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Flare7K++: Mixing Synthetic and Real Datasets
for Nighttime Flare Removal and Beyond
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Abstract— Artificial lights commonly leave strong lens flare artifacts on the images captured at night, degrading both the visual quality
and performance of vision algorithms. Existing flare removal approaches mainly focus on removing daytime flares and fail in nighttime
cases. Nighttime flare removal is challenging due to the unique luminance and spectrum of artificial lights, as well as the diverse
patterns and image degradation of the flares. The scarcity of the nighttime flare removal dataset constraints the research on this crucial
task. In this paper, we introduce Flare7K++, the first comprehensive nighttime flare removal dataset, consisting of 962 real-captured
flare images (Flare-R) and 7,000 synthetic flares (Flare7K). Compared to Flare7K, Flare7K++ is particularly effective in eliminating
complicated degradation around the light source, which is intractable by using synthetic flares alone. Besides, the previous flare
removal pipeline relies on the manual threshold and blur kernel settings to extract light sources, which may fail when the light sources
are tiny or not overexposed. To address this issue, we additionally provide the annotations of light sources in Flare7K++ and propose a
new end-to-end pipeline to preserve the light source while removing lens flares. Our dataset and pipeline offer a valuable foundation
and benchmark for future investigations into nighttime flare removal studies. Extensive experiments demonstrate that Flare7K++
supplements the diversity of existing flare datasets and pushes the frontier of nighttime flare removal towards real-world scenarios.

Index Terms—Glare, low-level computer vision, image restoration, nighttime photography.

✦

1 INTRODUCTION

L Ens flare is an optical phenomenon in which intense
light is scattered and/or reflected in an optical system.

It leaves a radial-shaped bright area and light spots on the
captured photo. The effects of flares are more severe in
the nighttime environment due to the existence of multiple
artificial lights. This phenomenon may lead to low contrast
and suppressed details around the light sources, degrading
the image’s visual quality and the performance of vision al-
gorithms. Taking nighttime autonomous driving with stereo
cameras as an example, the scattering flare may be misesti-
mated as close obstacles by stereo matching algorithms. For
aerial object tracking, the bright spots introduced by the lens
flare may mislead the algorithm to track flares rather than
flying objects [22].

To avoid these potential risks raised by lens flare, the
mainstream approaches are to optimize the hardware de-
signs, such as using a specially-designed lens group or ap-
plying anti-reflective coatings. Although professional lenses
can mitigate the flare effect, they cannot solve the inherent
problem of flare. Besides, fingerprints, dust, and wear in
front of the lens often bring unexpected flare that cannot
be alleviated by hardware, especially in smartphone and
monitor imaging. A flare removal algorithm is thus highly
desired.

Typical flares can be broadly categorized into three ma-
jor types: scattering flare, reflective flare, and lens orb (a.k.a.
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backscatter) [16], [18], [37]. We distinguish these three flares
according to their response to the light source movement.
Scattering flares are caused by dust and scratches on the lens.
This type of flare produces radial line patterns. When mov-
ing the lens or the light source, the scattering will always
wrap around the light source and keep the same pattern in
the captured photo. Reflective flares are caused by multiple
reflections between air-glass interfaces in a lens system [16].
Their patterns are determined by the shape of the aperture
and lens structure. Such patterns often manifest as a series of
circles and polygons on the captured photo [17]. Different
from scattering flares, when moving the camera, reflective
flares move in the direction opposite to the light source. Lens
orbs are induced by unfocused particles of dust or drops on
the lens surface [13]. They are aperture-shaped polygons
fixed in the same position of the photograph. Only the lens
orbs around the light source are lightened, and they do not
move with the light source or camera motion. Since the
position of lens orbs is relatively fixed, this effect is much
easier to be removed in a video [18]. Thus, we mainly focus
on the removal of scattering flares and reflective flares at
nighttime in this study.

Removing nighttime flares is extremely challenging.
First, the flare patterns are diverse, caused by the varied
location and spectrum of the light source, unstable defects
in the lens manufacture, and random scratches and greasy
dirt during daily utilization. Second, the dispersion of light
at different wavelengths and interference between small
optical structures can also lead to rainbow-like halo and
colored moiré. Although there are some traditional flare
removal methods [1], [3], [32], they mainly concentrate on
detecting and wiping off small bright blobs in the reflective
flares. Recently, some learning-based flare removal meth-
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(a) Scattering flare (b) Flare7K (Ours) (d) Reflective flare (e) Flare7K (Ours) (g) Wu et al.(c) Flare-R (Ours) (f) Flare-R (Ours)

Fig. 1: Nighttime photography such as (a) and (d) often suffers from different types of lens flares. In (a), streaks and
radial stripes are caused by scattering flare. In (d), bright blobs and large rings in yellow regions are caused by reflective
flare. Columns (b), (c), (e), and (f) depict some of our synthetic nighttime flare-corrupted images with Flare7K++ dataset.
Column (g) shows some flare-corrupted images synthesized by Wu et al. [37]. Images of reflective flares are taken with the
rear camera of the Huawei P40 smartphone. Parts of images of scattering flares are obtained from Dark Zurich [27] and
NightOwls [21] nighttime driving dataset. In contrast to Wu et al. [37], our flare data is more similar to real-world nighttime
data.

ods [10], [11], [23], [29], [37] have been proposed for daytime
flare removal or removing the flare with a specific type of
pattern. To obtain paired flare-corrupted/flare-free images,
Wu et al. [37] synthesize physically-based flares and capture
flare photos with the same cleaned lens in the darkroom.
These flare patterns will be overlaid on flare-free images to
produce paired data. Sun et al. [29] assume that all flares are
generated with the same 2-point star Point Spread Function
(PSF). Feng et al. [10], [11]’s methods mainly focus on
removing flare artifacts for under-display cameras. All these
flares generating pipelines assume that lens contaminants
or light sources are of a specific type, and lead to relatively
homogeneous flare patterns. However, for monitor lenses,
smartphone cameras, UAVs, and autonomous driving cam-
eras, the fingerprint, daily wear, and dust may function
as a grating, thus resulting in streaks (strip-shaped flares)
and flares in extremely diverse types of patterns that are
obvious at night. Furthermore, the spectrum of artificial
lights often differs significantly from that of the sun, leading
to different diffraction patterns that further complicate flare
modeling. The differences between existing synthetic flares
and real-world nighttime flares make it difficult to develop
models that can generalize well across a variety of nighttime
situations.

