
Enhancing Quantum Security over Federated
Learning via Post-Quantum Cryptography

Pingzhi Li
Department of Computer Science

The University of North Carolina at Chapel Hill
Chapel Hill, United States
pingzhi@cs.unc.edu

Tianlong Chen
Department of Computer Science

The University of North Carolina at Chapel Hill
Chapel Hill, United States
tianlong@cs.unc.edu

Junyu Liu
Department of Computer Science

The University of Pittsburgh
Pittsburgh, United States
junyuliu@pitt.edu

Abstract—Federated learning (FL) has become one of the
standard approaches for deploying machine learning models
on edge devices, where private training data are distributed
across clients, and a shared model is learned by aggregating
locally computed updates from each client. While this paradigm
enhances communication efficiency by only requiring updates at
the end of each training epoch, the transmitted model updates
remain vulnerable to malicious tampering, posing risks to the
integrity of the global model. Although current digital signature
algorithms can protect these communicated model updates, they
fail to ensure quantum security in the era of large-scale quan-
tum computing. Fortunately, various post-quantum cryptography
algorithms have been developed to address this vulnerability,
especially the three NIST-standardized algorithms - Dilithium,
FALCON, and SPHINCS+.

In this work, we empirically investigate the impact of these
three NIST-standardized PQC algorithms for digital signatures
within the FL procedure, covering a wide range of models, tasks,
and FL settings. Our results indicate that Dilithium stands out
as the most efficient PQC algorithm for digital signature in
federated learning. Additionally, we offer an in-depth discussion
of the implications of our findings and potential directions for
future research.

Index Terms—quantum security, post-quantum cryptography,
federated learning.

I. INTRODUCTION

Modern mobile devices have access to vast amounts of
data that can be leveraged to train machine learning mod-
els, leading to significant improvements in the user experi-
ence [7], [21]. For instance, language models can enhance
speech recognition [11] and text entry [4] and function as
intelligent assistants [10]. However, the data-driven nature of
these models often requires continuous user data collection to
refine and update the machine-learning models [9]. This chal-
lenge becomes even more complex in large-scale distributed
systems, such as smartphone networks, which involve millions
of users. Federated learning addresses this issue, emerging as
a promising machine learning paradigm, where many devices
(i.e., clients) collaborate to train a machine learning model
while keeping the data on the devices themselves [12], [21].
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Fig. 1. (Left) In the current pre-quantum federated learning landscape,
the training process can be safeguarded against poisoning attacks using
public-key cryptography algorithms like RSA. (Right) However, in the post-
quantum era, classical cryptographic algorithms(e.g., RSA) are vulnerable to
being broken by large-scale quantum computers and can no longer provide
adequate security. Instead, post-quantum cryptography algorithms, such as
Dilithium, Falcon, and SPHINCS+, should be employed for digital signature
authentication.

Various approaches have been developed to safeguard user
privacy and ensure data security in the federated learning
context.

Among the various federated learning variants, one of the
most widely used and foundational ones is FedAvg [12]. This
approach distributes the training data across the clients and
learns a shared model by aggregating locally computed up-
dates for each client. During each epoch, every client computes
an update to the current global model, which is maintained
by a central server, and only this update is communicated at
the end of the epoch. Although FedAvg is communication-
efficient, the model updates transmitted from clients to the
server can be vulnerable to malicious tampering, posing secu-
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rity threats to the global model. For example, attackers could
train a separate language model on toxic content and substitute
the federated learning language model update during a client
device’s communication with this malicious update, thereby
injecting toxicity into the global language model.

While current federated learning applications are safe-
guarded from communication-based threats through the use of
digital signature algorithms that rely on public-key cryptogra-
phy, they are not immune to quantum threats. Quantum com-
puters, which have seen significant progress in recent years,
utilize quantum mechanical principles to tackle mathematical
problems beyond conventional computers’ capabilities. Most
widely used public-key algorithms rely on the difficulty of
one of three mathematical problems: the integer factorization
problem, the discrete logarithm problem, and the elliptic-
curve discrete logarithm problem. For example, in the widely-
used RSA [16] public-key cryptosystem, the public key is
represented as a product N = pq of two secret prime numbers,
p and q. The security of RSA fundamentally depends on
the computational difficulty of factorizing N into its prime
components, p and q. However, in 1994, Shor [18] proposed a
quantum algorithm capable of quickly determining the prime
factorization of any positive integer N . If large-scale quantum
computers are successfully realized, they can compromise
many of today’s public-key cryptosystems. This would pose a
serious risk to the security and privacy of federated learning
systems, compromising both their confidentiality and integrity.

