency allocation with a continuous one as follows

K
A _
Ros = max ;n
¢ In (1+ B|hi|2)
S T, = oy 1n s
OéiNO
K
Y p<P (6)
=1
minr; >,

K

Zozi =1.

=1
For notational simplicity, in this paper , we refer to the OMystem with the optimization given
in (@ as OMA-TYPE-II.

Note that the optimization problems inl (4) and (6) are ajlie to both TDMA and FDMA,
due to the fact that over all user orthogonal time slots therggnconservatiory - | ai% =P
is established in TDMA and the effective noise power becom&§ in FDMA.

By observing the definitions of the three kinds of OMA systeihgs implied that

Ro1 < Rox < Roo.
Therefore, to show the superiority of NOMA compared to OMAe wnly need to prove that
Ry > Ros.

However, to dig out more sophisticated properties of theB8AGystems, OMA-TYPE-I and
OMA-TYPE-II are both considered in this paper. Moreoveffedent mathematical skills need to
be employed to prove the superiority of NOMA compared to ONMAPE-I and OMA-TYPE-II,

respectively.

IIl. OPTIMAL PERFORMANCE ANALYSIS
A. Closed-form Solution of NOMA

The optimum closed-form solution of NOMA is given in Theor@in

Theorem 1. Given P and r*, if

K=1

« ¥ €

Py 2 (e —1)Ny Y <P @)
i=0 -
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then, the optimization problem in (3) is feasible, and the optimal solution can be written as

RN:KT*+ATN, (8)
where
_ (P = Py)|m[?
Ary =1n <1 + W) 9

Proof: Following the idea introduced in [18], we split the total pawnto two parts, 1) the
minimum power for supporting the minimum rate transmissidenoted byP;;, 2) the excess
power, denoted byA Py. Denote the minimum power for maintaining minimum rate srarssion
and the excess power of useby P* and A P;, respectively. The minimum powert’ is defined
as follows. If all users are allocated their minimum powehgen all users will achieve the

minimum rate. Mathematically?’* is defined as

r* =1In (1 + A P?k>. (10)

Then, we have the following equalities.

( K
P,=P/+AP, Py=)Y P

i=1

. (11)
APy =Y AP;, P=P;+APy.
\ i=1
It follows from the definition that the minimum power of eackeun can be given by
* r* N *
P = (e —1)<‘h4T2+ZPj). (12)
¢ j<i

Therefore, we can obtain the following expression for then aower of the minimum power
Pr

‘ K K-1 ir*
* * r* €
PN_ZPZ' = (e —1)N02m~ (13)
i=1 =0
By combining [10) and[{12), the minimum raté& can also be written as

P4 (e —1)) AP,

“—1n(1 It . 14
=t +¢VTT2+Z<PJ+M%>) (14)

i<t
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Then, the rate increment for usecan be calculated as
BBy _ .
— T
g + (P +AP)
1<t

AP = (e = 1)) AP (15)

=1In <1 + 5 J<Z > .
MY Pr4e Y AP,

7<i 7<i

Ari:1n<1+

By defining

2

P = (AP — (¢ — 1)) _AP,)e 0,

Jj<i

we have
P
Ar; = In (1 + 7) (16)
; pPe
Consequently, the optimization problem i (3) can be edentdy written as

K
Kr* Ar;
mgx 7‘—1—2 T

i=1

K
s.t. Z Pf < P — Py, (17)
i=1
P
Ar=m(ie Py
LR
j<i

The solution of [(1I7) is trivial. It is optimal to allocate ale power to uset, i.e., the user with

the strongest channel condition. Thus, the excess rateeatl us

P_p:
Arlzln(1+ N)

nj
P — Py
n (“]L\ﬁz 4 Pl*>€(K—1)r* (18)

(P~ Pi)|mf?
= (1 )
n + NOeKr*
and the excess rates at other users aré.dh other words, the excess sum rate is

P — P;)|h|?
ATN:ArlleI(l—'—%),
0

and the proof is complete. O
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B. Solution of OMA-TYPE-I
The superiority of NOMA compared to OMA-TYPE-I is shown in ddrem(2.
Theorem 2. Given P and r*, if

K
Py & fz h|2_ (19

then, the optimization problem in (4) is feasible, the optimal solution must satisfy

Ro1 < Ry,
and the equality holds only when |h,| = |hs| = ... = |hk].