To facilitate the research on nighttime flare removal, we
build a large-scale layered flare dataset with elaborately
designed night flares, called Flare7K++, the first dataset of
its kind. It is composed of 962 real-captured flare images
(Flare-R) and 7,000 synthetic flares (Flare7K). The Flare-R
dataset is captured by the rear cameras of Huawei P40,
iPhone 13Pro, and ZTE Axon 20 5G. For each rear lens of the

smartphone, we take around 100 photos of flare patterns in
the darkroom. To simulate the daily usage, we wipe the lens
with different materials such as finger, silk scarf, and nylon
cloth after taking each flare pattern. Different from the Flare-
R, Flare7K is composed of synthetic flare patterns. It offers
5,000 scattering and 2,000 reflective flare images, consisting
of 25 types of scattering flares and 10 types of reflective
flares. These flare patterns are synthesized based on the
observation and statistics of real-world night flares. Since
scattering and reflective flare are independent, we generate
the respective flare data separately. Thus, different reflective
flares can be added to any scattering flare to obtain pattern
diversity. The 7,000 flare patterns can be randomly added to
flare-free images, forming the flare-corrupted and flare-free
image pairs that can be used for training deep models. In
Fig. 1, we present the comparison between our data and the
real-world nighttime images. We also present the synthetic
data from a recent flare dataset [37]. In comparison, our
data is more similar to the real-world nighttime images
in terms of the flare patterns. Besides, each scattering flare
image in our dataset can be divided into three parts: light
source, streak, and glare. The separation of flare components
makes our dataset more interpretable and manipulatable
than previous flare datasets [37].

This work builds upon our earlier conference version [7].
In comparison with the conference version, we have intro-
duced a significant amount of new materials as follows. 1)
To overcome the challenge of removing heavy degradation
caused by complex diffraction in the lens system, we cre-
ate a mixing dataset called Flare7K++ that augments the
synthetic Flare7K dataset (conference version) with a new
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(a) Input (b) Wu et al.

(c) Flare7K (d) Flare7K++

Fig. 2: When dealing with real-world flare-corrupted im-
ages, Flare7K outperforms the Wu et al. [37]’s in terms
of eliminating streaks. However, networks trained on the
Flare7K dataset tend to produce strong artifacts around the
light source. To address this issue, we have developed a
new dataset called Flare7K++. Our proposed method, which
utilizes the Flare7K++ dataset, effectively removes these
artifacts and produces more realistic light sources.

real-captured Flare-R dataset. Utilizing this mixing dataset
to train deep models can significantly improve the effective-
ness of removing strong degradation. 2) We provide addi-
tional light source annotations for all images in Flare7K++
and propose a network to extract light sources from the real-
captured flare images. 3) Previous methods such as [7], [37]
rely on a manual setting of the threshold and blur kernel to
extract the light source. It tends to erase the light sources
in the final output when light sources are too tiny or not
overexposed. Based on our light source annotations, we de-
sign a new end-to-end framework for flare removal, which
preserves the light source while removing lens flares. 4) We
manually label masks for different flare components of test
flare-corrupted images and introduce two new metrics, G-
PSNR and S-PSNR, to reflect restoration results on glare and
streak corrupted regions. 5) To demonstrate the importance
of flare removal, we evaluate our method on downstream
tasks including stereo matching, optical flow estimation,
and semantic segmentation, which are some common tasks
in nighttime autonomous driving.

2 RELATED WORK

Lens Flare Dataset. Collecting a large-scale captured paired
flare-corrupted and flare-free image dataset requires tedious
human labor. To solve this issue, Wu et al. [37] proposed a
semi-synthetic flare dataset, which is the first flare dataset
of this kind. It comes with 2,001 captured flare images
and 3,000 simulated flare images. These flare images can
be added to flare-free images to simulate flare-corrupted
situations. However, all the captured flare photos are taken
by the same camera and under the same light source

within the same distance. The homogeneous setting makes
the captured flare images look pretty similar and have a
limited effect on removing the flares with diverse lenses
and light sources. Besides, Wu et al.’s synthetic flares also
have a considerable gap with real-world nighttime flares,
as the comparison shown in Fig. 1. Lens flare simulation
algorithms [16], [17] have been studied for a long time and
are already widely used in visual effects (VFX) of films, an-
imation, and television programs. With the help of Optical
Flares (a plug-in for rendering lens flares in Adobe After
Effects), we build a synthetic lens flares dataset Flare7K
based on real-world reference images, aiming to solve the
problems of domain gap and the lack of diversity. Since
the complicated artifacts caused by diffraction of the lens
contaminants are hard to simulate, a network that is trained
only with Flare7K may lead to artifacts around the light
source as shown in Fig. 2. To address this problem, we
additionally collect a real-captured flare dataset Flare-R with
contaminated lenses. The combination of these two datasets
is named Flare7K++.
Image Flare Removal. Prior works mainly focus on veiling
glare removal [24], [30] of HDR image in the backlit scene
and reflective flare removal that involves saturated blobs [1],
[3], [8], [32]. Due to the lack of paired data that contains
scattering flares and diverse reflective flares, deep learning-
based methods are restricted. Qiao et al. [23] collected natu-
ral flare-corrupted and flare-free images to obtain unpaired
flare data. Following the idea of Cycle-GAN [47], Qiao et al.
trained a framework with a light source detection module,
a flare generation module, a flare detection module, and
a flare removal module. Wu et al. [37] proposed a semi-
synthetic flare dataset to synthesize flare-corrupted images.
With the flare-corrupted image and flare-free image pairs, a
pix2pix model based on U-Net [25] was trained to restore
the flare-free image. However, Wu et al. [37]’s method relies
on a traditional light source extraction algorithm based on
threshold and mask feathering, which may fail to work
when the light source is not saturated or too small. In this
paper, we propose a new end-to-end framework for flare
removal that utilizes our provided light source annotations.
Our proposed method is capable of effectively removing
lens flare while accurately preserving the light source.
Nighttime Defogging and Light Enhancement. Multiple
scattering of light in fog brings the glare effect around
the light source. Although the physical principle of this
glare effect is different from lens flare, they have similar
appearances. These properties make nighttime defogging
and flare removal share some common ground. In the
early work of glare effect removal [20], it is a mainstream
method to calculate PSF for each light source and then use
deconvolution to recover the light source image. With the
wide application of dark channel prior [14], many nighttime
haze removal methods based on statistical priors achieve
good performance. Li et al. [19] proposed a new nighttime
haze formation model and separated the glare effect by
using gray world assumption and smooth glare prior. To
implement computational efficiency, Zhang et al. [41] pro-
posed a fast nighttime haze removal structure using maxi-
mum reflectance prior. Yan et al. [38] noticed that grayscale
images are less affected by multiple colors of atmospheric
light, thus using the grayscale component to guide a neural
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Dusts on lens or lens defects  

Scratches on lens surface

Multiple reflections between lenses

Structure level

Scattering flare Glare

Shimmer

Streak

Reflective flare Multiple irises

Flare-corrupted image

Flare image
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Fig. 3: Formulation of nighttime lens flare. Lens flare can be viewed as a combination of scattering flare and reflective flare.
Multiple reflections between lens surfaces lead to a line of irises pattern, and reflective flare can be viewed as the addition
of these irises. Scattering flare can be divided into glare, shimmer, and streak. Streak is caused by grating-like scratches
in the front of the lenses. Glare and shimmer are brought by the combined action of lens defect and dust on the pupil.
Different types of dust make glare and shimmer have different patterns.

network to remove haze. Zhang et al. [42] designed a new
nighttime haze synthesis method that can mimic light rays
and object reflectance and then used the synthetic data to
train a haze removal network. Besides nighttime defogging,
recent nighttime visibility enhancement methods also focus
on light effect suppression. In Sharma et al.’s high dynamic
range nighttime image enhancement module [28], a noise
and light effect suppression network was introduced to
extract low-frequency light effect based on the gray world
assumption for the glare-free component. For nighttime im-
age enhancement, Zhou et al. [46] presented a learnable non-
linear layer to enhance dim regions while avoiding overex-
posure of light source regions. All these methods assume
that the glare effect is smooth, and hence cannot remove
the high-frequency component in scattering flares. Therefore
existing nighttime defogging and visibility enhancement
approaches cannot suppress the glare effect effectively.