Fortunately, significant progress has been made in Post-
Quantum Cryptography (PQC), which aims to develop cryp-
tographic algorithms, such as public-key algorithms, that are
believed to be resistant to cryptanalytic attacks by quantum
computers. The NIST standardization process for PQC began
in 2017 with 69 candidate algorithms for key establishment
mechanisms (KEM) and digital signature algorithms (DSA).
Subsequently, in 2019, 2020, 2021, and 2022, NIST conducted
four additional rounds of evaluation, ultimately selecting 1
PQC algorithm for KEM and 3 PQC algorithms for DSA.
Specifically, the 3 DSA algorithms we plan to investigate in
the context of federated learning are Dilithium, FALCON, and
SPHINCS+.

In this paper, we empirically study the impact of 3 PQC
NIST standardized algorithms for DSA on federated learning,
covering a range of model scales. Furthermore, we extend
our study to quantum federated learning, where a quantum
neural network is trained in the federated learning setting
equipped with PQC DSA algorithms. Our study reveals the
critical efficiency characteristics of those standard PQC DSA
algorithms on federated learning, providing key insights for
their application in the future. Our key contributions are
summarized below:

• We empirically study the impact of DSA algorithms in
federated learning in the near future of the PQC era.

• Our comprehensive evaluation results show that Dilithium
stands out as the most efficient PQC DSA algorithm in the
context of federated learning poisoning attack defense.

II. THREATS TO FEDERATED LEARNING SECURITY

A. Communication in Federated Learning

a) Federated Learning Problem Definition: Consider a
federated learning scenario involving a central server G and
M clients C1...M . Each client Ci possesses a private training
dataset Di = {Xji , Y

j
i}j , which remains accessible only to Ci.

The goal of the server G is to utilize the data distributed
across all clients to learn a global model that minimizes
the average loss across the entire dataset [D1, . . . ,DM ], i.e.,
L = 1

M

∑M
j=1 CrossEntropy(Cj(Xj), Yj). The most com-

mon method to address this problem is FedAvg.
b) FedAvg Communication: In each round t of

FedAvg, each client Ci receives the current global parameters
θtG and performs multiple training steps on its local dataset Di,
starting from θtG. After completing these steps, the client sends
the resulting model updates ∆θti back to the server. The server
then aggregates the updates from all clients into an average
∆θt = 1

M

∑M
i=1 ∆θti and uses this to update the global model:

θt+1
G = θtG + ∆θt. Thus, the only communication content in

each round consists of the global model parameters θtG, and
each client’s model updates ∆θti .
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Fig. 2. Poisoning attack from outsiders on the communicated model param-
eters in federated learning.

B. Poisoning Attacks and Federated Learning

Poisoning attacks in machine learning refer to the deliberate
alteration of training data with the intent of causing the
learned model to fail in detecting subsequent attacks [17]. For
instance, if the training dataset of a traffic sign recognition
system is intentionally corrupted, it could lead autonomous
vehicles that rely on the system to identify traffic signs [5]
incorrectly. Generally, poisoning attacks can be classified into
two categories: model failure poisoning attacks, which aim
to render the model unusable, and targeted error poisoning
attacks, which seek to induce the model to misclassify a
specific label as another target label.



In the context of federated learning, poisoning attackers
can be categorized as insiders or outsiders. Insider attackers
are local clients that maliciously contribute poisoned model
updates, while outsiders compromise the communication be-
tween the central server and local clients, injecting poisoned
parameters into the model updates. Existing studies primarily
address insider attackers, given that outsider attackers can
typically be mitigated using standard digital signature algo-
rithms employed in modern networks. Our work extends this
focus by addressing post-quantum security, where the classical
digital signature algorithms are no longer effective, specifically
aiming to defend against outsider poisoning attacks, assuming
that both the central server and local clients operate honestly.
As shown in Figure 2, an outlier attacker poisons on the local
update i.e. ∆θ1 uploaded from client 1, which will ultimately
also poisons on the global model as it is updated based on
every local model updates.

