
1

Learning to Holistically Detect Bridges from
Large-Size VHR Remote Sensing Imagery

Yansheng Li, Junwei Luo, Yongjun Zhang, Yihua Tan, Jin-Gang Yu, Song Bai

Abstract—Bridge detection in remote sensing images (RSIs) plays a crucial role in various applications, but it poses unique challenges
compared to the detection of other objects. In RSIs, bridges exhibit considerable variations in terms of their spatial scales and aspect
ratios. Therefore, to ensure the visibility and integrity of bridges, it is essential to perform holistic bridge detection in large-size very-
high-resolution (VHR) RSIs. However, the lack of datasets with large-size VHR RSIs limits the deep learning algorithms’ performance
on bridge detection. Due to the limitation of GPU memory in tackling large-size images, deep learning-based object detection methods
commonly adopt the cropping strategy, which inevitably results in label fragmentation and discontinuous prediction. To ameliorate the
scarcity of datasets, this paper proposes a large-scale dataset named GLH-Bridge comprising 6,000 VHR RSIs sampled from diverse
geographic locations across the globe. These images encompass a wide range of sizes, varying from 2,048 × 2,048 to 16,384 ×
16,384 pixels, and collectively feature 59,737 bridges. These bridges span diverse backgrounds, and each of them has been manually
annotated, using both an oriented bounding box (OBB) and a horizontal bounding box (HBB). Furthermore, we present an efficient
network for holistic bridge detection (HBD-Net) in large-size RSIs. The HBD-Net presents a separate detector-based feature fusion
(SDFF) architecture and is optimized via a shape-sensitive sample re-weighting (SSRW) strategy. The SDFF architecture performs
inter-layer feature fusion (IFF) to incorporate multi-scale context in the dynamic image pyramid (DIP) of the large-size image, and the
SSRW strategy is employed to ensure an equitable balance in the regression weight of bridges with various aspect ratios. Based
on the proposed GLH-Bridge dataset, we establish a bridge detection benchmark including the OBB and HBB tasks, and validate
the effectiveness of the proposed HBD-Net. Additionally, cross-dataset generalization experiments on two publicly available datasets
illustrate the strong generalization capability of the GLH-Bridge dataset. The dataset and source code will be released at https://luo-z13.
github.io/GLH-Bridge-page/.

Index Terms—Bridge detection benchmark, very-high-resolution (VHR), large-size imagery, deep network.

✦

1 INTRODUCTION

B RIDGES represent critical infrastructure components,
serving as fundamental transportation facilities that tra-

verse various landscapes. They hold substantial significance
in the domains of civil transportation, military maneuvers,
and disaster relief efforts [1]. Meanwhile, bridges exhibit
rapid construction and frequent modification. For example,
in 2012, the United States had about 617,000 bridges whose
deterioration will increase over the next 50 years, requiring
more than $125 billion for a backlog of repairs1. Therefore,
efficient and effective bridge detection is of paramount
importance to the timely update of the navigation map
and further contributes to monitoring the structural health
and condition of bridges [2], [3]. Remote Sensing Images
(RSIs), with their extensive geographic coverage and high
revisit frequency, are well-suited as the foundational data
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Fig. 1. The main characteristics of bridges impose strict requirements
on both image resolution and size for bridge detection, as illustrated in
(a). When tackling large-size images, the mainstream cropping strategy
results in inaccurate labels and predictions. In (b), yellow windows
denote the sliding windows (i.e., cropping windows), while red OBBs
denote the labels and green OBBs show the prediction results.

for bridge detection. Meanwhile, considering the power-
ful feature representation abilities of deep networks, deep
learning-based bridge detection from RSIs holds substantial
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promise and has become a focal point of research [4].
As illustrated in Fig. 1, detecting multi-scale bridges in

RSIs is quite challenging compared to other common ob-
jects, primarily due to two main characteristics: (i) diverse
object scales. In VHR RSIs, the lengths of bridge instances
vary from a few to several thousand pixels. (ii) extreme
aspect ratios. There are significant differences in the degree
of elongation among different bridges. To ensure the de-
tectability of small or narrow bridges, the utilization of very-
high-resolution (VHR) images is crucial. At the same time,
to pursue the structural integrity of large and elongated
bridges in VHR images, it is essential to conduct holistic
bridge detection in large-size images, which imposes strict
requirements on both datasets and methods. Despite notable
advancements in multi-class object detection [12], [13], [14],
[15] and bridge detection [4], [11], [16], there remains a
deficiency in large-scale datasets and appropriate methods
for holistic bridge detection in large-size VHR RSIs.

As shown in Table 1, although numerous popular
datasets for object detection in RSIs have been created [6],
[7], [8], [17], the quantity of bridges within these datasets is
limited. Furthermore, datasets explicitly created for bridge
detection [4], [11] are often constrained by sample volumes
and image sizes. Some of the existing datasets only provide
horizontal bounding box (HBB) annotations instead of the
accurate oriented bounding box (OBB) annotations. There-
fore, training a robust and generalizable bridge detection
model using the aforementioned datasets seems to be un-
realistic. In response to the data limitations, we construct
GLH-Bridge, a large-scale dataset for bridge detection in
large-size VHR RSIs. GLH-Bridge contains 6,000 VHR RSIs
sampled globally and over 59k manually annotated bridges.
Compared with existing datasets for bridge detection, GLH-
Bridge stands out by annotating multi-scale bridges in large-
Size VHR RSIs that encompass various background types
such as vegetation, dry riverbeds, and roads, thereby better
capturing the characteristics of bridges in real-world scenar-
ios. In short, the GLH-Bridge exhibits comprehensive ad-
vantages and notable merits compared with existing bridge
detection datasets.