3 PHYSICS ON NIGHTTIME LENS FLARE

Typical nighttime lens flares usually consist of two types of
flares, i.e., scattering flare and reflective flare, which are com-
plex as they comprise many components including halos,
streaks, irises, ghosts, bright lines, saturated blobs, haze,
glare, shimmer, sparkles, glint, spike balls, rings, hoops, and
caustic. In visual effects (VFX), computational photography,
optics, and photography, the identical type of components
may have different names. To avoid confusion, we group
these names into several common types based on their
patterns. For instance, sparkles, glints, and spike balls are all
radial line-shaped patterns. In this paper, we use shimmer to
represent all these types of radial line-shaped components.

To facilitate a better understanding of our proposed dataset,
we explain the formation principle of each type of nighttime
lens flare below.

3.1 Scattering Flare

The common components in scattering flares can be divided
into glare, shimmer, and streak, as shown in Fig. 3.

Glare is a smooth haze-like effect around the light
sources, also known as the glow effect [15]. Even in an
ideal lens system, the pupil with a limited radius will still
function as a low-pass filter, resulting in a blurry light
source. Moreover, abrasion or dotted impurities in the lens
will lead to the lens’ uneven thickness, noticeably increasing
the area of the glare effect. Besides, dispersion makes the
hue of the glare not globally constant. As shown in Fig. 3, the
pixels of the glare far away from the light source are bluer
than the pixels around the light source. During daytime
with sufficient illumination, the scene around the light is
bright enough to cover the glare effect. However, in low-
light conditions, the glare is significantly brighter than the
scene, hence cannot be ignored for nighttime flare removal.

Shimmer (a.k.a., sparkles, glint, spike balls) is a pattern
with multiple radial stripes caused by the aperture’s shape
and line-shaped impurities and lens defects [16]. Due to the
structure of the aperture, the pupil is not a perfect round,
thus producing a star-shaped flare. Taking the dodecagon-
shaped aperture as an example, diffraction around the edge
of the aperture projects a point light source to a dodecagram
on the photo. Different from the aperture, line-shaped lens
defects always lead to uneven shimmer. For the lens flare
in the daytime, as a light source with high intensity, the
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Wu et al. (Synthetic)

Wu et al. (Real)

Flare-R (Real)Flare7K (Synthetic)

Flare7K++
Flare-R annotationsFlare7K annotations

Flare image Light source
Flare image

Light source 

extraction

Fig. 4: Comparison between our Flare7K++ dataset and Wu et al.’s dataset [37]. Different from the previous flare dataset,
our dataset contains more diverse flare patterns and provides more annotations including light source, glare with shimmer,
streak, and reflective flare. The yellow area represents the additional content of this paper compared to the conference
version. Its annotations are obtained from a light source extraction module trained on Flare7K dataset.

sun will leave bright shimmers over the whole screen. In
contrast, the intensity of the artificial light is lower and the
area of the shimmer is always similar to the glare effect. As
shimmer only differs from glare in terms of pattern, it can
also be viewed as a high-frequency component of the glare.

Streaks (a.k.a., bright lines, stripes) are line-like flares that
are significantly longer and brighter than shimmer [26],
[29]. They often appear in smartphone photography and
nighttime driving video. Oriented oil stains or abrasions
on the front lens may act as grating and cause beam-
like PSF. During the daytime, streaks are just like brighter
shimmer. However, in a low-light conditions, even a light
source with low intensity may generate streaks across the
whole screen. Since one cannot always keep a smartphone’s
lens or vehicle-mounted camera clean, this phenomenon is
conspicuous at nighttime.

3.2 Reflective Flare
Reflective flares (a.k.a., ghosting) are caused by reflection in
multiple air-glass lens surfaces [16]. For a lens system with
n optical surfaces, even if the light is exactly reflected twice,
there are still n(n − 1)/2 kinds of combinations to choose
two surfaces from n surfaces [16], [37]. Generally speaking,
the reflective flares form a combination of different patterns
like circles, polygons, or rings on the image. Due to multiple
reflections between lenses, it is challenging to synthesize
reflective flares in physics. To simulate reflective flares, a
more straightforward method is to use 2D approaches [17].
Specifically, for 2D reflective flare rendering, since the hoop
and ring effect caused by dispersion is not apparent at night,
we can abstract the reflective flare as a line of different

irises as shown in Fig. 3. During the process of reflection,
if the light path is blocked by the field diaphragm, this
would result in a clipping iris. In 2D approaches, this effect
can be simulated by setting a clipping threshold for the
distance between the optical center and the light source. If
this distance is longer than the clipping threshold, parts of
the irises would be clipped proportionally.

Ideally, each iris can be added to the image indepen-
dently. Moreover, there will not be interference between
different irises. However, in real-world scenes, the neigh-
boring rays are often correlated and generate a triangle
mesh. To avoid blocking artifacts, Ernst et al. [9] proposed
a way for caustics rendering and introduced a technique
for combining and interpolating these irises. In our method,
since rendering physically realistic caustics increases the dif-
ficulty of simulating reflective flare, we use specific caustics
patterns to simulate this effect.

4 FLARE7K++ DATASET

The only existing flare dataset is the one proposed by
Wu et al. [37], which is mainly designed for daytime
flare removal. Thus, the streak effect and glare effect that
commonly exist in nighttime flares are not considered in
Wu et al.’s dataset. In terms of nighttime flares, the patterns
are mainly decided by the stains attached on the lens. The
variety of contamination types makes it difficult for physics-
based methods such as Wu et al.’s approach to collect real
nighttime flares by traversing all different pupil functions.
This results in the lack of diversity and the domain gap
between synthetic flares in Wu et al.’s dataset and that in
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Streak mask Synthetic streak

Noise pattern

(Shimmer)

Round gradient Synthetic glare

Real-world

reference Image

𝜶: section curve

𝜷: glare curve

Pattern parameters

𝜸: noise pattern

𝜽: vanishing angle 

Flare & Light

Bank

Shimmer Light source

𝜶: section curve 𝜷: glare curve

Fig. 5: The pipeline of scattering flare synthesis in Flare7K dataset. To synthesize scattering flare, we first obtain streak
section curve α, glare descent curve β, noise patch near the light source γ, and the vanishing corner’s angle θ around the
streak from the reference image. α and θ are used to synthesize the glare effect while α and β are used to simulate the
streak. To simulate the degradation around the light source, we add a blurred fractal noise pattern on the shimmer to create
a realistic flare.

real-world night scenes. To address the challenges posed by
domain gap and lack of diversity, we introduce Flare7K++,
a novel dataset that comprises two components: Flare7K,
a synthetic flare dataset, and Flare-R, a collection of flare
images captured in real-world settings in the dark room.
As shown in Fig. 4, our flare patterns are more diverse and
closer to real-world nighttime cases.