III. METHODOLOGY

In this section, we introduce the 3 NIST-standardized PQC
algorithms for digital signature and how we employ them in
federated learning to enhance quantum security.

A. NIST-Standardized Post-Quantum Cryptography

In this part, we briefly introduce the 3 NIST-standardized
PQC algorithms, i.e. Dilithium, Falcon, and SPHINCS+. We
summarize the key characteristics of them as listed in Table I.

TABLE I
SUMMARY OF THE 3 NIST-STANDARDIZED PQC METHODS FOR DIGITAL

SIGNATURE. WE MARKED THE BEST ONES FOR THE KEY SIZE, SIGNATURE
SIZE, SPEED, AND MEMORY CHARACTERISTICS WITH BOLD.

Method Basis Key Size Signature Size Speed Memory

Dilithium [1] Lattice-based Medium Medium High Medium
Falcon1 Lattice-based Large Small Medium Medium
SPHINCS+ [3] Hash-based Small Large Slow Low

a) Dilithium: CRYSTALS-Dilithium [1] is a lattice-
based digital signature scheme built using the Fiat-Shamir
heuristic. Its security is based on the hardness of solving the
Module Learning With Errors (MLWE) and Module Short
Integer Solution (MSIS) problems. Dilithium offers a balanced
performance in terms of key and signature size and efficiency
in key generation, signing, and verification. It uses the ring
Rq := Zq[X]/(X256 + 1), where q is the prime number
223 − 213 + 1. Dilithium has been implemented on various
platforms, including ASIC, FPGA, and RISC-V, showing
significant performance improvements over traditional imple-
mentations.

b) Falcon: Falcon2 is another lattice-based digital sig-
nature scheme that follows a ”hash and sign” paradigm.
Its security is based on the difficulty of solving the Short
Integer Solution (SIS) problem on NTRU lattices. Falcon
stands out for its compact signatures, smaller than Dilithium
at comparable security levels, though its public key size is

2https://falcon-sign.info/

moderately larger. This characteristic makes Falcon particu-
larly attractive for applications where signature bandwidth is
a primary concern. While Falcon has more complex hard-
ware implementation requirements than Dilithium due to its
data tree structure and advanced mathematical operations,
it demonstrates superior efficiency in signing and verifying
operations. The scheme integrates well with existing protocols
and has shown promising results in various implementations,
including high-performance cryptographic processors.

c) SPHINCS+: SPHINCS+ [3] is a stateless hash-based
digital signature scheme, distinguishing it from the lattice-
based approaches of Dilithium and Falcon. Its security is
fundamentally based on the security of the underlying hash
function, making it a conservative choice in the post-quantum
landscape. SPHINCS+ has the largest signature size among
the NIST candidates but compensates with the smallest public
key size. It is relatively slow in execution compared to its
lattice-based counterparts, particularly for signing operations.
However, its stateless nature provides important advantages in
certain applications. Various implementations of SPHINCS+
have been explored, including parallelized designs and FPGA
implementations, showing potential for performance improve-
ments despite its inherent computational intensity.

B. FL Quantum Security via PQC

To enhance the quantum security of federated learning (FL),
we integrate PQC digital signature algorithms into the FL com-
munication protocol. This integration aims to protect against
potential quantum-enabled attacks on the model updates trans-
mitted between clients and the central server. We implement
this security enhancement using the three NIST-standardized
PQC algorithms for digital signatures: Dilithium, Falcon, and
SPHINCS+. As defined in Section II-A, let θtG represent the
global model parameters at round t, and ∆θti denote the model
updates from client i. We modify the standard FL protocol as
follows:

• Key Generation: At the beginning of the FL process,
each client Ci and the central server G generate their
respective public-private key pairs using one of the PQC
algorithms: (pki, ski) for client Ci, (pkG, skG) for the
central server G.

• Model Distribution: When the server sends the global
model θtG to client Ci, it signs the message using its
private key: σG = sign(skG, θtG). The client verifies the
signature using the server’s public key before accepting
the model: verify(pkG, θ

t
G, σG).