Proof: Similar as the proof of Theoreh 1, to obtain the solution ef diptimization problem
in (@), the total power is split into two parts, i.e., the nnmim power for supporting minimum
rate transmission, and the excess power.

For user;, it is noted that the minimum powe? should satisfy
iln <1+w> =r.
K Ny

Hence, we can obtain
Ny 1

K |hi?
and the total minimum poweF},, can consequently be written as

N, 1
P* P* Kr* 0
o1 — E i (6 - 1)_K E W
i=1 i=1 v

On the other hand, given usérthe rate increment with excess pow®P; can be calculated

* | K (P + AP)|hyl?
Arizfln<1+ No )—T
1 KAP;|h|?
= —1In (1 )
K No + K PF|hi]?
1 KAP,  |hi|?Ny
=1+ )
K No No+ KP;|h|?
= L (14 KBPy oy
7o + N, |hi|“e
By defining

> & [hiPe™™,
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the rate increment can be simply written as
1 KAP|h|?
Ari= L (14 KADIEY
T K n + N,

Therefore, the optimization problem inl (4) can be transfino the problem as follows:

K
Roq max r+ Z r

i=1

K
S R<P-Py (20)
=1
1 KPi|h;|?
r K n + N,
It is well known that, the optimal solution can be obtainedthg water-filling power allocation

policy [19]. Specifically, the optimal solution can be weitt as

ROlzKT*+AT01, (21)
where ) .
1 K|hi|? No
o= 25 (S )1 > 7).
rol K; (x> wE
. - (22)
Z [ _ &]Jr —p_pr
&= H K|EZ|2 - o1
Here, [z]T £ max(z,0), and 1() denotes the indicator function.
On the other hand, it is noted thatr,; can be alternatively represented as
K _
1 K Pj|h;|?
Arm—mgx ;?1H<1+T0)
. (23)
Y P<P-Py.
=1
By using the Arithmetic Mean-Geometric Mean (AM-GM) inetjtya we have
K —_
1 K P;|h;|?
7 (=5 )
; 7 n|l+ N,
K
KP,|h;|?
=] (1+ | | )
= (24)
K 2
<1 1 Z <1 N KP|h | )
- K i=1
K _
P;|hi|?
=In (1 + Z N )

i=1
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The equality holds when
\hi| = |ha| = ... = |hk]. (25)

By combining [28) and{24), we can obtain

K
Aro; < max In ( Z Bxli‘z)
0

=1
Z P, <P—P}.
=1

The optimal solution of the optimization problem [n126) @ésadllocate all the power to user 1,

(26)

i.e., P, = P — P},. Therefore, we can have

P — P52
Arpy < In (1+< ]\?1)‘ 1 ) 27)
0

Here, we introduce the following basic inequality.

Lemma 1 (Chebyshev’'s Sum Inequalitylet a; > as > ... > ax and by > by > ... > by be

strictly positive numbers. Then
K 1 K K K
Z a;b; > e Z a; Z b; > Z a;ibr 41—
=1 =1 =1 i=1
The two inequalities become equalitieswhen a; = ay = ... = ax Of by = by = ... = bg.

By using Lemmdl, we have

K-1 67;7,,*
Py =(e" —1)Ny E
1=0 K—i
K-1 K-1
1 - 1
< (" —1)Ng— e
K= i=0 [—if? (28)
K
_ Kr* _0
= (6 )K ZZ:; |h,|2
= Pj,.
The equality holds when
r*=0 or |h1| :|h2|::|hK| (29)

By the definition of|A;|?, we have

[P |* = [ [P (30)
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By combining the inequalities il (27) and {28) and equality(30), we can have

_ D*\|h |2

No
P — Py)|h|?
Sln(1+( il 1|>
No (31)
_ (P — Py
=In (1 + Nyekr )
= A’T’N.
It is also worth noting that the first inequality becomes éitpiavhen
|hi| = |ho| = ... = |hK],
and the second inequality becomes equality when
r* =0 or |h1‘:|h2|::‘h[(‘
Therefore, it can be concluded that
Argr < Ary,
and the equality is achieved when
|hi| = |ho| = ... = |hK]|-
The proof of Theorem]2 is complete. ]
C. Solution of OMA-TYPE-II
The superiority of NOMA compared to OMA-TYPE-II is shown irh@oren{B.
Theorem 3. Given P and r*, if
- (eg a
Pi2 min Nyy ————<P 32
02 25{131101::1 0 ; |hl|2 = ) ( )
then, the optimization problem in (@) is feasible. The optimal solution must satisfy
Ro2 < Ry, (33)

and the equality holds only when |h| = |hy| = ... = |hk].