To advance the research on the fundamental and prac-
tical issue, we propose a new challenging yet meaningful
task: holistic bridge detection in large-size VHR RSIs.
To address this task, the potential solutions can be cate-
gorized into four main aspects: (i) Given the constraints
of GPU memory, mainstream deep learning-based object
detection methods [14], [15], [18], [19], [20] commonly em-
ploy cropping strategies [7], [21]. However, such strategies
have inherent limitations and easily cut off large bridges,
as shown in Fig. 1. In addition to the cropping strategy,
several object detection methods tackle the original large-
size images with fixed-window downsampling strategies
[22], [23], [24], resulting in a significant loss of image
information; (ii) Methods like streaming [25] perform the
forward and backward pass on smaller tiles of the large-size
image, but they are unable to support deep neural network
(DNN) with normalization; (iii) Methods like LMS [26] use
memory offload to share memory across system memory
(CPU DRAM) and the GPU memory. However, they intro-
duce significant time overhead and are constrained by the
maximum memory expansion rate; (iv) Multi-GPU tensor

parallelization techniques [27], [28] have the promise to ex-
tend deep networks to support holistic processing of large-
size images. However, they tend to be resource-intensive
and difficult to operate in regular conditions. In summary,
existing methods are ineffective under common computa-
tional resources (e.g., a single GPU with 24 GB memory) for
holistic bridge detection in large-size VHR RSIs.

Considering the limitations of the aforementioned po-
tential solutions, we propose a holistic bridge detection
network (HBD-Net) specifically designed for bridge detec-
tion in large-size VHR RSIs. Our method presents two key
merits: (i) The separate detector-based feature fusion (SDFF)
architecture, when applied to the dynamic image pyramid
(DIP), demonstrates an efficient approach for processing
large-size images with minimal resource consumption. (ii)
The shape-sensitive sample re-weighting (SSRW) strategy
balances regression weights of bridges with different aspect
ratios. Experimental results on GLH-Bridge demonstrate the
outstanding performance of our proposed HBD-Net.

To sum up, this paper makes the first exploration of
holistic bridge detection in large-size VHR RSIs as far as we
know. The main contributions of this paper are summarized
as follows:

• We propose GLH-Bridge, the first large-scale dataset
for bridge detection in large-size VHR RSIs. With
59,737 bridges set against various backgrounds, this
dataset offers a comprehensive representation of
bridges in real-world scenarios.

• A cost-saving network for holistic bridge detection
in large-size images (i.e., HBD-Net) is proposed,
which can efficiently handle large-size images with
the common GPU and holistically detect multi-scale
bridges with the well-designed SDFF architecture
and SSRW strategy.

• Using the proposed GLH-Bridge dataset, we create
a benchmark for bridge detection, covering both
the OBB and HBB tasks. The HBD-Net achieves
superior performance compared to existing state-of-
the-art algorithms. Furthermore, we conduct cross-
dataset generalization experiments to demonstrate
the strong generalization ability of GLH-Bridge. We
hope this benchmark can contribute to the funda-
mental evaluation of object detection in large-size
images.

The rest of this paper is organized as follows: Section 2
provides an overview of existing datasets and algorithms
for bridge detection. Section 3 offers a detailed descrip-
tion of the proposed GLH-Bridge dataset. In Section 4, we
introduce the proposed HBD-Net. Section 5 presents the
experimental results. Finally, Section 6 concludes the paper
and provides insights for future work.

2 RELATED WORK

In this section, we first discuss available datasets for bridge
detection. Next, we briefly review bridge detection methods
and potential methods from relevant fields for object detec-
tion in large-size images.
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TABLE 1
Comparison between GLH-Bridge and the other relevant bridge detection datasets. Only the bridge category is selected for comparison among

the multi-class object detection datasets. The comparison includes the number of images, image size, ground sampling distance (GSD), the
number of instances, annotation type, backgrounds, and data source.

Dataset Number
of images Image size GSD Number

of instances
Annotation

type
Diverse

backgrounds Data source

Bridge subset of multi-class object detection dataset

NWPU VHR-10 [5] 124 497×693∼606×1,100 0.08∼2 124 HBB ✕ multi-source

FAIR1M [6] 581 1,000×1,000∼10,000×10,000 0.3∼0.8 1,008 OBB ✕ GF, GoogleEarth

DOTA-v1.0 [7] 288 800×800∼4,000×4,000 0.5 2,541 OBB ✕ multi-source

DOTA-v2.0 [8] 382 800×800∼20,000×20,000 0.5 3,043 OBB ✕ multi-source

DIOR-R [9] 1,576 800×800 0.5∼30 4,000 OBB ✓ Google Earth

HRRSD [10] 4,570 152×152∼10,569×10,569 0.15∼1.2 4,570 HBB ✕ Google Earth

Dedicated bridge detection dataset

Bridges Dataset [11] 208 4,800×2,843 0.5 322 HBB ✓ Google Earth

BridgeDetV1 [4] 4,972 668×668∼1,000×1,000 2∼6 8,371 OBB/HBB ✕ GF, GoogleEarth

GLH-Bridge (Ours) 6,000 2,048×2,048∼16,384×16,384 0.3∼1 59,737 OBB/HBB ✓ Google Earth, Mapbox

2.1 Datasets for Bridge Detection in Remote Sensing
Images

As shown in Table 1, the existing datasets available
for bridge detection can be categorized into multi-class
datasets that incorporate the bridge category and special-
ized datasets explicitly designed for bridge detection.

2.1.1 Multi-Class Datasets for Bridge Detection

In the literature, numerous large-scale and high-quality re-
mote sensing object detection datasets have been proposed.
For example, NWPU VHR-10 [5] is a dataset with ten cate-
gories, expanding the category of geospatial objects. DOTA
[7] and DIOR [17] have raised the number of instances to
a new level, reflecting the prevalence of multi-class objects
in remote sensing scenes. FAIR1M [6] accomplishes a more
detailed classification taxonomy of geospatial objects. De-
spite these datasets containing the bridge category, they
have limited quantities of bridge instances. As summarized
in Table 1, these multi-class datasets are unable to fulfill the
aforementioned three criteria of an ideal bridge detection
dataset: large volume of samples, large-size image, and
VHR image.

