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Abstract

While existing works about non-orthogonal multiple access(NOMA) have indicated that NOMA can

yield a significant performance gain over orthogonal multiple access (OMA) with fixed resource alloca-

tion, it is not clear whether such a performance gain will diminish when optimal resource (Time/Frequency/Power)

allocation is carried out. In this paper, the performance comparison between NOMA and conventional

OMA systems is investigated, from an optimization point of view. Firstly, by using the idea of power

splitting, a closed-form expression for the optimum sum rate of NOMA systems is derived. Then,

with rigorous mathematical proofs, we reveal the fact that NOMA can always outperform conventional

OMA systems, even if both are equipped with the optimal resource allocation policies. Finally, computer

simulations are conducted to validate the accuracy of the analytical results.
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I. INTRODUCTION

Recently, non-orthogonal multiple access (NOMA) has received extensive research interests

due to its superior spectral efficiency compared to conventional orthogonal multiple access

(OMA) [1]–[3]. For example, NOMA has been proposed to downlink scenarios in 3rd generation

partnership project long-term evolution (3GPP-LTE) systems [4]. Moreover, NOMA has also

been anticipated as a promising multiple access technique for the next generation cellular

communication networks [5], [6].

Conventional multiple access techniques for cellular communications, such as frequency-

division multiple access (FDMA) for the first generation (1G), time-division multiple access

(TDMA) for the second generation (2G), code-division multiple access (CDMA) used by both 2G

and the third generation (3G), and orthogonal frequency division multiple access (OFDMA) for

4G, can all be categorized as OMA techniques, where different users are allocated to orthogonal

resources, e.g., time, frequency, or code domain to avoid multiple access interference. However,

these OMA techniques are far from the optimality, since thatthe spectrum resource allocated to

the user with poor channel conditions cannot be efficiently used.

To tackle this issue and further improve spectrum efficiency, the concept of NOMA is proposed.

The implementation of NOMA is based on the combination of superposition coding (SC) at the

base station (BS) and successive interference cancellation (SIC) at users [1], which can achieve

the optimum performance for degraded broadcast channels [7], [8]. Specifically, take a two-user

single-input single-output (SISO) NOMA system as an example. The BS serves the users at

the same time/code/frequency channel, where the signals are superposed with different power

allocation coefficients. At the user side, the far user (i.e., the user with poor channel conditions)

decodes its message by treating the other’s message as noise, while the near user (i.e., the user

with strong channel conditions) first decodes the message ofits partner and then decodes its

own message by removing partner’s message from its observation. In this way, both users can

have full access to all the resource blocks (RBs), moreover,the near user can decode its own

information without any interference from the far user. Therefore, the overall performance is

enhanced, compared to conventional OMA techniques.

A. Related Literature

As a promising multiple access technique, NOMA and its variants have attracted considerable

research interests recently. The authors in [1] firstly presented the concept of NOMA for cellular
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future radio access, and pointed out that NOMA can achieve higher spectral efficiency and

better user fairness than conventional OMA. In [2], the performance of NOMA in a cellular

downlink scenario with randomly deployed users was investigated, which reveals that NOMA

can achieve superior performance in terms of ergodic sum rates. In [9], a cooperative NOMA

scheme was proposed by fully exploiting prior information at the users with strong channels about

the messages of the users with weak channels. The impact of user pairing on the performance

of NOMA systems was characterized in [10]. In [11], a new evaluation criterion was developed

to investigate the performance of NOMA, which shows that NOMA can outperform OMA in

terms of the sum rate, from an information-theoretic point of view.

To further improve spectral efficiency, the combination of NOMA and multiple-input multiple-

output (MIMO) techniques, namely MIMO-NOMA, has also been extensively investigated. In

[12], a new design of precoding and detection matrices for MIMO-NOMA was proposed. A novel

MIMO-NOMA framework for downlink and uplink transmission was proposed by applying the

concept of signal alignment in [13]. To characterize the performance gap between MISO-NOMA

and optimal dirty paper coding (DPC), a novel concept termedquasi-degradation for multiple-

input single-output (MISO) NOMA downlink was introduced in[14]. Then, the theoretical

framework of quasi-degradation was fully established in [15], including the mathematical proof

of the properties, necessary and sufficient condition, and occurrence probability. Consequently,

practical algorithms for multi-user downlink MISO-NOMA systems were proposed in [16], by

taking advantage of the concept of quasi-degradation. Lately, to optimize the overall bit error

ratio (BER) performance of MIMO-NOMA downlink, an interesting transmission scheme based

on minimum Euclidean distance (MED) was proposed in [17].

B. Contributions

While existing works about NOMA have indicated that NOMA canyield a significant perfor-

mance gain over OMA with fixed resource allocation, it is not clear whether such a performance

gain will diminish when optimal resource allocation is carried out. In this paper, the performance

comparison between NOMA and OMA is evaluated, from an optimization point of view, where

optimal resource allocation is carried out to both multipleaccess schemes. In this paper, two

kinds of OMA systems are considered, i.e., OMA-TYPE-I and OMA-TYPE-II, which represent,

respectively, OMA systems with optimum power allocation and fixed time/frequency allocation,
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and OMA systems with both optimum power and time/frequency allocation. The contributions

of this paper can be summarized as follows.