Proof: Again the total power is split into two parts, i.e., the minim power for supporting

minimum rate transmission, and the excess power.
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For useri, it is noted that the minimum powe?* should satisfy

P} |hi)?
o, In + N
Hence, we can obtain )
(eZTi — Doy
P¥—= N,— /"

and the total minimum poweF;, can consequently be written as
K

P5, = min P
Zfil oi=1"—"

eaz—l
= min Ny
i Z TN

(34)

On the other hand, given usérthe rate increment with excess pow®P; can be calculated
as

* . 12
Ar; = a;1In (1—1— (B + AF) |l ) —r*

o; Ny
AP;|h|?
o; Ny + PZ*|hZ|2>
AP; |hi|2aiNO
o; Ny o; Ny + P*\hi\z)
AP

1 hyl? )
+a,N0| |“e”

I
2
=)
/N 7N RS
—
+

By defining
Tf? £ [hie5,
the rate increment can be simply written as

Ari:ailn<1+w>.

a,-NO
Therefore, the optimization problem inl (6) can be transfdno the problem as follows:

Ros = max Kr* —i—ZAn

Q;
i,
=1

(35)
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ConsequentlyRo, can be written as
Rog :KT*+AT02, (36)

where

Arps = max ZAT,

Za’L

s.t. ZP+NOZ eaz|h_|21 <P,

h 2
Anzaﬂn(l—l— | | ),
ozze% ai Ny

(37)

K
Z oy = 1.
i=1

It is worth noting that the optimization problem in_{37) ismoonvex, and finding the a closed-
form expression for its optimum solution or a good upper lbisnvery difficult. For example,
if one uses Jensen’s inequality on the objective functiomwasave done before, it will lead to
meaningless results, which will be explained in the follogui

By using Jensen’s inequality, we have

ZK: 1 (1 " Pz|ﬁz|2>
Q; 11
i=1 ailNo

K A~
Pl hs)?
<l i1+ ———— 38
. (;a ( OZZ'NO )> ( )
K ~
Pl hs|?
—In(1+
n( Zl No )
By combining [37) and[{38), we can obtain
K plh12
Arps < max In <1 + Z PZ]‘\};Z‘ )
- 0
=1 (39)
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The optimal solution of the optimization problem [n {26) esdllocate all the power to user 1,

i.e., P, = P — P},. Therefore, we can have

(P — P&)\hl\z)
No
(P — P52)|h1|2)
e%NO
P — P3,)|h|?
§1n<1+< e"*(;\i‘ | )
Obviously, this upper bound is too loose to be meaningful.

Arps < lIn (1 +

—In (1 + (40)

To derive a tighter upper bound for the optimization problem(37), we introduce the

following Lemma.

Lemma 2 (Upper bound forAry,). The optimal solution of (37) can be upper-bounded by

P— Péz)\h1|2>
€KT*N0 '

Arps <lIn <1+ (

Proof: We can rewriteP; as follows:

aieal Ar.',L-
PZ_NO |hz|2 (6 o _1> (41)
Then, we can obtain
N 1 4+ Ar;
No ; W(e o — Do < P. (42)

By recalling the definition ofP}, in (34), we can have

r'*JrAr,L-

N
. 1 rran
P—Po22NQ E —|h|2(6 “i —1)OéZ
= (43)

K L
=1 =1

N
. 1 *
— min NO E W(eai — 1)0{2
i=1 '
Denote

1 1 .
TE = T +Ag;, 1=2,3,.., K.
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The right hand of[{43) can be further lower-bounded by