It is noted that the existing multi-class object detection
benchmarks [8], [17] show that bridge is one of the most
difficult categories to detect. For example, in DOTA-v1.0
and DOTA-v1.5 [7], the highest accuracies for the bridge
category in the OBB task are 64.5% and 59.6%, respectively,
which are obviously lower than the other classes2. Bridge
detection, particularly in the OBB task, undoubtedly poses
significant challenges. Therefore, addressing the shortage of
large-scale bridge detection datasets is crucial to training
high-performance bridge detection models.

2.1.2 Specialized Datasets for Bridge Detection

Besides multi-class object detection datasets of aerial im-
ages, researchers have developed diverse remote sensing
datasets for one specific category to facilitate more adapt-
able and crucial single-class object detection. As shown in

2. https://captain-whu.github.io/DOTA/results.html

Table 1, there exist two publicly available datasets [4], [11],
which are specifically designed for bridge detection in RSIs.

Bridges Dataset [11]: Keiller et al. proposed the first
dataset for bridge detection and identification in VHR RSIs,
known as Bridges Dataset. This dataset comprises 500 im-
ages with a consistent size of 4,800 × 2,843 pixels. The image
in this dataset has a spatial resolution of 0.5m, aligning with
the VHR criteria in remote sensing scenarios. It is sampled
globally using ArcGIS3 and annotated bridges across dif-
ferent types of background terrains. However, the dataset
has certain limitations. It is constrained by the relatively
low number of instances and offers coarse HBB annotations
for the bridges. Furthermore, the bridges are primarily
located at the center of the image in this dataset, which may
potentially distort the learning process for bridge detection
models by prior biases.

BridgeDetV1 [4]: Guo et al. constructed a bridge detec-
tion dataset named BridgeDetV1 for detecting waterborne
bridges in RSIs. The dataset consists of 5,000 images with
the spatial resolution ranging from 2 ∼ 6 meters and image
size ranging from 668 × 668 ∼ 1,000 × 1,000 pixels. It en-
compasses a total of 8,371 bridges annotated with both HBB
and OBB. Although BridgeDetV1 contains a larger number
of bridges compared to previous datasets, its limited spatial
resolution restricts its ability to detect small bridges. Fur-
thermore, BridgeDetV1 only focuses on waterborne bridges,
resulting in a lack of scene diversity.

As a whole, existing dedicated datasets for bridge detec-
tion are insufficient to reflect the characteristics of bridges
in real-world scenarios. Therefore, it is urgent to build a
comprehensive, large-scale bridge detection dataset with
large-size VHR images and rich instance types.

2.2 Bridge Detection in Large-Size Remote Sensing Im-
agery
To motivate holistic bridge detection in large-size images,
we discuss methods for bridge detection in RSIs and poten-
tial technologies to cope with object detection in large-size
images in the following sections.

3. https://www.arcgis.com/
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Fig. 2. The geographical distribution map of the sampled images from the proposed GLH-Bridge dataset.

2.2.1 Bridge Detection in Remote Sensing Imagery

Bridge detection in RSIs is a longstanding research topic.
Chaudhuri et al. [29] utilized traditional supervised classi-
fication techniques and prior knowledge to detect bridges
from multi-spectral images. Sithole et al. [1] focused on
bridge detection in airborne scenes by detecting the cross-
sectional contours of bridges. Several traditional algorithms
were also developed to detect bridges in synthetic aperture
radar (SAR) images based on edge and geometric features
of bridges or water bodies [30], [31], [32]. Generally, these
methods mainly relied on hand-crafted features by exploit-
ing the bridges’ geometry structure and the context of the
surrounding water bodies.

Recently, some deep learning-based methods for bridge
detection in RSIs have been proposed. Chen et al. [33] incor-
porated attention modules to perform waterborne bridge
detection. Guo et al. [4] introduced the prior information
of water bodies and combined bridge detection with the
auxiliary task of water body segmentation. Wang et al. [34]
designed a module for injecting water prior information
into the bridge detection task through binary segmentation
maps. Some other researchers [16] used multi-feature fusion
methods to perform bridge detection. However, these meth-
ods primarily concentrated on detecting bridges in small-

size or low-resolution images. It is noted that the existing
methods disproportionately prioritized water features for
locating bridges, even though bridges span across diverse
terrains. This overemphasis on water body information
has caused biases in feature learning and failed to present
practical scenarios. Hence, generalized bridge detection al-
gorithms are still much underexplored.

2.2.2 Object Detection in Large-Size Imagery
In this section, we introduce methods designed for object
detection in large-size images and methods borrowed from
related fields that may have potential applications in tack-
ling large-size images. It is worth noting that in large-size
VHR images, object detection is more challenging than other
tasks like semantic segmentation [35], [36], [37], [38] or style
transfer [39], as the latter focuses on pixel-level details, while
the former operates at the instance level.

In the field of object detection, cropping strategies like
[21] are commonly used to handle large-size images in pop-
ular benchmarks [6], [7]. However, the use of the cropping
strategy poses a significant risk of cutting off large bridges.
As a consequence, this can lead to misalignment of the
supervision signal and loss of contextual information. More-
over, some approaches have been proposed to detect objects
in large-size images by downsampling the original image
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using a fixed size or resolution. Chen et al. [24] proposed
a coupled global-local object detection network with two
branches inspired by global-local networks for segmentation
[35]. Deng et al. [22] utilized a global-local self-adaptive
network to conduct drone-view object detection in large-
size images via downsampling and self-adaptive cropping.
However, as mentioned in Section 1, such methods are not
suitable for handling large-size images and can easily result
in significant information loss.