1) The optimization problems for both NOMA and OMA systems are formulated, with con-

sideration of user fairness. Particularly, more sophisticated OMA systems with joint power

and time/frequency optimized are also considered.

2) The closed-form expression of the optimum sum rate for NOMA systems is given, by taking

advantage of the power splitting method.

3) By introducing the minimum required power for different systems, it is pointed out that the

minimum required power of NOMA is always smaller than that ofboth OMA-TYPE-I and

OMA-TYPE-II systems.

4) It is revealed that the optimum sum rate of NOMA systems is always larger than that of

both OMA-TYPE-I and OMA-TYPE-II systems, with various userfairness considerations,

by rigorous mathematical proofs.

C. Organization

The remainder of this paper is organized as follows. SectionII briefly describes the system

model and the problem formulation. Section III provides theoptimal power allocation policies

as well as their performance comparison. Simulation results are given in Section IV, and Section

V summarizes this paper.

II. PROBLEM FORMULATION

Consider a downlink communication system with one BS andK users, where the BS and all

the users are equipped with a single antenna. By using NOMA transmission, the received signal

at useri is

y = hix+ ni, i = 1, 2, ..., K, (1)

wherehi denotes the channel coefficient, andni ∼ CN (0, N0) is the additive white Gaussian

noise (AWGN) at useri. x =
∑K

i=1

√
Pisi is the superposition ofsi’s with power allocation

policy P = {(P1, P2, ..., PK)|
∑K

i=1 Pi = P}, si represents the data intended to convey to user

i, Pi denotes the power allocated to useri, andP denotes the total power constraint. For ease

of analysis, we assume that|h1| ≥ |h2| ≥ ... ≥ |hK | and the total bandwidth is normalized to

unity in this paper.
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In consideration of user fairness, herein, we introduce theminimum rate constraintr∗. Math-

ematically, the power allocation policy should guarantee the following constraint:

min
i

ri ≥ r∗,

whereri is the achievable rate of useri in nats/second/Hz, which is given by

ri = ln
(

1 +
Pi|hi|2

N0 + |hi|2
∑i−1

j=1 Pj

)

. (2)

For the special case ofi = 1, the summation in the denominator becomes0, and the corresponding

rate becomes

r1 = ln
(

1 +
Pi|hi|2
N0

)

.

Note thatri is achievable since the channels are ordered and the user with strong channels can

decode those messages sent to the users with weaker channels.

Therefore, the optimization problem of maximizing the total sum rate with the user fairness

constraint for NOMA systems can be formulated as follows:

RN , max
Pi

K
∑

i=1

ri

s.t. ri = ln
(

1 +
Pi|hi|2

N0 + |hi|2
∑i−1

j=1 Pj

)

,

K
∑

i=1

Pi ≤ P,

min
i

ri ≥ r∗.

(3)

In traditional OMA systems, e.g., frequency division multiple access (FDMA) or time division

multiple access (TDMA), time/frequency resource allocation is non-adaptively fixed, i.e., each

user is allocated with a fixed sub-channel. For notational simplicity, we refer to this type of OMA

as OMA-TYPE-I in this paper. Consequently, to optimize the power allocations, the optimization
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problem of OMA-TYPE-I assuming equal resource (time or frequency) allocation to all users

can be formulated as follows:

RO1 , max
Pi

K
∑

i=1

ri

s.t. ri =
1

K
ln
(

1 +
KPi|hi|2

N0

)

,

K
∑

i=1

Pi ≤ P,

min
i

ri ≥ r∗.

(4)

Since the sub-channel allocations among users are not optimized, some users may suffer from

poor channel conditions due to large path loss and random fading. Thus, the optimization problem

for jointly designing power and sub-channel allocations isconsidered next. Specifically, the total

time/frequency is divided intoN sub-channels to be orthogonally shared byK users, and this

optimization problem can be formulated as follows:

ROX , max
Pi,n,Si

K
∑

i=1

∑

n∈Si

ri,n

s.t. ri,n =
1

N
ln
(

1 +
Pi,n|hi,n|2
N0

1
N

)

,

N
∑

n=1

K
∑

i=1

Pi,n ≤ P,

Pi,n ≥ 0, ∀i, n
∑

n∈Si

ri,n ≥ r∗,

S1, S2, ..., SK are disjoint,

S1 ∪ S2 ∪ ... ∪ SK = {1, 2, ..., N},

(5)

wherePi,n andhi,n are the power allocated to and the channel coefficient of useri’s sub-channel

n, respectively.Si is the set of indices of sub-channels assigned to useri.

Note that the optimization problem in (5) is not a convex problem. Fortunately, it is observed

that it can be upper-bounded by the following optimization problem by replacing the discrete



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. X, OCT.2016 7

time/frequency allocation with a continuous one as follows:

RO2 , max
Pi,αi

K
∑

i=1

ri

s.t. ri = αi ln
(

1 +
Pi|hi|2
αiN0

)

,

K
∑

i=1

Pi ≤ P,

min
i

ri ≥ r∗,

K
∑

i=1

αi = 1.