4.1 Flare7K Dataset

To synthesize Flare7K, we take hundreds of nighttime flare
images with different types of lenses (smartphone and
camera) and various light sources as reference images. We
aggregate the captured images and summarize the scatter-
ing flares as 25 typical types based on their patterns. For
each type of flare, we generate 200 images with different
parameters such as the glare’s radius, the streak’s width,
etc. Since reflective flares are directly related to the type
of lens group, we also capture some video clips using
different cameras as references for reflective flare synthesis.
By referring to these real-world nighttime flare videos, we
design a group of irises for each specific kind of camera and
synthesize 10 typical types of reflective flares. We finally
obtain 5,000 scattering flares and 2,000 reflective flares. Since
flare rendering is relatively mature, we choose to directly
use the plug-in Video Copilot’s Optical Flares in Adobe
After Effects to generate customized flares. Fig. 5 presents
our scattering flare synthesis pipeline. We separate the lens
flare into four components including shimmer, streak, glare,
and light source. For each component, we analyze the pa-
rameters like glare’s radius range and color-distance curve

in reference images. Then, we use Adobe After Effect to
synthesize flare templates.
Glare Synthesis. From the reference flare-corrupted images
of each type, we first plot the relationship between the RGB
value of the pixel and its distance to the light source as
the glare curve. Divided by the glare’s radius, such a color-
distance relationship can be viewed as a color correction
curve. Applying this curve to a round gradient pattern with
the glare’s radius can produce the glare effect of this type of
flare. Since the region’s luminance around the streak some-
times becomes weaker than the normal area, we measure the
vanishing angle manually and use a feathered mask around
the streak to decrease the opacity of glare in these areas. The
angle of this missing corner is set to a variable to cover more
cases while generating this type of scattering flare.
Streak Synthesis. In Sun et al. [29]’s work, it assumes that
the streak is always generated with a 2-point star PSF.
However, the streak effect is not even symmetric, and one
side is often much sharper than the other side. To imitate
this effect, we manually draw a mask for each type of streak
in Adobe After Effect and set the width as a variable. Then,
we plot the RGB value of the streak’s section and glare
section and use this curve to colorize the streak and blur
the mask’s edge. The blur size for each edge is derived from
the section curve’s half-life value.
Shimmer Synthesis. As for shimmer, we use the shimmer
template of Optical Flares and adjust the parameters until it
roughly matches the flare of the image. In the area around
the light source, the image often suffers from strong degra-
dation that is challenging to be simulated by Optical Flares.
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TABLE 1: A comparison between our Flare7K++ dataset (Flare7K+Flare-R) and Wu et al.’s dataset. The ‘type (s+r)’
indicates the number of different patterns of scattering (s) flare and reflective (r) flare. In particular, we show the numbers
as the type of scattering flares + type of reflective flares. In the Flare-R dataset, the three smartphones we used possess 9
rear cameras which result in 9 types of reflective flares. Since it is difficult to separate shimmer and glare by definition, we
provide glare annotations that also contain the shimmer effect.

Dataset Statistics Annotations

number synthetic real type (s+r) light source reflective flare streak glare

Wu et al. [37] 5,001 3,000 2,001 2+1 × × × ×
Flare7K (ours) 7,000 7,000 0 25+10 ✓ ✓ ✓ ✓
Flare-R (ours) 962 0 962 962+9 ✓ × × ×

If we suppose our lens flare is smooth, this degradation
would be separated as part of the deflared image. Thus,
we use Adobe After Effect’s default plug-in fractal noise to
generate a noise patch and then add the radial blur effect to
it, thus creating a radial noise pattern. This pattern will be
added to a shimmer template of Optical Flares to compose
a realistic shimmer.
Light Source Synthesis. We apply thresholding on flare-
corrupted images to obtain a group of overexposed tiny
shapes. To simulate the light source’s glow effect, we apply
another plug-in named Real Glow on different tiny shapes
in Adobe After Effects. To ensure that only the light source
region is overexposed, the light source is made larger than
the glare’s overexposure part. Then, it is added to the flare
with screen blend mode. This mode ensures that the over-
exposed region is not expanded and brings realistic visual
results. These synthetic light sources will be used as light
source annotations in our training pipeline in Section 5.1.
Reflective Flare Synthesis. For reflective flares, the plug-
in Optical Flares’ Pro Flares Bundle contains 51 kinds of
different captured high-quality iris images that can serve as
the iris bank. While comparing with the reference video, we
pick the most similar irises and manually adjust their size
and color with the Optical Flares plug-in. Since the distances
from different irises to a light source are always propor-
tional, we follow the plug-in’s pipeline to set different iris
components in a line with proportional distance to a light
source. After that, we can obtain a reflective flare template.

For some special types of reflective flares, we also con-
sider flares’ dynamic triggering mechanisms like caustics
and clipping effect. These phenomena will happen when
the light source’s position on the image is far from the
lens’ optical center. As stated in Section 3.2, the caustics
phenomenon is caused by interference between different
irises. To simulate this effect, we use Optical Flares’ default
caustics template to generate a caustics pattern in the center
of the iris. To simulate the dynamic triggering effect, the
opacity of this caustics pattern is set to be proportional to
the distance between the iris and the light source. As for
the clipping effect, it is generated when the reflected light
path is blocked by more than two lenses’ apertures. It can
be viewed as the intersection of two irises. Thus, when the
iris-light distance is larger than the clipping threshold, we
start to erase parts of the iris by using another iris as a mask.
This iris will only serve as a mask and will not be rendered.

In nighttime situations, matrix LED light is common
and may bring lattice-shaped reflective flare. To imitate this
effect, we synthesize some irises in the shape of the lattice

as shown in Fig 6. Compared to the previous dataset [37],
these designs reflect real-world nighttime situations better.