K
1 r'*JrArL
N, e * —1)a; — mln N, —1aZ
0; |7 ) K =1 OZ |h |2
K
NO r +Ar r +Ar
S et 2 Ll
=1
min (NO i(eL Do, + N, ig(erx_*- 1)04)
- i = i 0 ilei — i
K a=1 NP = pa (44)
K
r +AT1 NO i
|h1|22 ai |h1|2 mlan 12(6(“—1)%-
Ding ai= i=1
> -0 (¢ T+Zi:1AT’1_1 _ eKT’ -1
> )= (e - 1)
N, X
| (|)2€KT (XFrar 1),
1

where the last inequality holds because of Jensen’s ingual the convex functionf(z) =
e* — 1. Consequently, by combining_(43) arid (44), we finally obtiiat

N *
TAE (|)2 KT (X518 1) < P — P, (45)
1
Therefore, we have
K
(P — Poy) |l
o= 3 Ari < n (14—t (46)
and Lemma[R is proved. O

To prove Theorerh]3, we also need another lemma given nexta@cterize the lower bound
of Pj,.

Lemma 3 (Lower bound forP,). The lower bound of Py, is Py, i.e,
Py, > Py

Proof: By recalling the definition ofP;, and P}, in Theoremg 1l anfll3, it is noticed that

Py, can also be written as follows:

eaz - Da
PS5, = min N
02 Zz =1 Z ‘h ‘2

. eaz—l
= e NOZ h2

i <1
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the second inequality holds since the objective functiomisimized only wheny .~ «; = 1

holds (complementary slackness). We only need to provethieatollowing inequality
K

=~ K—-1
(e —1)ay - e
No E T > (e" —1)Ny E T (47)
i=1 i=0

holds for all «; satisfyinngi1 a; < 1. This inequality can also be simplified as follows:

L i, (48)
To prove [48), we first introduce the following lemma.

Lemma 4. Given 0 < ¢; < ¢5 < ... < ¢, if Zfij a; > Zfij b; holds for j = 1,2, ..., K, then,

we can have
K K
Z C;a; Z Z Clbl
=1 =1

Proof: We first define a non-negative sequenge j =1,2,3,..., K as follows:
j—1
dlzcl, dj:Cj_Zdiu j:2,3,,K
=1
Since} [ a; > Y it b; holds forj = 1,2, ..., K, we have the followingk™ inequalities.
(

CL1+CL2—|—...+CLKZbl—l—bg—'—...—l—b[(

a2—|—...—i—aK 2 b2+—|—bK
(49)

(057¢ Z bK
\

By multiplying d;,7 = 1,2, ..., K with the K inequalities in [(4P) respectively and adding them

together, we can have
K K
Z Cil; > Z cibi,
=1 =1

and Lemmad}4 is proved. O
By defining

(50)
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we can easily check that

Z a; > Z b;

i=J =]
holds foeril a; < 1. Therefore, by taking advantage of Lemfla[4,] (48) can be méddaiand
Lemmal3 is proved. O

By combining Lemmasg]2 ard 3, we can finally conclude that

(P_Pf:f)|h1|2>’

1
S (51)

Arps <lIn (1 +

and the proof is completed. O

D. Major Results

The major analytical results of this paper can be summaiizede following.

(1) To support reliable data transmission with minimum redestraint, the required minimum
powers of NOMA, OMA-TYPE-I, and OMA-TYPE-II can be writtersdollows.

( K-1 oir”
Py = (" _1)N()Z|h ‘2,
1=0 K—i
. N, 1
P AL ( Kr -1 Y
o1 (6 )K ; ‘hiP’ (52)
K Fa
(e*i —1)ay
PS5, = min N,
02 K au=1 ; |hz|2

(2) The relationship of the required minimum powers of NOMAMA-TYPE-I, and OMA-
TYPE-II are
Py < Foy < Poy.- (53)

(3) The closed-form expression for the optimum sum rate oMM¥Csystems can be written as

P — P})|h|?
0

(4) The optimum sum rates of NOMA, OMA-TYPE-I, and OMA-TYREhave the following
relationship
Ry > Ro2 > Rox. (55)
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[V. SIMULATION RESULTS

In this section, computer simulations are conducted talagdi the correctness of the analytical
results. The signal-to-noise ratio (SNR) is definedS&X = 10 log Nio. Simulation results in
this section are given for both deterministic channels aagléigh fading channels. Particularly,
numerical examples based on deterministic channels aen diust to validate our analytical
conclusions and then the results based on Rayleigh fadiagnethls are given to offer more
insights about the differences among NOMA, OMA-TYPE-I anMl®TYPE-II systems.