(6)

For notational simplicity, in this paper , we refer to the OMAsystem with the optimization given

in (6) as OMA-TYPE-II.

Note that the optimization problems in (4) and (6) are applicable to both TDMA and FDMA,

due to the fact that over all user orthogonal time slots the energy conservation
∑K

i=1 αi
Pi

αi
= P

is established in TDMA and the effective noise power becomesαN0 in FDMA.

By observing the definitions of the three kinds of OMA systems, it is implied that

RO1 ≤ ROX ≤ RO2.

Therefore, to show the superiority of NOMA compared to OMA, we only need to prove that

RN ≥ RO2.

However, to dig out more sophisticated properties of these OMA systems, OMA-TYPE-I and

OMA-TYPE-II are both considered in this paper. Moreover, different mathematical skills need to

be employed to prove the superiority of NOMA compared to OMA-TYPE-I and OMA-TYPE-II,

respectively.

III. OPTIMAL PERFORMANCE ANALYSIS

A. Closed-form Solution of NOMA

The optimum closed-form solution of NOMA is given in Theorem1.

Theorem 1. Given P and r∗, if

P ∗
N , (er

∗ − 1)N0

K−1
∑

i=0

eir
∗

|hK−i|2
≤ P, (7)
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then, the optimization problem in (3) is feasible, and the optimal solution can be written as

RN = Kr∗ +∆rN , (8)

where

∆rN = ln
(

1 +
(P − P ∗

N)|h1|2
N0eKr∗

)

. (9)

Proof: Following the idea introduced in [18], we split the total power into two parts, 1) the

minimum power for supporting the minimum rate transmission, denoted byP ∗
N , 2) the excess

power, denoted by∆PN . Denote the minimum power for maintaining minimum rate transmission

and the excess power of useri by P ∗
i and∆Pi, respectively. The minimum powerP ∗

i is defined

as follows. If all users are allocated their minimum powers,then all users will achieve the

minimum rate. Mathematically,P ∗
i is defined as

r∗ = ln
(

1 +
P ∗
i

N0

|hi|2
+
∑

j<i

P ∗
j

)

. (10)

Then, we have the following equalities.


























Pi = P ∗
i +∆Pi, P ∗

N =
K
∑

i=1

P ∗
i ,

∆PN =

K
∑

i=1

∆P ∗
i , P = P ∗

N +∆PN .

(11)

It follows from the definition that the minimum power of each user can be given by

P ∗
i = (er

∗ − 1)
( N0

|hi|2
+
∑

j<i

P ∗
j

)

. (12)

Therefore, we can obtain the following expression for the sum power of the minimum power

P ∗
i

P ∗
N =

K
∑

i=1

P ∗
i = (er

∗ − 1)N0

K−1
∑

i=0

eir
∗

|hK−i|2
. (13)

By combining (10) and (12), the minimum rater∗ can also be written as

r∗ = ln
(

1 +

P ∗
i + (er

∗ − 1)
∑

j<i

∆Pj

N0

|hi|2
+
∑

j<i

(P ∗
j +∆Pj)

)

. (14)
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Then, the rate increment for useri can be calculated as

∆ri = ln
(

1 +
P ∗
i +∆Pi

N0

|hi|2
+
∑

j<i

(P ∗
j +∆Pj)

)

− r∗

= ln

(

1 +

∆Pi − (er
∗ − 1)

∑

j<i

∆Pj

N0

|hi|2
+
∑

j≤i

P ∗
j + er

∗

∑

j<i

∆Pj

)

.

(15)

By defining


















P e
i =

(

∆Pi − (er
∗ − 1)

∑

j<i

∆Pj

)

e(K−i)r∗ ,

ne
i =

( N0

|hi|2
+
∑

j≤i

P ∗
j

)

e(K−i)r∗ ,

we have

∆ri = ln
(

1 +
P e
i

ne
i +
∑

j<i

P e
j

)

. (16)

Consequently, the optimization problem in (3) can be equivalently written as

max
P

Kr∗ +

K
∑

i=1

∆ri

s.t.
K
∑

i=1

P e
i ≤ P − P ∗

N ,

∆ri = ln
(

1 +
P e
i

ne
i +
∑

j<i

P e
j

)

.

(17)

The solution of (17) is trivial. It is optimal to allocate allthe power to user1, i.e., the user with

the strongest channel condition. Thus, the excess rate at user 1 is

∆r1 = ln
(

1 +
P − P ∗

N

ne
1

)

= ln
(

1 +
P − P ∗

N

( N0

|h1|2
+ P ∗

1 )e
(K−1)r∗

)

= ln
(

1 +
(P − P ∗

N)|h1|2
N0eKr∗

)

,

(18)

and the excess rates at other users are all0. In other words, the excess sum rate is

∆rN = ∆r1 = ln
(

1 +
(P − P ∗

N)|h1|2
N0eKr∗

)

,

and the proof is complete.
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B. Solution of OMA-TYPE-I

The superiority of NOMA compared to OMA-TYPE-I is shown in Theorem 2.

Theorem 2. Given P and r∗, if

P ∗
O1 , (eKr∗ − 1)

N0

K

K
∑

i=1

1

|hi|2
≤ P, (19)

then, the optimization problem in (4) is feasible, the optimal solution must satisfy

RO1 ≤ RN ,

and the equality holds only when |h1| = |h2| = ... = |hK |.