4.2 Flare-R Dataset
Since the synthetic dataset does not contain complicated
degradation caused by diffraction and dispersion in the lens
system, we also capture a real-world flare dataset, Flare-R,
with 962 flare patterns. Different from Wu et al.’s capturing
method, we reproduce common lens contaminants in daily
use to enrich our dataset’s diversity. We dip different types
of liquid including water, oil, ethyl alcohol, and carbonated
drinks on the lens surface and wipe it with our fingers
and different types of clothes. After each wipe, we capture
a new lens flare image. We disable the automatic white
balance of the phone cameras and obtain different-colored
lens flare images by changing the color temperature of the
light source. The Huawei P40, iPhone 13 Pro, and ZTE AXon
20 5G all have three rear lenses with different focal lengths.
For each lens, we vary the distance from the camera to the
light source and capture approximately 100 images. In total,
we collected 962 flare images covering almost all common
situations. Figure 4 presents examples to show the difference
between synthetic and real flare patterns.

Unlike the synthetic Flare7K data, obtaining the light
source annotations for the real-captured flares is difficult.
To solve this problem, we train a network with Flare7K
and its light source annotations to extract the light source
from the real flare images. We use this network to process
all images in the Flare-R dataset to automatically get the
light source annotations. For very few failure cases where
reflective flares are not removed, affecting the accuracy of
light source extraction, we manually erase erroneous bright
spots to obtain the light source annotations. The details of
light source extraction are provided in Section 7.

4.3 Comparison with Existing Flare Dataset
We compare the differences between our dataset and
Wu et al.’s dataset in Table 1. The comparison shows that our
new dataset offers richer patterns and annotations, which
benefit broader applications, such as lens flare segmentation
and light source extraction. The details of extended applica-
tions are presented in Section 7. In addition, Fig. 4 shows
that our new dataset is more representative of real-world
nighttime flares in terms of color and pattern.

4.4 Paired Test Data Collection
Since there is no publicly available nighttime flare removal
test dataset, we collect new real nighttime flare paired
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Fig. 6: The pipeline of reflective flare synthesis in Flare7K dataset. Since clipping effects and caustics are not obvious in
a single image, we capture video clips as references. While synthesizing reflective flares, we first filter most similar irises
from Optical Flares Plug-in’s iris bank. Then, we manually adjust the position, size, and color of these irises to fit the
reference. Finally, these irises are fused to create a reflective flare template in Adobe After Effect. For some special cases
like caustics, matrix light, or clipping effect, the details are presented in Section 4.1.

data for full-reference evaluations. For most well-designed
lenses, the flares of a nighttime scene are mainly caused by
the stains on the lens’s surface (or scratches on the wind-
shield for nighttime driving). To reproduce these flares, we
use fingers and a cloth to wipe the front lens of the camera to
mimic common stains. After that, we use lens tissue to clean
the front lens slightly to obtain flare-free ground truth. The
action of cleaning may still cause a tiny misalignment of the
paired images. Thus, we align the paired images manually
and obtain 100 pairs of real-world flare-corrupted/flare-free
images as our real-world test dataset. Since the ground
truth may still be influenced by the slight flares brought
by the lens’s defects, global PSNR cannot fully reflect the
performance of flare removal methods. To address this
problem, we manually labeled masks for all streak, glare,
and light source regions as shown in Fig. 8. Masked PSNR
can be used to evaluate the restored results in the regions of
different components of flares. We name the masked PSNR
of glare and streak regions G-PSNR and S-PSNR.

5 PROPOSED METHOD

In the inference pipeline proposed by Wu et al. [37], the
network outputs a flare-free prediction that lacks a light
source. The flare-corrupted image is then processed with
a manual threshold value and blur kernel to extract the
light source mask, as shown in Fig. 7. However, the streak
region may still get overexposed, leaving parts of the flare
on the image. Moreover, thresholding-based algorithms may
fail to segment light sources that are not bright enough,
and blurring operations may inadvertently erase tiny light
sources. Consequently, it is desired to have a method that

can accurately preserve light sources while removing flare
artifacts. To address these challenges, we introduce an end-
to-end training pipeline that uses our light source anno-
tations, ensuring the reliable preservation of light sources
during flare removal.

5.1 Training Pipeline

As shown in Fig. 7, our previous Flare7K pipeline [7], [37]
takes a flare-corrupted image I as input and outputs a flare-
free image ÎB . Then, the estimated flare image ÎF will be
predicted by calculating the difference between the input I
and the output ÎB . Threshold and erosion operation will be
applied on flare-corrupted image I to obtain the mask M0.
A masked loss of the estimated flare and flare-free image
is calculated on the region outside the mask to drive the
network to focus on reconstructing the details outside the
light source. Thus, this previous method produces a flare-
removed image without any light source and pastes the light
source back by post-processing.

Our new Flare7K++ pipeline modifies the framework
to directly predict a 6-channel output with 3 channels as
a flare-free image Î0 and the other 3 channels as a flare
image F̂ . To ensure these two images can be added to get the
original input, a reconstruction loss is used to supervise the
final output. Different from the previous flare dataset [37],
our Flare7K++ dataset provides light source annotations.
As shown in Fig. 7, light source image IL is added to
the background images IB to synthesize the ground truth
of flare-free images I0. Then, the difference between the
flare image IF and light source image IL is calculated to
supervise the estimated flare F̂ . This allows us to train end-
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Fig. 7: The comparison of the previous pipeline (a) applied by Wu et al., Flare7K [7], [37] and our current nighttime flare
removal training and inference process (b). In the figure, purple lines represent the inference pipeline, while the yellow
boxes indicate a sampled training batch. In the training stage of our proposed method (b), paired flare and light source
images will be randomly selected from the Flare7K++ dataset. The flare image will be added to the background image
to synthesize the flare-corrupted image. Different from the previous method [7], [37] that outputs a 3-channel flare-free
prediction, our network produces a 6-channel output that includes a 3-channel flare-free image and a 3-channel flare
image. We use the light source image added to the background image to generate the flare-free ground truth image. We
also calculate the difference between the flare image and the light source image to produce the ground truth for the flare
image. These ground truth images are used to supervise the network during training.

Flare-corrupted image Ground truth Annotations

Fig. 8: Typical example sampled from the test dataset. For
each test image, we provide a corresponding flare segmen-
tation map. Glare, streak, and light sources are labeled in
yellow, red, and blue, respectively. S-PSNR means the PSNR
in the red region and G-PNSR represents the PSNR in the
sum of the yellow and red regions.

to-end networks without manually setting thresholds to ex-
tract the light source. Thus, our pipeline enables a network
to distinguish overexposed light sources and overexposed
streaks. Even for non-saturated light sources, our learning-

based method can also produce accurate output.

5.2 Loss Function

In the training process, paired flare image and light source
image are randomly sampled from the Flare7K++ dataset.
The light source image IL is added to the background image
IB to obtain the ground truth of the flare-free image I0.
Then, the difference between the flare IF and light source IL
is used as the ground truth of the flare image F . Since our
flare images and Flickr background images are all gamma-
encoded, we follow Wu et al.’s pipeline and apply an ap-
proximate inverse gamma correction curve with γ sampled
from [1.8,2.2] to linearize the images before each addition
and subtraction operation. Our flare removal network can
be defined as Φ, and it takes the flare-corrupted image I
as input. Then, the estimated flare-free image Î0 and flare
image F̂ can be expressed as:

Î0, F̂ = Φ(I). (1)
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Fig. 9: Visual comparison of flare removal on real-world nighttime flare images. Flare7K represents training network with
pipeline proposed by Wu et al. [37]. As shown in the last two lines, when the light sources are not bright or large enough,
the threshold and mask feathering module may fail to reconstruct the light source. Our new dataset and the proposed
method can help achieve more realistic light sources and eliminate the streak effect better.