Some potential deep learning-based technologies [40],
[41] can be found in the literature to handle large-size
images. Pinckaers et al. proposed streaming [25], which
constructs the later activations by streaming the input image
through the CNN in a tiled fashion, but it is unable to
support DNN with normalization despite the fact that the
normalization is a critical dependency in modern DNNs.
Le et al. [26] proposed an approach based on formal rules
for graph rewriting, which is able to automatically manage
GPU memory to save memory usage. However, it often
consumes significant computational time and is restricted
by the maximum memory expansion. Additionally, Shazeer
et al. [27] proposed Mesh-TensorFlow for distributed tensor
computations and data parallelism to address the memory
problem (e.g., memory limitation of GPU). Nevertheless,
Mesh-TensorFlow usually requires extensive computing re-
sources, making them unfriendly for deployment on edge-
computing devices. As a whole, it is not straightforward
to extend the aforementioned methods to address holistic
bridge detection in large-size RSIs.

Hence, it is essential to develop a cost-saving approach
for bridge detection that efficiently handles large-size VHR
images with common GPU hardware.

3 GLH-BRIDGE DATASET

Our goals for developing a new dataset for bridge detection
are twofold: (i) to occupy the niche of large-scale datasets
for bridge detection in large-size VHR RSIs. (ii) to promote
a new meaningful yet challenging task: holistic bridge de-
tection in large-size VHR RSIs. This section provides a com-
prehensive overview of the GLH-Bridge dataset, focusing
on three key aspects: data collection, data annotation, and
data analysis.

3.1 Data Collection

Taking the variations in imaging perspectives of RSIs into
account and to increase data diversity, we collect images
from multiple satellite sensor platforms such as Google
Earth and MapBox. The GLH-Bridge dataset provides global
coverage through the collection of 6,000 optical RSIs ob-
tained from over 400 cities or regions covering Asia, Africa,
South America, North America, Europe, and Oceania. The
images are collected from 2019 to 2022, with the image
size ranging from 2,048 × 2,048 pixels to 16,384 × 16,384
pixels, and spatial resolution varying from 0.3m to 1.0m.
The overall distribution and some samples from the dataset
are illustrated in Fig. 2.

To comprehensively acquire RSIs containing bridges on
a global scale, we employ two distinct approaches to select
candidate areas for image download. The first approach

entails acquiring meta bridge information from the National
Bridge Inventory (NBI)4, an extensive database curated by
the Federal Highway Administration. The NBI includes
comprehensive details on bridges throughout the United
States, including various types such as highway, railway,
waterborne bridges, and tunnels. After acquiring the raw data,
we filter the data on the basis of the construction years
by the original database to exclude excessively outdated
bridges. Subsequently, we infer the type of bridges in terms
of the objects ”on” or ”under” them, to further filter out
occluded bridges. Finally, we utilize Google Earth for image
download. To ensure data randomness and prevent the con-
centration of all bridges in the center of the images, we de-
fine random windows based on the geographic coordinates
during the process of download. Through the above process,
we can ensure the diversity of the collected bridge types and
backgrounds, fully reflecting the appearance characteristics
of the bridge. To ensure that the sampling area is globally
and as evenly distributed as possible, the other approach in-
volves selecting candidate geographic areas using electronic
maps and satellite images from a global range, excluding
the United States. During the selection of areas of interest,
we prioritize sampling in large urban areas. We first used
information on the location of major cities and important
rivers in each country to generate a list of cities with a high
density of potential bridges. From this list, a random sample
is drawn from a fixed-size area within the geographic region
in each city. Subsequently, random sampling is conducted
in rural areas and small towns, which are also added to the
candidate geographic areas. Finally, RSIs are downloaded in
terms of candidate geographic areas that exhibit diverse ter-
rain styles and bridge backgrounds across different regions.
This approach involves collecting negative samples from
areas with fewer bridges, such as rural areas, islands, and
deserts, in order to maintain consistency in the geographic
distribution and dataset diversity.

With the purpose of leveraging the complementary geo-
graphic coverage via the aforementioned two image collec-
tion approaches, we partition the overall dataset randomly
into training, validation, and testing sets with a ratio of 6:2:2.
More specifically, the training, validation, and testing sets
consist of 3613, 1194, and 1193 large-size images, respec-
tively.

3.2 Data Annotation
3.2.1 Annotation Criteria
The geographical entity ”bridge” is defined by considering
both the bridge structure and its spatial context. In this
vein, our visual interpretation process adheres to a stringent
differentiation between bridges and roads. When dealing
with suspended roads that cast shadows, we determine
the two endpoints of one bridge based on the observation
of whether they intersect distinct topographic features like
valleys, rivers, or vegetation or not. This approach is crucial
to ensure the exactitude of bridge labeling, with specific
emphasis placed on the verification of objects that are sus-
ceptible to ambiguity, such as overpasses lacking topograph-
ical intersections or roads traversing regions between rice
paddies.

4. https://www.fhwa.dot.gov/bridge/nbi.cfm
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Fig. 3. Examples of labeling according to the criteria. (a) Roads across
water with excessive curvature or an irregular shape are not labeled. (b)
Two terminal connections are not labeled.

The application of labeling criteria is illustrated in Fig. 3.
Objects deemed to be non-bridges or bridges presenting
challenges in labeling are deliberately omitted from the
labeling process, such as two terminal connections shown
in Fig. 3(a). Fig. 3(b) shows a road across the water with
excessive curvature or an irregular shape that will not be
labeled. In the process of annotating bridges, we establish
the length threshold as 12 pixels according to the size of
extremely Small in [42], whereby bridges shorter than this
threshold will not be labeled. It should be mentioned that
this approach incorporates bridges with a width less than
the length threshold into the dataset, thereby introducing a
notable challenge in the detection of diminutive instances.