A. Deterministic Channels

Since the mathematical analysis in this paper is based arndigtistic channels, we first

validate our analytical results by the following numeri¢alestigations with fixed channel

realizations.
108 T T T T T T T T
106 L
b}
=
(@]
a
4L
g 10
£
£
=
3 1021
= — © — NOMA
o 2 d —%— OMA-TYPE-|
x & OMA-TYPE-II
10° T
10-2 1 1 1 1 1 1 1 1

0.5 1 15 2 2.5 3 3.5 4 4.5 5

Fig. 1: Required minimum power versus for K = 3 users, with(hy, hs, hg) = (10,5, 1).

Figs.[1 andR show the required minimum power versus thettexijgmum rater* for different

transmission schemes given specified channel realizatibms required minimum power for
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Fig. 2: Required minimum power versus for K = 3 users, with(hy, he, h3) = (1,1,1).

NOMA, OMA-TYPE-I and OMA-TYPE-II is obtained by the analgtl results in[(52). In Fig.
[, the channel coefficients are fixed to be, ho, h3) = (10,5,1), and in Fig.[2, the channel
coefficients are fixed to be identical, i.€h;, ho, h3) = (1,1, 1). By observing these two figures,
we have the following comments.

1) All the required minimum power of the three systems, if&;, P}, P, increases expo-
nentially as the target minimum rate, i.e*, increases.

2) When the channel coefficients are not the same, the regmieimum power of OMA-
TYPE-Il is smaller than that of OMA-TYPE-I, while the reqgad minimum power of
NOMA is smaller than that of OMA-TYPE-II. Note that these ebstions are consistent
with our analytical results i (53).

3) When the channel coefficients are identical, all the thkieds of required minimum power

become the same.

Figs[3 and 4 show the sum rates versus SNR for differentrtrensson schemes given specified
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Fig. 3: Sum rates versus SNR, witti = 3, and (hy, hs, hg,r*) = (10,5,1,1)

channel realizations. The optimum sum rates for NOMA-Nuoa¢r OMA-TYPE-I, and OMA-
TYPE-II are obtained by solving the optimization problemdq3), (4) and[(b), respectively. The
optimum sum rates for NOMA-Analytical are attained by thalgtical closed-form expression
in (84). In Fig.[3, the channel coefficients are fixed to(be h2, h3) = (10,5,1), and in Fig[4,
the channel coefficients are fixed to be identical, it8y, ho, h3) = (1,1,1). For both channel
setups, we set* = 1. By observing these figures, we have the following comments.
1) The numerical and analytical results for NOMA match petiie
2) When the channel coefficients are not the same, the susiadb@MA-TYPE-II are always
larger than those of OMA-TYPE-I, while the sum rates of NOM#& always larger than
those of OMA-TYPE-II. Note that these observations are atstsistent with our analytical
results in [(Gb).
3) When the channel coefficients are identical, all the thkiees of sum rates become the

same.
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Fig. 4: Sum rates versus SNR, witti = 3, and (hy, ha, hg,r*) = (1,1,1,1)

B. Rayleigh Fading Channels

With randomly generated wireless channels, e.g., Rayl&agding channels, herein, we in-
troduce two performance evaluation metrics, e.g., outagbgbility and ergodic sum rate, to
evaluate and compare the performance of NOMA, OMA-TYPEd @MA-TYPE-II.

Recall that a system is in outage if there exists one user &hoat receive its own messages
with the given target minimum rate* for all the possible resource allocation, i.e., the corre-
sponding optimization problem is infeasible. Mathemalycéhe outage probabilities of NOMA,
OMA-TYPE-I and OMA-TYPE-II can be written as

Pr{P; > P}, Pr{P;, > P}, Pr{P;,> P}

respectively, and this criterion will be used in Figs. 5 and 6

In Figs. 7 and 8, we will use the ergodic sum rate as the aniteio evaluate the performance
of NOMA, OMA-TYPE-I and OMA-TYPE-II. These ergodic sum ratean be defined as in the
following. Without loss of generality, take NOMA system as example. Denot& (h) by the
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instantaneous optimum sum rate achieved by NOMA Bfyth) by the required minimum power
of NOMA given a specific channel realizatidn= [hy, ho, ..., hx|T. Note that the instantaneous
optimum sum rate reduces to zero if the optimization problan{3) is infeasible, i.e., the
system is in outage. Therefore, the instantaneous optimumrate achieved by NOMA can be

mathematically expressed as follows:

Ry if Py(h) <P,
Ry(h) =
0 Otherwise,

where Ry and Py (h) are defined in[(82) and_(b4), respectively. With such a défimiof the
instantaneous optimum sum rate, the ergodic sum rate of N@viefined as the expectation
of Rx(h) with respect to independent and identically distributedd() Rayleigh fadingh;'s .
Note that the ergodic sum rates of OMA-TYPE-I and OMA-TYREdn be defined similarly.

10°
P
3
©
o]
e
a 101f
q) L
(@)]
8
=)
O
- — © — NOMA
—%— OMA-TYPE-I
—<&— OMA-TYPE-II
10-2 1 1 1 1 1 1 1 1
11 12 13 14 15 16 17 18 19 20

SNR

Fig. 5: Outage Probability versus SNR, with = 3,r* =1

In Figs.[B andB, given a fixed target minimum rate= 1, the outage performance versus the

SNR for different transmission schemes under Rayleigmtadhannels are plotted with = 3
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Fig. 6: Outage Probability versus SNR, with = 5,r* =1

and K = 5, respectively. Since our analytical results show that< P}, < Pp,, we can infer
that
Pr{P;, > P} < Pr{P}, > P} < Pr{P}, > P}.

This conclusion is confirmed by both Fi¢$. 5 ddd 6. Parti¢ylan Fig.[5, OMA-TYPE-II yields
about a gain of 1.5dB over OMA-TYPE-I, and NOMA has about angzfi 2.5dB over OMA-
TYPE-II at Pr = 10~%. Moreover, by comparing Figl 5 with Fifl 6, it is also obsehthat the
outage probability gain by NOMA becomes larger when the nemd$ users increases.

In Figs.[7 and_B, the ergodic sum rate performance versus SMRlifferent transmission
schemes under Rayleigh fading channels are plotted Witk 3,7* = 1 and K = 6,7* = 2,
respectively. By observing these figures, we have the faigueomments.

1) The ergodic sum rate of NOMA is always larger than that of ®WMYPE-Il, and the

ergodic sum rate of OMA-TYPE-II is always larger than thatQ¥1A-TYPE-I.
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Fig. 7: Ergodic Sum Rates versus SNR, with=3,7* =1

2) When the transmission power is large enough with resgetite target minimum rate*,
l.e., the outage probabilities for all the three systemsl tenzero, the ergodic sum rate
increases linearly with SNR. For example, in Higj. 7, NOMA lé®ut a gain of 0.3 nats
per channel use (NPCU) over OMA-TYPE-II, and OMA-TYPE-lIshabout a gain of 0.7
NPCU over OMA-TYPE-I, for all the SNRs.

3) When the transmission power is not large enough with #dpethe target minimum rate
r*, i.e., a system may be in outage, both OMA-TYPE-I and OMA-EYIP may suffer a
significant performance loss compared to NOMA in the low SKBime. For example, in
Fig. [8, whenSNR = 46dB, the ergodic sum rates of OMA-TYPE-I and OMA-TYPE-II
decease to nearly zero, while the ergodic sum rate of NOMAbeastill maintained over
5 NPCU.
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Fig. 8: Ergodic Sum Rates versus SNR, with= 6, 7* = 2

V. CONCLUSION

In this paper, we have mathematically compared the optimumrate performance for NOMA
and OMA systems, with consideration of user fairness. ligjrthe closed-form optimum sum
rate and the corresponding power allocation policy for NOBl)stems have been derived, by
using the power splitting method. Secondly, the fact thaM¥Ccan always achieve better sum
rate performance than that of traditional OMA-TYPE-I withtnum power allocation but equal
user time/frequency allocation has been revealed, by aaugomathematical proof. Thirdly, we
have proved that NOMA can also outperform OMA-TYPE-II witbwer and time/frequency
allocation jointly optimized in terms of sum rate performmanMoreover, the major analytical
results have been extracted from those mathematical préwfally, computer simulations have
been conducted to validate the correctness of these aralyéisults and show the advantages

of NOMA over OMA in practical Rayleigh fading channels.
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