Proof: Similar as the proof of Theorem 1, to obtain the solution of the optimization problem

in (4), the total power is split into two parts, i.e., the minimum power for supporting minimum

rate transmission, and the excess power.

For useri, it is noted that the minimum powerP ∗
i should satisfy

1

K
ln
(

1 +
KP ∗

i |hi|2
N0

)

= r∗.

Hence, we can obtain

P ∗
i = (eKr∗ − 1)

N0

K

1

|hi|2
,

and the total minimum powerP ∗
O1 can consequently be written as

P ∗
O1 =

K
∑

i=1

P ∗
i = (eKr∗ − 1)

N0

K

K
∑

i=1

1

|hi|2
.

On the other hand, given useri, the rate increment with excess power∆Pi can be calculated

as

∆ri =
1

K
ln
(

1 +
K(P ∗

i +∆Pi)|hi|2
N0

)

− r∗

=
1

K
ln
(

1 +
K∆Pi|hi|2

N0 +KP ∗
i |hi|2

)

=
1

K
ln
(

1 +
K∆Pi

N0

|hi|2N0

N0 +KP ∗
i |hi|2

)

=
1

K
ln
(

1 +
K∆Pi

N0
|hi|2e−Kr∗

)

.

By defining

|h̄i|2 , |hi|2e−Kr∗,
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the rate increment can be simply written as

∆ri =
1

K
ln
(

1 +
K∆Pi|h̄i|2

N0

)

.

Therefore, the optimization problem in (4) can be transformed to the problem as follows:

RO1 = max
P

Kr∗ +

K
∑

i=1

∆ri

s.t.
K
∑

i=1

Pi ≤ P − P ∗
O1,

∆ri =
1

K
ln
(

1 +
KPi|h̄i|2

N0

)

.

(20)

It is well known that, the optimal solution can be obtained bythe water-filling power allocation

policy [19]. Specifically, the optimal solution can be written as

RO1 = Kr∗ +∆rO1, (21)

where 

























∆rO1 =
1

K

K
∑

i=1

ln
(K|h̄i|2

N0

µ
)

1

(

µ >
N0

K|h̄i|2
)

,

K
∑

i=1

[

µ− N0

K|h̄i|2
]+

= P − P ∗
O1.

(22)

Here, [x]+ , max(x, 0), and1() denotes the indicator function.

On the other hand, it is noted that∆rO1 can be alternatively represented as

∆rO1 = max
P

K
∑

i=1

1

K
ln
(

1 +
KPi|h̄i|2

N0

)

s.t.

K
∑

i=1

Pi ≤ P − P ∗
O1.

(23)

By using the Arithmetic Mean-Geometric Mean (AM-GM) inequality, we have
K
∑

i=1

1

K
ln
(

1 +
KPi|h̄i|2

N0

)

= ln

K
∏

i=1

(

1 +
KPi|h̄i|2

N0

)
1
K

≤ ln
1

K

K
∑

i=1

(

1 +
KPi|h̄i|2

N0

)

= ln
(

1 +

K
∑

i=1

Pi|h̄i|2
N0

)

.

(24)
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The equality holds when

|h̄1| = |h̄2| = ... = |h̄K |. (25)

By combining (23) and (24), we can obtain

∆rO1 ≤ max
P

ln
(

1 +
K
∑

i=1

Pi|h̄i|2
N0

)

s.t.

K
∑

i=1

Pi ≤ P − P ∗
O1.

(26)

The optimal solution of the optimization problem in (26) is to allocate all the power to user 1,

i.e., P1 = P − P ∗
O1. Therefore, we can have

∆rO1 ≤ ln
(

1 +
(P − P ∗

O1)|h̄1|2
N0

)

. (27)

Here, we introduce the following basic inequality.

Lemma 1 (Chebyshev’s Sum Inequality). Let a1 ≥ a2 ≥ ... ≥ aK and b1 ≥ b2 ≥ ... ≥ bK be

strictly positive numbers. Then

K
∑

i=1

aibi ≥
1

K

K
∑

i=1

ai

K
∑

i=1

bi ≥
K
∑

i=1

aibK+1−i.

The two inequalities become equalities when a1 = a2 = ... = aK or b1 = b2 = ... = bK .

By using Lemma 1, we have

P ∗
N = (er

∗ − 1)N0

K−1
∑

i=0

eir
∗

|hK−i|2

≤ (er
∗ − 1)N0

1

K

K−1
∑

i=0

eir
∗

K−1
∑

i=0

1

|hK−i|2

= (eKr∗ − 1)
N0

K

K
∑

i=1

1

|hi|2

= P ∗
O1.

(28)

The equality holds when

r∗ = 0 or |h1| = |h2| = ... = |hK |. (29)

By the definition of|h̄i|2, we have

|h̄1|2 = |h1|2e−Kr∗ . (30)
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By combining the inequalities in (27) and (28) and equality in (30), we can have

∆rO1 ≤ ln
(

1 +
(P − P ∗

O)|h̄1|2
N0

)

≤ ln
(

1 +
(P − P ∗

N)|h̄1|2
N0

)

= ln
(

1 +
(P − P ∗

N )|h1|2
N0eKr∗

)

= ∆rN .