3.2.2 Annotation Management

The procedure of labeling GLH-Bridge encompasses a tri-
partite framework consisting of three stages: pre-annotation
stage, expert feedback and refinement stage, and large-
scale detailed annotation stage. In light of the overhead
perspective characteristic of remote sensing images, it is
acknowledged that HBB is inherently limited in the ability
to precisely delineate the actual positions of objects with ar-
bitrary directions, as it contains a significant amount of irrel-
evant information from the background. Therefore, we use
RoLabelImg5 to manually generate the fine OBB for bridges.
Specifically, the labeled rectangular bounding box can be
defined by four corner points (x1, y1, x2, y2, x3, y3, x4, y4)
in the clockwise order. In the initial phase of pre-annotation,
we form a specialized team comprising 10 members, each
possessing extensive expertise in the field of remote sensing
interpretation, is assembled. This team undergoes compre-
hensive training in fundamental annotation techniques and
subsequently conducts annotation tests on a representa-
tive subset of the dataset. In the following feedback and
refinement stage, experts thoroughly review and evaluate
the team’s initial annotations, resulting in the formulation
of refined annotation criteria. Subsequently, guided by this
adjustment, the team embark on the formal large-scale anno-
tation process, accompanied by experts’ random sampling
inspections.

5. https://github.com/cgvict/roLabelImg

3.3 Dataset Analysis
In contrast to the other existing bridge detection datasets,
GLH-Bridge exhibits notable advantages in terms of GSD,
image size, instance quantity, and instance diversity. The
GLH-Bridge dataset showcases six prominent merits.

• Various Instance Scales. GLH-Bridge incorporates a
diverse range of bridge sizes, ranging from tiny bridges
with 12 pixels to giant bridges exceeding 3000 pixels. As
depicted in Fig. 4(a), large bridges show a high presence in
GLH-Bridge, surpassing the quantity reported in existing
datasets. This highlights the imperative of utilizing raw
large-size images to preserve the integrity of bridges. Fur-
thermore, as illustrated in Fig. 4(b) and Fig. 4(c), a substan-
tial number of small bridges are showcased in GLH-Bridge.
Consequently, detecting huge bridges entails processing raw
large-size images, presenting a challenge in the context of
conventional practice that employs small-size images for the
detection of petite bridge instances.

• Extreme Aspect Ratios. GLH-Bridge contains many
giant bridges with extreme aspect ratios, as depicted in
Fig. 4(a). The identification of these instances poses a
formidable challenge for oriented object detection algo-
rithms.

• Large Image Sizes. In the context of the GLH-Bridge,
over 1,000 large-size VHR images have sizes greater than
8,000 × 8,000 pixels. Due to the diverse sizes of these images,
conventional downsampling techniques using fixed ratios
are ill-suited. The effective processing of these large-size
images, while simultaneously preserving the integrity of
exceptionally large bridges, presents a significant challenge
for existing object detection methods.

• Diverse Background Types. As shown in Fig. 5, GLH-
Bridge includes bridges across diverse terrains, encompass-
ing not only water body but also dry riverbeds, vegetation,
valleys, deserts, urban roads, etc. This requires object detection
algorithms to possess the capability to recognize bridges
across a spectrum of backgrounds. Additionally, the chal-
lenge is further exacerbated by the potential for bridges to
intersect or overlap with other objects, such as roads.

• Global Coverage. GLH-Bridge spans the globe and
includes samples from all continents. This vast and diverse
region provides a wide range of bridge types and land-
scapes, promoting the dataset’s generalizability to various
scenarios.

• Variation in Instance Density. The distribution of
bridges per image in GLH-Bridge is illustrated in Fig. 4(d).
In densely populated urban areas or regions abundant
in waterways and transportation, bridges are frequently
densely distributed. However, rural areas or less developed
regions exhibit a smaller number of bridges, with back-
ground areas occupying a significant proportion.

4 THE PROPOSED METHOD

To holistically detect bridges from large-size VHR images,
this paper presents HBD-Net, which stands as the pio-
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Fig. 4. Illustration of GLH-bridge’s characteristics. (a) Comparison of bridges’ characteristics across different datasets. (b) Distribution of bridges’
areas in GLH-Bridge. (c) Distribution of bridges’ length in GLH-Bridge. (d) Distribution of bridges’ density in GLH-Bridge.

Fig. 5. Illustration of bridges across different backgrounds in the pro-
posed GLH-Bridge dataset. (a) Bridges across vegetation. (b) Bridges
across dry riverbeds. (c) Bridges across roads. (d) Bridges across water
bodies.

neering approach expressly tailored for this objective. This
section is dedicated to providing a detailed explanation of
the HBD-Net.

4.1 Model Preview

Contemporary deep networks encounter limitations when
directly processing large-size RSIs due to the constrained
memory capacity of the GPU. To address this problem, we
present one factorized representation (i.e., the DIP) of the
original large-size image. What’s more, we leverage the pro-
posed SDFF with separate detectors to train or infer upon
the DIP, and an inter-layer feature fusion (IFF) module is
proposed to facilitate feature complementation between lay-
ers within the SDFF. Moreover, we enhance the performance
of HBD-Net by incorporating the SSRW strategy during
sample allocation, and via cross-scale-transfer distillation in
SDFF. Our method is illustrated in Fig. 6.

4.2 HBD-Net Architecture

To effectively process the large-size image, we propose the
SDFF architecture, which utilizes separate detectors to tackle
the DIP and conducts feature fusion via the IFF module. We
will provide a detailed explanation of these components in
the following sections.

4.2.1 Separate Detectors on Dynamic Image Pyramid

DIP Construction. When presented with a large-size VHR
image with a size of H ×W , we progressively downsample
the original large-size VHR images at a fixed ratio of σ to
construct the image-level pyramid with a variable number
of layers. The termination condition of the top layer (the
n-th layer) of the pyramid is defined as follows:

H

σn−1
≤ Ht or

W

σn−1
≤Wt, (1)

where (Ht,Wt) is the termination threshold. So we can get
the DIP with n layers and the size of its top layer image is
(Hn,Wn), where Hn = H/σn−1, Wn = W/σn−1. At each
layer of the DIP, we employ a fixed-sized window (the size
is equal to (Ht,Wt)) to gradually extract the image patches
and send them into the detector corresponding to the layer.