• Update Submission: After computing local updates ∆θti ,
client Ci signs the update before sending it to the server:
σi = sign(ski,∆θti) The signed update (∆θti , σi) is
then sent to the server.

• Update Verification: Upon receiving the signed update,
the server verifies the signature using the client’s public
key: verify(pki,∆θti , σi). Only verified updates are
included in the aggregation process.



• Model Aggregation: The server aggregates the verified
updates to compute the new global model: θt+1

G = θtG +
(1/M)ΣM

i=1∆θti .
We provide the formal algorithm description in Algorithm 1.

This protocol ensures that all communicated model parameters
and updates are authenticated using quantum-resistant signa-
tures, mitigating the risk of tampering by quantum-enabled
adversaries. The choice of the PQC algorithm (Dilithium, Fal-
con, or SPHINCS+) affects the performance characteristics of
this secure FL system, which we evaluate in our experiments.
By implementing this PQC-enhanced protocol, we provide a
robust defense against potential quantum attacks on the FL
communication process, ensuring the integrity and authenticity
of model updates in a post-quantum environment.

Algorithm 1 PQC-Enhanced Federated Learning
1: Input: Number of clients M , number of rounds T
2: Output: Secure global model θTG
3: Key Generation:
4: for each client Ci and server G do
5: (pki, ski)← keyGen()
6: (pkG, skG)← keyGen()
7: end for
8: for each round t = 1 to T do
9: Model Distribution:

10: for each client Ci do
11: σG ← sign(skG, θtG)
12: Send (θtG, σG) to client Ci
13: Client Ci: verify(pkG, θ

t
G, σG)

14: end for
15: Local Update:
16: for each client Ci in parallel do
17: Compute local update ∆θti
18: σi ← sign(ski,∆θti)
19: Send (∆θti , σi) to server G
20: end for
21: Update Verification and Aggregation:
22: S ← ∅
23: for each received update (∆θti , σi) do
24: if verify(pki,∆θti , σi) then
25: S ← S ∪ {∆θti}
26: end if
27: end for
28: θt+1

G ← θtG +
1
|S|

∑
∆θt

i∈S ∆θti
29: end for
30:
31: return θTG

IV. EXPERIMENTS

A. Implementation Details

a) Models and Datasets: Our evaluation encompasses
both vision and natural language processing tasks, representing
two of the most significant domains in deep learning. We
employ three diverse settings to assess the impact of PQC

TABLE II
HYPER-PARAMETERS OF THE FEDERATED LEARNING TRAINING FOR

EVALUATION USED IN OUR WORK. WE REPORT THE NUMBER OF
FEDERATED LEARNING CLIENTS, TOTAL NUMBER OF EPOCHS, BATCH

SIZE, AND LEARNING RATE (LR).

Model Task # Clients # Epochs Batch Size LR

MLP MNIST 10 10 32 1e− 5
Pythia-70M RTE 10 50 8 3e− 5
ResNet-18 CIFAR-100 10 20 64 3e− 5

algorithms on federated learning across different scales and
modalities:

• MLP on MNIST: For a preliminary evaluation on a
classic computer vision task, we use a Multi-Layer Per-
ceptron (MLP) model on the MNIST dataset. MNIST
consists of 70000 28×28 grayscale images of handwritten
digits, providing a straightforward yet informative bench-
mark for image classification.

• Pythia-70M on RTE: To examine performance on lan-
guage tasks, we employ the Pythia-70M model, a 70
million parameter language model from the Pythia series,
on the Recognizing Textual Entailment—(RTE) dataset.
RTE is a natural language inference task from the GLUE
benchmark, challenging the model to determine the rela-
tionship between pairs of sentences.

• ResNet-18 on CIFAR-100: For a more complex vision
task, we utilize ResNet-18, an 18-layer residual neural
network, on the CIFAR-100 dataset. CIFAR-100 com-
prises 60000 32 × 32 color images across 100 classes,
presenting a more challenging image classification sce-
nario than MNIST.
b) Federated Learning Details: Our experiments are

built upon the FedAvg algorithm, a fundamental approach
in federated learning that aggregates local model updates
from distributed clients. While our implementation focuses on
FedAvg, our proposed PQC-enhanced protocol is adaptable
to most federated learning algorithms where communication
occurs between clients and the central server. To ensure
consistency and facilitate fair comparison across different
PQC algorithms, we maintain uniform hyper-parameters for
each client within a given model and task setting. The data
distribution across clients follows an independent and iden-
tically distributed (i.i.d) splitting strategy, which allows us
to focus on the impact of the PQC algorithms without the
added complexity of non-i.i.d data challenges. We provide
a comprehensive list of the hyper-parameters used in our
experiments in Table II, including learning rates, batch sizes,
and the number of local epochs for each setting. We use
NVIDIA H100 GPU and PyTorch to conduct our experiments.
All models are trained with the constant learning rates and
AdamW optimizer.