(31)

It is also worth noting that the first inequality becomes equality when

|h1| = |h2| = ... = |hK |,

and the second inequality becomes equality when

r∗ = 0 or |h1| = |h2| = ... = |hK |.

Therefore, it can be concluded that

∆rO1 ≤ ∆rN ,

and the equality is achieved when

|h1| = |h2| = ... = |hK |.

The proof of Theorem 2 is complete.

C. Solution of OMA-TYPE-II

The superiority of NOMA compared to OMA-TYPE-II is shown in Theorem 3.

Theorem 3. Given P and r∗, if

P ∗
O2 , min∑K

i=1 αi=1
N0

K
∑

i=1

(e
r∗

αi − 1)αi

|hi|2
≤ P, (32)

then, the optimization problem in (6) is feasible. The optimal solution must satisfy

RO2 ≤ RN , (33)

and the equality holds only when |h1| = |h2| = ... = |hK |.

Proof: Again the total power is split into two parts, i.e., the minimum power for supporting

minimum rate transmission, and the excess power.
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For useri, it is noted that the minimum powerP ∗
i should satisfy

αi ln
(

1 +
P ∗
i |hi|2
αiN0

)

= r∗.

Hence, we can obtain

P ∗
i = N0

(e
r∗

αi − 1)αi

|hi|2
,

and the total minimum powerP ∗
O2 can consequently be written as

P ∗
O2 = min∑K

i=1 αi=1

K
∑

i=1

P ∗
i

= min∑K
i=1 αi=1

N0

K
∑

i=1

(e
r∗

αi − 1)αi

|hi|2
.

(34)

On the other hand, given useri, the rate increment with excess power∆Pi can be calculated

as

∆ri = αi ln
(

1 +
(P ∗

i +∆Pi)|hi|2
αiN0

)

− r∗

= αi ln
(

1 +
∆Pi|hi|2

αiN0 + P ∗
i |hi|2

)

= αi ln
(

1 +
∆Pi

αiN0

|hi|2αiN0

αiN0 + P ∗
i |hi|2

)

= αi ln
(

1 +
∆Pi

αiN0
|hi|2e−

r∗

αi

)

.

By defining

|ĥi|2 , |hi|2e−
r∗

αi ,

the rate increment can be simply written as

∆ri = αi ln
(

1 +
∆Pi|ĥi|2
αiN0

)

.

Therefore, the optimization problem in (6) can be transformed to the problem as follows:

RO2 = max
Pi,αi

Kr∗ +
K
∑

i=1

∆ri

s.t.

K
∑

i=1

Pi +

K
∑

i=1

P ∗
i ≤ P,

∆ri = αi ln
(

1 +
Pi|ĥi|2
αiN0

)

,

K
∑

i=1

αi = 1.

(35)
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Consequently,RO2 can be written as

RO2 = Kr∗ +∆rO2, (36)

where

∆rO2 = max
Pi,αi

K
∑

i=1

∆ri

s.t.

K
∑

i=1

Pi +N0

K
∑

i=1

(e
r∗

αi − 1)αi

|hi|2
≤ P,

∆ri = αi ln
(

1 +
Pi|hi|2

αie
r∗

αi N0

)

,

K
∑

i=1

αi = 1.

(37)

It is worth noting that the optimization problem in (37) is non-convex, and finding the a closed-

form expression for its optimum solution or a good upper bound is very difficult. For example,

if one uses Jensen’s inequality on the objective function aswe have done before, it will lead to

meaningless results, which will be explained in the following.

By using Jensen’s inequality, we have

K
∑

i=1

αi ln
(

1 +
Pi|ĥi|2
αiN0

)

≤ ln
(

K
∑

i=1

αi

(

1 +
Pi|ĥi|2
αiN0

)

)

= ln
(

1 +

K
∑

i=1

Pi|ĥi|2
N0

)

.

(38)

By combining (37) and (38), we can obtain

∆rO2 ≤ max
P

ln
(

1 +

K
∑

i=1

Pi|ĥi|2
N0

)

s.t.
K
∑

i=1

Pi ≤ P − P ∗
O2.

(39)
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The optimal solution of the optimization problem in (26) is to allocate all the power to user 1,

i.e., P1 = P − P ∗
O2. Therefore, we can have

∆rO2 ≤ ln
(

1 +
(P − P ∗

O2)|ĥ1|2
N0

)

= ln
(

1 +
(P − P ∗

O2)|h1|2

e
r∗

αiN0

)

≤ ln
(

1 +
(P − P ∗

O2)|h1|2
er

∗

N0

)

.

(40)

Obviously, this upper bound is too loose to be meaningful.

To derive a tighter upper bound for the optimization problemin (37), we introduce the

following Lemma.

Lemma 2 (Upper bound for∆rO2). The optimal solution of (37) can be upper-bounded by

∆rO2 ≤ ln
(

1 +
(P − P ∗

O2)|h1|2
eKr∗N0

)

.