Separate Detectors. It is noted that retaining extremely
small labels in the downsampled layers can lead to severe
information loss. Additionally, the identification of tiny ob-
jects in layers with higher resolution tends to be more accu-
rate. Against this backdrop, a set of thresholds is introduced
to allocate the OBB labels to each layer of the DIP based
on the OBB’s length. As a result, each detector embedded
within the SDFF is responsible for predicting bridges with
specific scales. To enable the SDFF to possess scale sensitiv-
ity when detecting multi-scale bridges, we utilize separate
object detectors at layers of the SDFF instead of a unified
detector (the reason is explained in 5.2.1). Overall, one large-
size VHR image is decomposed into one DIP with multiple
layers, which passes through the SDFF followed by separate
detectors. Therefore, this factorized framework enables the
training of HBD-Net even when computational resources
are limited (e.g., one single GPU).

4.2.2 Inter-Layer Feature Fusion

Considering the varying field-of-views in the same window
at different layers of DIP, the higher layers have global infor-
mation, while the lower layers contain detailed information.
To effectively utilize complementary cues to feature fusion,
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Fig. 6. The pipeline of the proposed HBD-Net. It contains the proposed SDFF architecture and SSRW strategy. The SDFF architecture consists
of separate detectors and the IFF module. From the input large-size VHR image, we construct a DIP and send it to the separate detectors of the
SDFF to obtain features. Then features from all detectors of the SDFF are fused via the IFF module to share both contextual and detailed texture
information. The SSRW strategy is applied in the sample selection stage of object detectors to balance the regression weight. Finally, the output
fusion features are fed into the object detectors’ heads to obtain the results of each layer, which are used to compute the loss with corresponding
ground-truth labels.

Fig. 7. Illustration of the proposed IFF module. The figure illustrates the
ways of feature fusion between two adjacent layers.

we devise an Inter-Layer Feature Fusion (IFF) module to
enable bidirectional feature sharing within the SDFF.

Similar to the basic feature extractors (e.g., Resnet [43]
followed by FPN [44]), this paper recommends extracting
feature pyramids from the DIP. Given the feature sets ob-
tained by the feature pyramid network (FPN) from all image
layers within the DIP, candidate feature sets are selected
from the adjacent image layers. Subsequently, we perform
inter-layer feature fusion on these candidate feature sets via
feature alignment and fusion.

Feature Selection. We begin by identifying candidate
feature sets for fusion. As shown in Fig. 7, in the case of FPN,
the spatial sizes of adjacent levels in the feature pyramid
always differ by 2×. We set P ji as the i-th level feature
in the feature pyramid of the j-th image layer. Assuming
that the j-th image layer is located in the middle of the
DIP, the feature pyramids of the two neighboring layers can
be represented as P j−1 and P j+1, respectively. Given that
the downsampling ratio of FPN equals the downsampling
ratio σ we set for DIP, we can draw the conclusion that the
following features P j−1

i+1 , P ji , and P j+1
i−1 have the same actual

downsampling ratio. We define this candidate feature set as
Pcand = {P j−1

i+1 , P
j
i , P

j+1
i−1 }.

Feature Alignment and Fusion. After obtaining the can-
didate feature sets Pcand, we align the features within Pcand
based on consistent spatial position and conduct fusion.
The rough representation of this process is shown in Fig. 7.
For P j−1

i+1 , we begin by conducting downsampling it and
then align it with the spatial consistent region on P ji . For
P j+1
i−1 , we align it with the spatial consistent region on P ji

by cropping. Due to the existence of sliding windows, the
image features of the (j−1)-th layer are extracted in batches
during the training process. Consequently, these features are
concatenated along the spatial dimension to fit the size of P ji
after downsampling. Following this alignment process, we
perform feature fusion as follows:

P ji = act(conv(concat(align({P j−1
i+1 , P

j
i , P

j+1
i−1 })))), (2)

where act, conv, concat and align refer to activation layer
(e.g., sigmoid), 1× 1 convolutional layer, channel-wise con-
catenation operation and aforementioned alignment pro-
cess, respectively. The feature P ji will be updated after
fusion. For the remaining features that are not possible to
construct Pcand, we preserve the original feature without
performing feature fusion. After the IFF module, the fused
features are obtained for subsequent detection tasks. In this
way, the features in each layer of the SDFF are fused with
the features from the adjacent layers, allowing the feature in
the middle layer to capture contextual information from the
upper layer and detailed texture information from the lower
layer.

4.3 HBD-Net Optimization

As bridges exhibit drastic variations in spatial scales and
aspect ratios, it is essential to acknowledge that the Inter-
section over Union (IoU) between the prediction and label
exhibits heightened sensitivity to regressive bias, especially
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Fig. 8. Illustration of the proposed SSRW strategy. The red and blue
points represent positive and negative samples selected by the object
detector, respectively. For anchor-based detectors, these points corre-
spond to the feature map locations generating anchors or proposals.
For anchor-free detectors, these points indicate the grids on the feature
maps. To maintain clarity and simplicity, the depiction of anchors or
proposals associated with the sample points (applicable to anchor-
based methods) is not depicted in this illustration.

for ground-truth boxes with larger aspect ratios. Existing
oriented object detection methods usually employ fixed
strategies like the max intersection over union (IoU) [18],
[20] or distance in feature maps [45] to select positive sam-
ples and give all samples the same weight. However, this
practice is unsuitable, as it fails to account for the disparities
in regression weights required for samples with distinct
aspect ratios. To address this problem, we propose a shape-
sensitive sample re-weighting (SSRW) strategy during the
sample assignment stage. It aims to encourage the deep
network to prioritize samples with extreme aspect ratios,
and further balance the weighted regression losses.