Like previous work [7], [37], flare and background im-
ages are supervised using L1 loss and perceptual loss Lvgg .
The background image loss LB can be written as:

LB = L1(Î0, I0) + Lvgg(Î0, I0), (2)

which shares the same expression with the flare loss LF .
The reconstruction loss Lrec is defined as:

Lrec = |I − Clip(Î0 ⊕ F̂ )|, (3)

where ⊕ means the addition operation in the linearized
gamma-decoded domain with previously sampled γ. Then,
the addition is clipped to the range of [0,1]. Overall, the final
loss function aims to minimize a weighted sum of all these
losses:

L = w1LB + w2LF + w3Lrec, (4)

where w1, w2, w3 are respectively set to 0.5, 0.5, and 1.0 in
our experiments.

6 EXPERIMENTS

6.1 Experimental Details

Data Augmentation. To train our nighttime flare removal
model, our paired flare-corrupted and flare-free images are
generated on the fly. The background images are sampled
from the 24K Flickr images [44]. Then, we sample the flare
image and its corresponding light source from both Flare7K
and Flare-R datasets with a probability of 50% each. An in-
verse gamma correction with γ ∼ U(1.8, 2.2) is first applied
to the flare image (including light source) and background
image to recover the linear luminance. For the image in
our flare dataset, a random rotation U(0, 2π), a random
translation U(−300, 300), a random shear U(−π/9, π/9), a
random scale U(0.8, 1.5), a random blur with the blur size in
U(0.1, 3), and a random flip are applied to the paired light
source and flare image. Then, a random global color offset in
U(−0.02, 0.02) will be added to the flare image to simulate
the situation in which the flare may illuminate the whole
scene. For each background image, we randomly multiply
the RGB values with U(0.5, 1.2) and add a Gaussian noise
with variance sampled from a scaled chi-square distribution
σ2 ∼ 0.01χ2 to it. After adding the augmented light source
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Fig. 10: Visual comparison on our real-world test images for different image restoration networks trained on our Flare7K++
dataset. These networks include U-Net [25], HINet [4], MPRNet [40], Restormer [39], and Uformer [33].

TABLE 2: Quantitative comparison of synthetic and real nighttime flare-corrupted data. In the experiments, Wu et al. [37]
use U-Net [25] as the backbone network and Flare7K’s baseline applies Uformer [33]. Experiments show that our
Flare7K++ dataset has better performance on real nighttime flare-corrupted images. The benchmark of the image
restoration methods for nighttime flare removal is listed on the right part of the table. ”*” denotes models with reduced
parameters due to the limited GPU memory. It is expected that their original models would perform better.

Metric\Method Input Previous work Network trained on Flare7K++

Zhang [42] Sharma [28] Wu [37] Flare7K baseline U-Net [25] HINet [4] MPRNet* [40] Restormer* [39] Uformer [33]

PSNR↑ 22.561 21.022 20.492 24.613 26.978 27.189 27.548 27.036 27.597 27.633

SSIM↑ 0.857 0.784 0.826 0.871 0.890 0.894 0.892 0.893 0.897 0.894

LPIPS↓ 0.0777 0.1738 0.1115 0.0598 0.0466 0.0452 0.0464 0.0481 0.0447 0.0428

G-PSNR↑ 19.556 19.868 17.790 21.772 23.507 23.527 24.081 23.490 23.828 23.949

S-PSNR↑ 13.105 13.062 12.648 16.728 21.563 22.647 22.907 22.267 22.452 22.603

image to the background, the result is then clipped to [0, 1]
as the corresponding flare-free image ground truth. Then,
we generate the ground truth for the flare by subtracting
the light source from the augmented flare image as Fig. 7(b).
Finally, we combine the augmented flare and background
images to produce the flare-corrupted images, which serve
as input to our network.
Training Details. During the training stage, our input flare-
corrupted images are cropped to 512× 512× 3 with a batch
size of 2. We train our model for 300K iterations on the
24K Flickr image dataset [44] with the ADAM optimizer.
The learning rate is set to 10−4. To build a benchmark on
our Flare7K++ dataset, we retrain the state-of-the-art image
restoration networks including MPRNet [40], HINet [4],
Uformer [33], and Restormer [39] using our Flare7K++
dataset. As MPRNet and HINet are multi-stage image
restoration networks that are designed to handle input and
output channel numbers that are consistent with each other,
we add a 3-channel black image to the input. By doing
so, we ensure that the number of channels in the input is

equal to 6, which is necessary for the proper functioning
of the networks. To ensure the fairness of the experiment,
we use the same training settings and data augmentation
methods as stated above to train these methods. All these
models are trained using the Nvidia Geforce RTX 3090
GPUs. Due to the limited GPU memory (24G memory) of
Nvidia Geforce RTX 3090, we reduce the parameters of the
MPRNet and Restormer which are known as the heavy
networks. Specifically, we decrease the refinement block
number of Restormer from 4 to 1 and set the dimension of
the feature channel to 16 rather than the default dimension
48. The MPRNet’s number of features is set to 24 rather than
the default 40 to satisfy the memory limitation. We believe
the default parameter settings of these two networks would
perform better.

6.2 Comparison with Previous Work

To demonstrate the effectiveness and advantages of our
dataset, we compare the performance of different datasets
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Fig. 11: Comparison of different flare removal methods on real-world nighttime flare-corrupted images. Compared to
results obtained only using Flare7K, our approach trained with Flare7K++ is able to significantly reduce severe image
degradation around the light source.

and methods for nighttime flare removal. We also present
a benchmark of the existing image restoration methods on
our dataset.

Experimental Setting. In the absence of nighttime flare
removal methods, we compare our baseline model with
a nighttime dehazing method [42], a nighttime visual en-
hancement method [28], and a flare removal method [37].
Zhang et al. [42] propose a nighttime haze synthesis method
that can simulate light rays and train a network with the
synthetic data. We use its pre-trained model for comparison.
Sharma et al.’s nighttime visual enhancement method [28] is
an unsupervised test-time training method that can extract
low-frequency light effects based on gray world assumption
and glare-smooth prior. We follow its setting to test the
results on our test data. Wu et al.’s study [37] is most
related to our work. Since Wu et al. do not provide their
model checkpoint, we use their released code and data to
train a model for comparison. We also compare our method
with previous Flare7K baseline that uses Uformer [33] as
backbone. The quantitative results are presented in Table 2.