Proof: We can rewritePi as follows:

Pi = N0
αie

r∗

αi

|hi|2
(e

∆ri
αi − 1). (41)

Then, we can obtain

N0

N
∑

i=1

1

|hi|2
(e

r∗+∆ri
αi − 1)αi ≤ P. (42)

By recalling the definition ofP ∗
O2 in (34), we can have

P − P ∗
O2 ≥ N0

N
∑

i=1

1

|hi|2
(e

r∗+∆ri
αi − 1)αi

− min∑K
i=1 αi=1

N0

N
∑

i=1

1

|hi|2
(e

r∗

αi − 1)αi.

(43)

Denote
1

|hi|2
=

1

|h1|2
+∆gi, i = 2, 3, ..., K.
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The right hand of (43) can be further lower-bounded by

N0

K
∑

i=1

1

|hi|2
(e

r∗+∆ri
αi − 1)αi − min∑K

i=1 αi=1
N0

K
∑

i=1

1

|hi|2
(e

r∗

αi − 1)αi

=
N0

|h1|2
K
∑

i=1

(e
r∗+∆ri

αi − 1)αi +N0

K
∑

i=2

gi(e
r∗+∆ri

αi − 1)αi

− min∑K
i=1 αi=1

( N0

|h1|2
K
∑

i=1

(e
r∗

αi − 1)αi +N0

K
∑

i=2

gi(e
r∗

αi − 1)αi

)

≥ N0

|h1|2
K
∑

i=1

(e
r∗+∆ri

αi − 1)αi −
N0

|h1|2
min∑K
i=1 αi=1

K
∑

i=1

(e
r∗

αi − 1)αi

≥ N0

|h1|2
(

eKr∗+
∑K

i=1 ∆ri − 1
)

− N0

|h1|2
(

eKr∗ − 1
)

=
N0

|h1|2
eKr∗

(

e
∑K

i=1 ∆ri − 1
)

,

(44)

where the last inequality holds because of Jensen’s inequality on the convex functionf(x) =

ex − 1. Consequently, by combining (43) and (44), we finally obtainthat

N0

|h1|2
eKr∗

(

e
∑K

i=1 ∆ri − 1
)

≤ P − P ∗
O2. (45)

Therefore, we have

∆rO2 =

K
∑

i=1

∆ri ≤ ln
(

1 +
(P − P ∗

O2)|h1|2
eKr∗N0

)

, (46)

and Lemma 2 is proved.

To prove Theorem 3, we also need another lemma given next to characterize the lower bound

of P ∗
O2.

Lemma 3 (Lower bound forP ∗
O2). The lower bound of P ∗

O2 is P ∗
N , i.e.,

P ∗
O2 ≥ P ∗

N .

Proof: By recalling the definition ofP ∗
N andP ∗

O2 in Theorems 1 and 3, it is noticed that

P ∗
O2 can also be written as follows:

P ∗
O2 = min∑K

i=1 αi=1
N0

K
∑

i=1

(e
r∗

αi − 1)αi

|hi|2

= min∑K
i=1 αi≤1

N0

K
∑

i=1

(e
r∗

αi − 1)αi

|hi|2
,
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the second inequality holds since the objective function isminimized only when
∑K

i=1 αi = 1

holds (complementary slackness). We only need to prove thatthe following inequality

N0

K
∑

i=1

(e
r∗

αi − 1)αi

|hi|2
≥ (er

∗ − 1)N0

K−1
∑

i=0

eir
∗

|hK−i|2
(47)

holds for allαi satisfying
∑K

i=1 αi ≤ 1. This inequality can also be simplified as follows:

K
∑

i=1

1

|hi|2
(e

r∗

αi − 1)αi

(er∗ − 1)
≥

K
∑

i=1

1

|hi|2
e(K−i)r∗ . (48)

To prove (48), we first introduce the following lemma.

Lemma 4. Given 0 < c1 ≤ c2 ≤ ... ≤ cK , if
∑K

i=j ai ≥
∑K

i=j bi holds for j = 1, 2, ..., K, then,

we can have
K
∑

i=1

ciai ≥
K
∑

i=1

cibi.

Proof: We first define a non-negative sequencedj , j = 1, 2, 3, ..., K as follows:

d1 = c1, dj = cj −
j−1
∑

i=1

di, j = 2, 3, ..., K.

Since
∑K

i=j ai ≥
∑K

i=j bi holds for j = 1, 2, ..., K, we have the followingK inequalities.






































a1 + a2 + ...+ aK ≥ b1 + b2 + ...+ bK

a2 + ...+ aK ≥ b2 + ...+ bK

...

aK ≥ bK .

(49)

By multiplying di, i = 1, 2, ..., K with theK inequalities in (49) respectively and adding them

together, we can have
K
∑

i=1

ciai ≥
K
∑

i=1

cibi,

and Lemma 4 is proved.

By defining














ai =
(e

r∗

αi − 1)αi

er
∗ − 1

,

bi = e(K−i)r∗ ,

(50)
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we can easily check that
K
∑

i=j

ai ≥
K
∑

i=j

bi

holds for
∑K

i=1 αi ≤ 1. Therefore, by taking advantage of Lemma 4, (48) can be obtained, and

Lemma 3 is proved.