As illustrated in Fig. 8, following the assignment and se-
lection of positive and negative samples (i.e., sample points),
each ground-truth box is linked to its positive samples
for subsequent regression and classification predictions. For
the positive samples corresponding to a ground-truth box,
where w and h represent the width and height of the
ground-truth box, respectively, and r denotes the normal-
ized aspect ratio of ground-truth boxes within the mini-
batch. The distance between the center point of this box
and one of its corresponding positive samples is denoted
as ∆d. From this, the projected lengths w′ and h′ of ∆d in
the w and h directions can be computed. The relative offset
factors rw and rh are then defined as rw = 2w′

w , rh = 2h′

h .
After acquiring the relative offset factors, we use offset
measurement factors Qw and Qh to evaluate the deviation
of the selected samples. These factors can be expressed as:

Qw = ln(rw + 1) + 1, (3)

Qh = ln(rh + 1) + 1. (4)

After obtaining the offset measurement factors Qw and
Qh, the SSRW strategy incorporates them into the regression
loss weight wreg to assign higher weights to more challeng-
ing samples (i.e., those with larger aspect ratios). The wreg

is defined as follows:

wreg = µQwQhr, (5)

where µ is the adjustment factor. In this case, an increased
value of Qw and Qh indicates a larger relative distance be-

tween the positive sample’s prediction box and the ground-
truth box. This suggests that the transformation of the
candidate box into a high-quality regression box is more
challenging. Consequently, assigning a higher wreg to such
positive samples enables the detector to prioritize them. Ad-
ditionally, due to the predominance of small objects, when
the wreg shift towards objects with larger aspect ratios, it
contributes to achieving an equitable balance in regression
weights among bridges with varying aspect ratios.

The total loss of oriented object detection and horizontal
object detection is defined as follows:

LO =
n∑

m=1

λm(
1

N

∑
i∈ψ

Lclsi +
1

N+

∑
j∈ψp

wregj Lregj ), (6)

LH =
n∑

m=1

λm(
1

N

∑
i∈ψ

Lclsi +
1

N+

∑
j∈ψp

Lregj ), (7)

where wregj is the regression weight calculated by the pro-
posed SSRW strategy. n is the number of layers in the DIP,
and λm is the balanced weight corresponding to the loss of
them-th layer, which is set to 1. ψ and ψp represent the set of
all samples and the set of positive samples, respectively. N
and N+ denote the total number of all samples and positive
samples, respectively. The classification loss Lclsi is focal loss
[46] and the regression loss Lregj is Smooth L1 loss as defined
in [47].

To make full use of the supervision of multi-scale bridges
and pursue the scale-sensitive detector, we train the sepa-
rate detectors within the SDFF layer-by-layer. This process
commences with training the bottom layer and proceeds to
train each subsequent layer, culminating with the top layer.
Upon the completion of training for the detector of the m-
th layer (m ∈ [1, n − 1] ), we use its weights to initialize
the detector of the (m + 1)-th layer. Meanwhile, congenetic
labels from the label assign strategy are used to constrain
the scale-equivalence of outputs from separate detectors,
achieving cross-scale-transfer distillation and enhancing the
performance of the deep network.

5 EXPERIMENTAL RESULTS AND ANALYSIS

5.1 Benchmark
5.1.1 Evaluation Metrics
We establish a benchmark on the GLH-Bridge dataset for
two types of object detection tasks: OBB detection and HBB
detection. The Average Precision (AP) is adopted as the
main evaluation metric in this study (by the IoU compu-
tation for the True Positive (TP), False Positive (FP), and
False Negative (FN)). We adopt the PASCAL VOC 07 metric
[56] to calculate the mean Average Precision (mAP). In the
MS-COCO dataset [57], the pixel area of the ground-truth
boxes is used to determine small, medium, and large scales
to calculate the corresponding AP values, which has been
widely used to assess various detection algorithms. How-
ever, it is important to note that bridges, despite varying
significantly in lengths and aspect ratios, may appear to
possess the same area in VHR images. Dividing bridges
solely based on area may prove inadequate to accurately
reflect the detection difficulty and overlooks the influence
of image size constraints on the detection algorithm.
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TABLE 2
Accuracy (%) of OBB and HBB tasks on GLH-Bridge. * indicates training the HBD-Net without the proposed SSRW strategy. † indicates training

the GLSAN without the Local Super-Resolution Network (LSRN).

OBB Task Backbone mAP AP50 AP75 APsh APmd APlg APhg

Faster R-CNN-O [7] R50-FPN 31.35 67.99 22.73 30.54 35.08 18.52 5.41
RoI-Transformer [18] R50-FPN 33.66 69.58 25.55 32.28 38.05 26.32 3.10
FCOS-O [45] R50-FPN 29.28 60.14 22.74 26.98 33.78 25.02 2.13
R3Det [48] R50-FPN 31.11 68.01 22.84 29.95 34.04 23.11 4.70
KLD [49] (R3Det) R50-FPN 31.92 68.47 23.67 30.88 35.15 23.32 5.83
ReDet [19] ReR50-ReFPN 34.29 69.99 26.06 31.94 38.12 29.49 2.47
Oriented R-CNN [20] R50-FPN 34.16 69.87 26.29 32.83 37.74 29.30 5.68
Oriented RepPoints [50] R50-FPN 29.66 60.19 22.73 26.65 34.27 19.09 7.44
CGL [24] R50-FPN 34.72 70.55 27.47 33.16 38.14 30.53 12.68
HBD-Net (Ours) R50-FPN 35.35 71.69 28.69 33.38 38.93 33.47 20.61
HBB Task Backbone mAP AP50 AP75 APsh APmd APlg APhg