Qualitative Comparison. We first show the visual com-
parison of real-world nighttime flares in Fig 9. The com-
parison suggests that recent approaches for nighttime haze
removal [42] and nighttime visual enhancement [28] have
little effect on nighttime lens flare. In contrast, the model
trained on our dataset can produce satisfactory outputs on
nighttime flare-corrupted images. Although Wu et al. [37]
can eliminate the glare effect effectively, it cannot tackle
diverse streak effects and may even remove the light source.
We show more results of our method in Fig 11. In these
challenging cases, our approach yields satisfactory flare-free

results. With the help of the Flare-R dataset, our new method
can eliminate complicated degradation around the light
source better. Besides, our end-to-end pipeline can solve
the problem that tiny and not overexposed light sources are
hard to recover. Our method can even achieve robust results
in scenarios with multiple light sources.
Quantitative Comparison. We use common full-reference
metrics PSNR, SSIM [34], and LPIPS [43] to quantify the
performance of different methods in Table 2. To better illus-
trate the comparison of different methods in terms of their
effectiveness in removing different components of flares,
we also introduce two metrics, S-PSNR and G-PSNR, to
measure the flare removal performance on glare and streak’s
region. The mask of glare and streak of test data is manually
plotted as shown in Fig. 8. Since Sharma et al.’s method [28]
is based on the gray world assumption, it fails in the glare
effect in white. Zhang et al.’s method [42] is mainly designed
for nighttime haze. Although it can alleviate the lens flare,
it also changes the image’s color, leading to a decrease in
SSIM. In Table 2, the difference between U-Net [25] on our
dataset and Wu et al.’s method also suggests the effective-
ness of Flare7K++. In comparison, Uformer [33] performs
best for PSNR and LPIPS. Thus, we follow the Flare7K’s
setting and set Uformer [33] as our baseline method in
the following sections. All these networks achieve good
performance, revealing the reliability of our dataset. More
results of our method are shown in Fig. 12.

6.3 Ablation Study

In this section, we study the main designs of our proposed
method and detailed comparison with the previous Flare7K
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Fig. 12: Our results on real-world nighttime flare-corrupted images captured with different lenses. Since our Flare7K++
dataset contains diverse flares, it can generalize well to different situations.
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Fig. 13: Visual comparison for training networks with
Flare7K and Flare7K++. Bright light sources may leave
complicated artifacts on real-captured nighttime scenes. The
network only training with Flare7K cannot solve the degra-
dation well. Training with the combination of Flare-R and
Flare7K can solve these problems effectively.

dataset.

TABLE 3: Ablation study of training network with different
subsets of Flare7K++.

Training sets Real captured test set

Flare7K Flare-R PSNR SSIM LPIPS G-PSNR S-PSNR

✓ 27.257 0.890 0.0471 23.762 21.294

✓ ✓ 27.633 0.894 0.0428 23.949 22.603

Dataset. To illustrate the necessity of training with both
Flare-R and Flare7K, we conduct an ablation study using
only Flare7K in our new pipeline. The results, shown in
Fig. 13, reveal that areas near the light source often exhibit
severe artifacts. As these artifacts are difficult to synthesize,
training the network solely with Flare7K may not fully
remove them from the image. However, by incorporating
Flare-R into the training process, our mix-training strategy
greatly improves flare removal performance in streak re-
gions and effectively resolves the artifact issue, as demon-
strated in Table. 3.
Light Source Completion. To demonstrate the effectiveness
of our light source processing method, we conduct an ab-
lation study to evaluate the impact of incorporating light
source annotations during training. For comparison, we
train a Uformer [33] with 6-channel output without using
light source annotations as shown in Fig 7(b). Then, we
follow Flare7K’s setting to set a mask at the input’s overex-
posed regions and not supervise the output in these regions
by using masked flare loss and masked background loss.
In the inference stage, we set the threshold of luminance
to 0.97 to extract a mask and use Wu et al. [37]’s mask
feathering method to smoothly blend the light sources back
to the image. As shown in Table 4, training without light
source annotations may seriously decrease the quantitative
results. Besides, Fig. 14 illustrates the benefits of our new
light source annotations. It can help reconstruct tiny light

Input No light source With light source

Fig. 14: Visual comparison for training networks with
and without light source annotations. The mask feathering
method may also remove tiny light sources or preserve
parts of the streak around the light source. Our light source
annotations can help solve these problems.

Input Flare7K Flare7K++

Fig. 15: Visual comparison for training networks with
Flare7K’s pipeline and our new pipeline. While training the
network, we do not change the loss function. All networks
are trained with Flare7K++.

sources well and can avoid leaving a tail of the streak effect
next to the light source.

TABLE 4: Ablation study of training with and w/o light
source annotations.

Light source PSNR SSIM LPIPS G-PSNR S-PSNR

w/o light source 26.850 0.895 0.0473 23.441 21.909

with light source 27.633 0.894 0.0428 23.949 22.603

Training Pipeline. In Wu et al. and Flare7K’s training
pipeline [37], the network will output a flare-removed im-
age. Then, the difference between the flare-corrupted image
and the flare-removed image will be calculated to estimate
the flare. To avoid the influence brought by the light source
annotations, we train a network with the pipeline of Fig 7(a)
and also supervise the overexposed region of the estimated
flare-removed and flare image by not adopting masked
loss. In the saturated region of the flare-corrupted image,
the addition of flare-free ground truth and ground truth
of flare image will get higher than 1.0. Thus, the differ-
ence operation will introduce bias while calculating the
flare image during training. This bias may bring artifacts
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Fig. 16: Visual comparison of the effectiveness of flare removal algorithms on various downstream tasks, including stereo
matching, semantic segmentation, and optical flow. In (a), our flare removal algorithm prevents mismatching caused by
lens flare, improving the accuracy of stereo matching. In (b), lens flare is incorrectly detected as a part of the car, causing
errors in the optical flow estimation algorithm. Removing the flare improves the accuracy of the estimation. In (c), the
presence of lens flare leads to the misclassification of objects in the scene, resulting in inaccurate semantic segmentation.
By removing the lens flare, more accurate semantic segmentation results can be obtained.

at streak’s overexposed region as shown in Fig 15. These
artifacts will influence the quantitative results seriously as
shown in Table. 5. Since our new pipeline does not contain
the subtraction operation, it can avoid this problem and
reconstruct details well in the saturated regions.

TABLE 5: Ablation study of training with our proposed
pipeline.