By combining Lemmas 2 and 3, we can finally conclude that

∆rO2 ≤ ln
(

1 +
(P − P ∗

N)|h1|2
eKr∗N0

)

, (51)

and the proof is completed.

D. Major Results

The major analytical results of this paper can be summarizedin the following.

(1) To support reliable data transmission with minimum rateconstraint, the required minimum

powers of NOMA, OMA-TYPE-I, and OMA-TYPE-II can be written as follows.


















































P ∗
N = (er

∗ − 1)N0

K−1
∑

i=0

eir
∗

|hK−i|2
,

P ∗
O1 , (eKr∗ − 1)

N0

K

K
∑

i=1

1

|hi|2
,

P ∗
O2 , min∑K

i=1 αi=1
N0

K
∑

i=1

(e
r∗

αi − 1)αi

|hi|2
.

(52)

(2) The relationship of the required minimum powers of NOMA,OMA-TYPE-I, and OMA-

TYPE-II are

P ∗
N ≤ P ∗

O2 ≤ P ∗
O1. (53)

(3) The closed-form expression for the optimum sum rate of NOMA systems can be written as

RN = Kr∗ + ln
(

1 +
(P − P ∗

N)|h1|2
N0eKr∗

)

. (54)

(4) The optimum sum rates of NOMA, OMA-TYPE-I, and OMA-TYPE-II have the following

relationship

RN ≥ RO2 ≥ RO1. (55)
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IV. SIMULATION RESULTS

In this section, computer simulations are conducted to validate the correctness of the analytical

results. The signal-to-noise ratio (SNR) is defined asSNR = 10 log P
N0

. Simulation results in

this section are given for both deterministic channels and Rayleigh fading channels. Particularly,

numerical examples based on deterministic channels are given first to validate our analytical

conclusions and then the results based on Rayleigh fading channels are given to offer more

insights about the differences among NOMA, OMA-TYPE-I and OMA-TYPE-II systems.

A. Deterministic Channels

Since the mathematical analysis in this paper is based on deterministic channels, we first

validate our analytical results by the following numericalinvestigations with fixed channel

realizations.
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Fig. 1: Required minimum power versusr∗ for K = 3 users, with(h1, h2, h3) = (10, 5, 1).

Figs. 1 and 2 show the required minimum power versus the target minimum rater∗ for different

transmission schemes given specified channel realizations. The required minimum power for



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. X, OCT.2016 21

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

r*

100

101

102

103

104

105

106

107

R
eq

ui
re

d 
M

in
im

um
 P

ow
er

NOMA
OMA-TYPE-I
OMA-TYPE-II

Fig. 2: Required minimum power versusr∗ for K = 3 users, with(h1, h2, h3) = (1, 1, 1).

NOMA, OMA-TYPE-I and OMA-TYPE-II is obtained by the analytical results in (52). In Fig.

1, the channel coefficients are fixed to be(h1, h2, h3) = (10, 5, 1), and in Fig. 2, the channel

coefficients are fixed to be identical, i.e.,(h1, h2, h3) = (1, 1, 1). By observing these two figures,

we have the following comments.

1) All the required minimum power of the three systems, i.e.,P ∗
N , P

∗
O1, P

∗
O2, increases expo-

nentially as the target minimum rate, i.e.,r∗, increases.

2) When the channel coefficients are not the same, the required minimum power of OMA-

TYPE-II is smaller than that of OMA-TYPE-I, while the required minimum power of

NOMA is smaller than that of OMA-TYPE-II. Note that these observations are consistent

with our analytical results in (53).

3) When the channel coefficients are identical, all the threekinds of required minimum power

become the same.

Figs. 3 and 4 show the sum rates versus SNR for different transmission schemes given specified
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Fig. 3: Sum rates versus SNR, withK = 3, and(h1, h2, h3, r
∗) = (10, 5, 1, 1)

channel realizations. The optimum sum rates for NOMA-Numerical, OMA-TYPE-I, and OMA-

TYPE-II are obtained by solving the optimization problems in (3), (4) and (6), respectively. The

optimum sum rates for NOMA-Analytical are attained by the analytical closed-form expression

in (54). In Fig. 3, the channel coefficients are fixed to be(h1, h2, h3) = (10, 5, 1), and in Fig. 4,

the channel coefficients are fixed to be identical, i.e.,(h1, h2, h3) = (1, 1, 1). For both channel

setups, we setr∗ = 1. By observing these figures, we have the following comments.

1) The numerical and analytical results for NOMA match perfectly.

2) When the channel coefficients are not the same, the sum rates of OMA-TYPE-II are always

larger than those of OMA-TYPE-I, while the sum rates of NOMA are always larger than

those of OMA-TYPE-II. Note that these observations are alsoconsistent with our analytical

results in (55).

3) When the channel coefficients are identical, all the threekinds of sum rates become the

same.
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Fig. 4: Sum rates versus SNR, withK = 3, and(h1, h2, h3, r
∗) = (1, 1, 1, 1)

B. Rayleigh Fading Channels

With randomly generated wireless channels, e.g., Rayleighfading channels, herein, we in-

troduce two performance evaluation metrics, e.g., outage probability and ergodic sum rate, to

evaluate and compare the performance of NOMA, OMA-TYPE-I and OMA-TYPE-II.