B. Main Results

Figure 3 presents the training curves for three different
model-dataset combinations: MLP on MNIST, Pythia-70M on



Fig. 3. Federated learning training curves of the MLP on MNIST (left), Pythia-70M on RTE (middle), and the ResNet-18 on CIFAR-100. We evaluate the
training time with the 3 different PQC algorithms.

RTE, and ResNet-18 on CIFAR-100. Each plot shows the loss
over time for the three PQC algorithms: Dilithium, Falcon,
and SPHINCS+. These graphs allow us to compare both the
convergence speed and final performance across different PQC
implementations in various federated learning scenarios.

a) Training Speed Comparison: Our results clearly
demonstrate a consistent ranking in terms of training speed
across all three scenarios: SPHINCS+ is the slowest, followed
by Falcon, with Dilithium being the fastest. This observation
aligns with the characteristics summarized in Table I. The
impact of these speed differences for digital signature is less
pronounced in the more complex models and datasets, partic-
ularly evident in the Pythia-70M and ResNet-18 experiments,
where the local model training time scales extend to hundreds
and thousands of seconds, respectively, being much higher
than that of digital signature.

b) Consistency in Final Performance: These results indi-
cate that the choice of the PQC algorithm does not necessarily
affect the final training performance, as measured by the loss
values. Across all three scenarios, we observe that the loss
curves converge to exact values regardless of the PQC algo-
rithm used. This outcome is natural, as the PQC algorithms
are designed to protect the integrity of model updates during
communication without altering their content.

c) Trade-offs Between Security and Efficiency: These
results highlight the inherent trade-offs between security guar-
antees and computational efficiency in post-quantum federated
learning. While SPHINCS+ offers strong security guarantees
due to its hash-based nature, it consistently shows slower
training times. Conversely, Dilithium balances strong security
and computational efficiency, making it an attractive option for
many federated learning scenarios. Falcon sits between these
extremes, offering a middle ground in terms of both security
and performance.

C. Extended Study on Quantum Neural Network

As we progress towards the post-quantum era, it is increas-
ingly likely that we will train and deploy quantum neural
networks (QNNs) on pure quantum computers. This shift
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Fig. 4. Federated learning training curves of the QNN model on MNIST. We
evaluate the training time with the 3 PQC algorithms.

necessitates an evaluation of PQC methods in the context of
quantum neural network federated learning. To address this
forward-looking scenario, we extended our study to include a
simulated quantum neural network environment.

a) Experimental Setting: We implemented a federated
learning system using a simulated quantum neural network.
The simulation was conducted on classical GPUs, which,
while not as efficient as a true quantum computer, allows
us to approximate the behavior and challenges of quantum
neural network training in a federated setting. We implement
the training procedure with TorchQuantum3 [19] on NVIDIA
H100 GPU.

b) Results and Analysis: Figure 4 presents the training
curves for the quantum neural network using the three PQC
algorithms: Dilithium, Falcon, and SPHINCS+. The graph
shows the loss over time for each algorithm during the
federated learning process. Key observations are:

• Minimal Speed Differences: Unlike our observations
with classical MLP and Pythia-70M neural networks, the
three PQC algorithms do not yield substantial differences

3https://github.com/mit-han-lab/torchquantum



in training speed for the quantum neural network. This
is primarily attributed to the high computational cost of
simulating quantum circuits on classical hardware, which
dominates the overall training time.

• Simulation Overhead: The extended training time,
which is up to 1000 seconds, for this relatively simple
quantum neural network underscores the current limita-
tions of simulating quantum circuits on classical hard-
ware. This overhead masks the performance differences
between the PQC algorithms that were more apparent in
classical neural network training.