Pipeline PSNR SSIM LPIPS G-PSNR S-PSNR

Wu et al. [37] 27.166 0.861 0.0432 23.598 22.118

Ours 27.633 0.894 0.0428 23.949 22.603

6.4 Flare Removal for Downstream Tasks

To show the effectiveness of the flare removal algorithm
trained on our Flare7K++ for downstream tasks, we evalu-
ate the performance of both the originally captured images
and the processed images in common nighttime automatic
driving tasks such as stereo matching, semantic segmenta-
tion, and optical flow estimation as shown in Fig 16.
Stereo Matching. In this task, the apparent pixel difference
for each corresponding pixel in stereo images is calculated to
obtain the disparity map. As shown in Fig. 16(a), the stereo
images in the first row are captured by the ZED camera,
and the second-row images are flare-removed images using
a deep model trained on our Flare7K++ dataset. Then,
LEAStereo [5], a state-of-the-art stereo matching algorithm
pre-trained on the Kitti dataset [12], is applied to these stereo
images to estimate the disparity. The red boxes indicate
the obvious differences. Our results demonstrate that our
algorithm effectively avoids mismatching caused by lens
flare, significantly improving the robustness of the stereo
matching algorithm.
Optical Flow. Our flare removal method also benefits op-
tical flow estimation, as demonstrated in Fig.16(b). The
optical flow was estimated using RAFT [31] trained on
Sintel [2] dataset. The figure shows that the flare caused
by car light leads to erroneous optical flow. Our method

effectively eliminates the flare, resulting in more precise and
dependable optical flow estimation. This leads to an overall
improvement in the performance and safety of downstream
tasks relying on optical flow.
Semantic Segmentation. Fig. 16(c) illustrates the benefit
of our flare removal method for image segmentation. In
the figure, the segmentation maps are calculated by DAN-
Net [35], [36], a nighttime semantic segmentation algorithm
trained on Dark Zurich [27] and Cityscapes [6]. In the flare-
corrupted image, the vegetation is mislabeled as the sky
and the pole is mislabeled as the road, which may pose
potential risks for nighttime driving. Our flare removal
method effectively addresses these issues by improving the
accuracy and reliability of the segmentation maps.

7 POTENTIAL APPLICATIONS

In our dataset, for each lens flare image, we provide sepa-
rated images of light source, glare with shimmer, streak, and
reflective flare. These annotations can facilitate the design of
improved flare removal methods and promote other related
tasks. Besides, as the first nighttime flare dataset, the flare
images can also be added to the training dataset of other
nighttime vision algorithms to increase the robustness for
flare-corrupted situations. With these annotations of our
data, we provide more details about how to implement lens
flare segmentation and light source extraction as follows.
Please note that these annotations are not limited to these
two applications.
Lens Flare Segmentation. Flare segmentation is useful for
flare removal. When the streak is too bright or overexposed,
it is difficult to recover the details of these regions by just
using an image decomposition network. A streak segmen-
tation model trained on flare segmentation data can help
locate these regions. Then, an image inpainting algorithm
can be used to restore the missing information. Besides,
the reflective flares for smartphone lenses always have the
same patterns as the light sources’ brightest regions. For
matrix LED lights, the reflective flares will also be matrix-
shaped patterns as shown in Fig. 6 of the main paper. Thus,
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Fig. 17: Lens flare segmentation with our dataset. Since our
dataset provides separated images for each component, it
can be used for lens flare segmentation. This figure shows
that PSPNet [45] trained on our dataset with annotations
can accurately segment different components in real-world
flare-corrupted images. In this figure, red, yellow, and blue
represent streak, glare, and light source, respectively.

segmented reflective flares can be referred to restore the
brightest regions in the saturated area, achieving the HDR
snapshot reconstruction.

To demonstrate the effectiveness of flare segmentation,
we train a network for lens flare segmentation and show
the flare segmentation results in Fig. 17. Specifically, we
use the PSPNet [45] as the flare segmentation network and
train it using the flare annotation of our dataset for 80k
iterations with a batch size of 2 on an Nvidia GTX 1080
GPU. The data augmentation pipeline is the same as the
pipeline mentioned in Section 6.1. We use the SGD optimizer
with a learning rate 0.01, a weight decay 0.0005, and a poly
learning rate policy. The power rate of the policy is set to
0.9. Since areas of the streak and light source are remarkably
lower than the glare effect, we use a cross-entropy loss with
the class weights 1.0, 1.0, 2.0, and 4.0 for background, glare
with shimmer, streak, and light source.
Light Source Extraction. Extracting light sources from a
flare image has always been a challenging task. If only over-
exposed areas in the image are extracted as light sources,
the final result will be very unrealistic. Therefore, retaining
a certain degree of glare effect is the key to achieving high-
quality light source reconstruction. However, even for flare
images taken in a darkroom, it is difficult to reconstruct
the light source using traditional algorithms. As shown in
Fig. 18, the method of threshold and mask feathering [37]
will also lead to preserving parts of streaks in the image.
Even worse, when the streak gets overexposed, it may be all
extracted as a light source.

With the light source annotations provided by our
Flare7K dataset, paired scattering flare and light source can
be used to train a light source extraction network. We use
a U-Net as the light source extraction network and train it
with L1 loss on these 5000 scattering flare images for 50k

Input Mask feathering Ours

Fig. 18: Light source extraction with our dataset. Compared
with traditional threshold and mask feathering method, our
light source extraction method can avoid leaving a little
”tail”.

iterations (20 epochs) on an Nvidia GTX 3090 GPU. Like
our flare removal model, the batch size is set to 2. Moreover,
we use the Adam optimizer with a learning rate 10−4. As
shown in Fig. 18, the glare effect of our method around
the light source is more natural when compared with Wu
et al. [37]’s mask feathering method. It benefits from the
high-quality annotations of the light source images in our
scattering flares. The light source annotations of our Flare-
R dataset are also obtained from our trained light source
extraction method.

8 LIMITATIONS

The aforementioned experiments demonstrate the impres-
sive performance of Flare7K++ in various scenarios How-
ever, the networks trained on our data may still fail to ad-
dress some challenging cases. Since reflective flares always
produce bright spots similar to bright windows and street
lights in the distance at night, these windows or lights may
also be removed as a part of reflective flares. Besides, when
the light source is close to the camera, it may leave a large
glare that may cover the whole image. This kind of glare
is tough to be removed. In this situation, the streak and
the region around the light source may get saturated in
one or more channels. Existing image decomposition-based
methods cannot complete this missing information well.
These limitations are mainly caused by the flare removal
method rather than our dataset. To solve these problems,
one would need to consider semantic priors as input or
introduce better network structures.

9 CONCLUSION

In this paper, we present a new dataset, Flare7K++, aiming
at advancing nighttime flare removal. Flare7K++ is com-
posed of a real-captured flare image dataset Flare-R and
a synthetic flare image dataset Flare7K. Flare7K contains
5,000 scattering and 2,000 reflective flare images, consisting
of 25 types of scattering flares and 10 types of reflective
flares. Flare-R contains 962 flare patterns and is captured
in the darkroom with different types of lens contaminants.
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Besides, we provide rich annotations for different flare
components, like light source, streak, glare with shimmer,
which are always absent in the previous dataset. With the
proposed dataset, we design a new nighttime flare removal
pipeline to improve the quality of nighttime images and
boost the stability of nighttime vision algorithms. Our novel
pipeline efficiently leverages the light source annotations,
resulting in improved accuracy in retaining the light source
while eliminating the flare. Extensive experiments show that
our dataset is sufficient to facilitate the removal of different
types of nighttime lens flares.
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