Recall that a system is in outage if there exists one user who cannot receive its own messages

with the given target minimum rater∗ for all the possible resource allocation, i.e., the corre-

sponding optimization problem is infeasible. Mathematically, the outage probabilities of NOMA,

OMA-TYPE-I and OMA-TYPE-II can be written as

Pr{P ∗
N > P}, Pr{P ∗

O1 > P}, Pr{P ∗
O2 > P},

respectively, and this criterion will be used in Figs. 5 and 6.

In Figs. 7 and 8, we will use the ergodic sum rate as the criterion to evaluate the performance

of NOMA, OMA-TYPE-I and OMA-TYPE-II. These ergodic sum rates can be defined as in the

following. Without loss of generality, take NOMA system as an example. DenoteRN (h) by the
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instantaneous optimum sum rate achieved by NOMA andP ∗
N(h) by the required minimum power

of NOMA given a specific channel realizationh = [h1, h2, ..., hK ]
T . Note that the instantaneous

optimum sum rate reduces to zero if the optimization problemin (3) is infeasible, i.e., the

system is in outage. Therefore, the instantaneous optimum sum rate achieved by NOMA can be

mathematically expressed as follows:

RN(h) =







RN if P ∗
N (h) ≤ P,

0 Otherwise,

whereRN andP ∗
N(h) are defined in (52) and (54), respectively. With such a definition of the

instantaneous optimum sum rate, the ergodic sum rate of NOMAis defined as the expectation

of RN(h) with respect to independent and identically distributed (i.i.d.) Rayleigh fadinghi’s .

Note that the ergodic sum rates of OMA-TYPE-I and OMA-TYPE-II can be defined similarly.
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Fig. 5: Outage Probability versus SNR, withK = 3, r∗ = 1

In Figs. 5 and 6, given a fixed target minimum rater∗ = 1, the outage performance versus the

SNR for different transmission schemes under Rayleigh fading channels are plotted withK = 3
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Fig. 6: Outage Probability versus SNR, withK = 5, r∗ = 1

andK = 5, respectively. Since our analytical results show thatP ∗
N ≤ P ∗

O2 ≤ P ∗
O1, we can infer

that

Pr{P ∗
N > P} ≤ Pr{P ∗

O2 > P} ≤ Pr{P ∗
O1 > P}.

This conclusion is confirmed by both Figs. 5 and 6. Particularly, in Fig. 5, OMA-TYPE-II yields

about a gain of 1.5dB over OMA-TYPE-I, and NOMA has about a gain of 2.5dB over OMA-

TYPE-II at Pr = 10−1. Moreover, by comparing Fig. 5 with Fig. 6, it is also observed that the

outage probability gain by NOMA becomes larger when the number of users increases.

In Figs. 7 and 8, the ergodic sum rate performance versus SNR for different transmission

schemes under Rayleigh fading channels are plotted withK = 3, r∗ = 1 andK = 6, r∗ = 2,

respectively. By observing these figures, we have the following comments.

1) The ergodic sum rate of NOMA is always larger than that of OMA-TYPE-II, and the

ergodic sum rate of OMA-TYPE-II is always larger than that ofOMA-TYPE-I.
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Fig. 7: Ergodic Sum Rates versus SNR, withK = 3, r∗ = 1

2) When the transmission power is large enough with respect to the target minimum rater∗,

i.e., the outage probabilities for all the three systems tend to zero, the ergodic sum rate

increases linearly with SNR. For example, in Fig. 7, NOMA hasabout a gain of 0.3 nats

per channel use (NPCU) over OMA-TYPE-II, and OMA-TYPE-II has about a gain of 0.7

NPCU over OMA-TYPE-I, for all the SNRs.

3) When the transmission power is not large enough with respect to the target minimum rate

r∗, i.e., a system may be in outage, both OMA-TYPE-I and OMA-TYPE-II may suffer a

significant performance loss compared to NOMA in the low SNR regime. For example, in

Fig. 8, whenSNR = 46dB, the ergodic sum rates of OMA-TYPE-I and OMA-TYPE-II

decease to nearly zero, while the ergodic sum rate of NOMA canbe still maintained over

5 NPCU.
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Fig. 8: Ergodic Sum Rates versus SNR, withK = 6, r∗ = 2

V. CONCLUSION

In this paper, we have mathematically compared the optimum sum rate performance for NOMA

and OMA systems, with consideration of user fairness. Firstly, the closed-form optimum sum

rate and the corresponding power allocation policy for NOMAsystems have been derived, by

using the power splitting method. Secondly, the fact that NOMA can always achieve better sum

rate performance than that of traditional OMA-TYPE-I with optimum power allocation but equal

user time/frequency allocation has been revealed, by a rigorous mathematical proof. Thirdly, we

have proved that NOMA can also outperform OMA-TYPE-II with power and time/frequency

allocation jointly optimized in terms of sum rate performance. Moreover, the major analytical

results have been extracted from those mathematical proofs. Finally, computer simulations have

been conducted to validate the correctness of these analytical results and show the advantages

of NOMA over OMA in practical Rayleigh fading channels.
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