V. DISCUSSION AND FUTURE WORK

a) Man-in-the-Middle Attack (MITM): While our pro-
posed approach enhances the quantum security of federated
learning using PQC digital signature algorithms, it is important
to acknowledge a potential limitation in our current setting.
Specifically, the system remains vulnerable to a sophisti-
cated Man-in-the-Middle (MITM) attack during the initial
key exchange phase. If an adversary successfully intercepts
and replaces the public keys during distribution, they could
effectively compromise the entire system. In this scenario, the
attacker could replace legitimate public keys with their own,
allowing them to intercept, decrypt, and potentially modify all
subsequent communications. This would enable the attacker
to inject malicious model updates, effectively poisoning the
global model without detection by the central server or other
clients. This vulnerability underscores the critical importance
of secure key distribution and verification mechanisms in
federated learning systems, even when employing quantum-
resistant cryptographic algorithms. Future research should
focus on developing robust protocols for secure key exchange
and distribution in distributed learning environments, possi-
bly leveraging additional cryptographic primitives or trusted
hardware solutions to mitigate this risk.

b) Evaluation of the Communication Time: A signif-
icant limitation of our current study is the absence of a
comprehensive evaluation of the communication costs asso-
ciated with the three PQC signature algorithms in federated
learning. Our experiments were conducted on a single GPU,
which effectively eliminates real-world network communica-
tion overhead. This simplification, while allowing us to focus
on computational performance, overlooks a crucial aspect
of federated learning systems: the impact of signature size
on communication efficiency. The three PQC algorithms -
Dilithium, Falcon, and SPHINCS+ - have notably different
signature sizes, which could significantly affect the overall
system performance in a distributed setting. For instance,
SPHINCS+ is known for its larger signature size compared
to Dilithium and Falcon, which could potentially lead to
increased communication overhead in a real-world federated
learning deployment. Future work should address this gap
by implementing these PQC algorithms in a truly distributed
environment, measuring not only the computational time but
also the time required for secure communication of model
updates. This evaluation would provide a more holistic view of

the trade-offs between security, computational efficiency, and
communication overhead in post-quantum federated learning
systems. Such insights would be invaluable for practitioners
in choosing the most suitable PQC algorithm for their specific
federated learning applications, considering both the compu-
tational resources and network conditions.

VI. RELATED WORKS

a) Security Protection for Federated Learning: The in-
tegrity of federated learning systems faces significant chal-
lenges, particularly in the form of model-stealing attacks.
Participants in the FL process may surreptitiously embed
malicious functionalities into the shared global model. For in-
stance, an image classification model could be manipulated to
misclassify specific images based on attacker-defined criteria,
or a text prediction model might be coerced into generating
predetermined completions for certain prompts. To counter
these threats, researchers have developed various protective
measures. One notable approach involves implementing homo-
morphic encryption techniques [15]. This method safeguards
user data by facilitating parameter exchanges within an en-
crypted environment. However, it’s worth noting that this se-
curity enhancement comes at a cost: the necessity for encoding
parameters prior to transmission and the subsequent exchange
of public-private key pairs for decryption can significantly
increase communication overhead.

b) Post-Quantum Cryptography for KEM: Post-quantum
key encapsulation mechanisms (KEM) are crucial components
in cryptographic systems designed to withstand attacks from
quantum computers. Several promising KEM candidates have
emerged through rigorous evaluation processes. Lattice-based
schemes, such as CRYSTALS-Kyber, which leverages the
Module Learning with Errors problem, offer a balanced secu-
rity profile, performance, and key size [2]. Code-based KEMs
provide alternative approaches, with BIKE utilizing quasi-
cyclic moderate-density parity-check [14] codes and Classic
McEliece employing Goppa codes [8]. These post-quantum
KEMs are undergoing extensive research and development,
with implementation efforts focusing on various platforms,
including FPGA, ASIC, and RISC-V architectures [13], [22].
Key areas of improvement include computational efficiency,
power consumption reduction, and enhanced resistance to side-
channel attacks [6]. As quantum computing technologies ad-
vance, these post-quantum KEMs are expected to secure future
communication systems against emerging quantum threats, en-
suring long-term data protection in an evolving cryptographic
landscape [20].
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