Faster R-CNN [51] R50-FPN 33.40 70.72 30.73 31.63 40.14 30.49 8.19
RetinaNet [46] R50-FPN 30.71 67.30 27.32 28.96 37.02 24.59 3.39
FCOS [45] R50-FPN 22.32 51.33 18.01 19.42 27.99 15.05 3.41
TOOD [52] R50-FPN 30.43 65.01 28.52 28.04 37.05 26.41 6.41
Cascade R-CNN [53] R50-FPN 33.71 70.84 32.10 31.84 39.50 32.09 8.01
ATSS [54] R50-FPN 27.92 63.52 23.00 27.16 33.44 19.44 5.91
GuidingAnchor [55] R50-FPN 33.81 71.22 31.71 31.72 39.89 31.54 7.11
GLSAN† [22] R50-FPN 26.95 54.51 18.13 22.65 31.24 21.24 13.29
SAHI [21] R50-FPN 34.00 71.12 30.94 32.73 41.11 31.51 18.68
CGL [24] R50-FPN 33.93 71.25 30.47 31.91 40.28 32.62 16.12
HBD-Net* (Ours) R50-FPN 34.49 72.45 32.68 32.29 41.54 35.21 35.59

In light of the aforementioned limitation, we
propose new evaluation metrics according to the
length of the longer side of the ground-truth boxes.
Specifically, we define a set of pixel intervals as
{(0, 50], (50, 200], (200, 800], (800, 16384]} to categorize
bridges based on their lengths, classifying them as short,
middle, large, and huge. The corresponding APs are denoted
as APsh, APmd, APlg, and APhg, respectively. It is important
to note that the detection of huge bridges can often be
a challenging task, as they may not be effectively and
completely captured within a single sliding window when
employing traditional cropping strategies.

5.1.2 Implementation Details

The algorithms employed in our experiments are from two
open-source pytorch-based algorithm libraries, MMRotate
[58] and MMDetection [59]. These libraries integrate vari-
ous state-of-the-art object detection algorithms, along with
their corresponding backbone networks, feature extractors,
and detectors. They enable the reproduction of the original
accuracies of the respective algorithms within a unified
algorithm framework, ensuring fairness. Hence, these two
algorithm libraries were chosen for the benchmarks for our
experiments.

Experiments are performed on a server with 1 Tesla
V100 GPU and 16GB memory. The backbone networks are
initialized with models pre-trained on ImageNet [60]. We
adopt the “2×” training schedule in MMRotate and MMDe-

tection. The SGD optimizer is employed with a learning
rate of 0.005, momentum of 0.9, and weight decay of 0.0001.
When performing feature fusion among the detectors of the
proposed SDFF, the learning rate is set to 0.001. A linear
warm-up strategy is applied for the initial 500 iterations,
with a rate of 1.0/3. As for the algorithms used to establish
benchmark results, the batch size is set to 4.

In the case of the HBD-Net utilized in this study, the
batch size is set to 1 during training, and the learning rate
is adjusted accordingly. The image processing strategies for
training and testing follow the description in Section 4, the
downsampling ratio σ is set to 2.0. When training the HBD-
Net, we use a label filtering strategy to divide original labels
into n groups to calculate loss with the outputs of n layers.
To the n-th label group, the filtering threshold is represented
as [minn,maxn), and the minn is set to 15 × 2(n−1) pixels
and themaxn is set to 1448 pixels (i.e., 1024×

√
2 pixels) con-

sidering the size of the cropping window. In all experiments,
random flipping was used as the only data augmentation
technique.

5.1.3 Mainstream Methods

To assess the efficacy of the HBD-Net, we conduct a com-
parative evaluation against 18 advanced object detection
methods. For the OBB task, we choose two-stage approaches
such as Faster R-CNN-O [7], RoI Transformer [18], Ori-
ented R-CNN [20], and ReDet [19]; one-stage approaches
including FCOS-O [45], R3Det [48], KLD [49], and Oriented
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Fig. 9. The visualization results of OBB and HBB tasks on the GLH-Bridge dataset using the HBD-Net and comparison object detection methods. *
indicates using the HBD-Net without the proposed SSRW strategy.

RepPoints [50]; and methods for object detection in large-
size images like CGL [24]. Oriented R-CNN is chosen as
the baseline method for the proposed HBD-Net and CGL.
For the HBB task, we choose RetinaNet [46], Faster R-CNN
[51], FCOS [45], TOOD [52], Cascade R-CNN [53], ATSS
[54], GuidingAnchor [55]; and methods designed for large-
size images like CGL [24], GLSAN [22], and SAHI [21].
Faster R-CNN is chosen as the baseline method for CGL,
GLSAN, SAHI, and HBD-Net on the HBB task. It should be
noted that the SSRW strategy is not used when training the
proposed HBD-Net on the HBB task.

In the case of CGL, GLSAN, and SAHI, we adopt their
default strategies to process large-size images. For SAHI,
we set the patch size to 1024×1024 pixels, with a 200-pixel
overlap if necessary, and combine three strategies: slicing-
aided hyper inference, full image inference (FI), and an
overlapping patches-based cropping strategy (PO). For the
GLSAN, we adopt its default configuration for training and
utilize its SelfAdaptiveCrop approach for testing with a

crop size of 1024×1024 pixels. For the other object detec-
tion methods, the original images are processed using an
overlapping patches-based cropping strategy for training
and testing. The cropping settings for training and testing
are consistent, with a cropping window size of 1024×1024
pixels and a 200-pixel overlap.

5.1.4 Results and Analysis

The benchmark and experimental results for OBB and HBB
tasks on GLH-Bridge are presented in Table 2.

For the OBB task, the experimental results demonstrate
that the HBD-Net achieves the best performance on the
benchmark of GLH-Bridge, with an mAP score of 35.35%.
It achieves an accuracy of 28.69% on the AP75 metric,
underscoring the efficacy of our approach in accurately de-
tecting rotated bridges. Furthermore, our method achieves
the best performance, 33.47% and 20.61% in the APlg and
APhg metrics, respectively. This highlights the HBD-Net’s
effectiveness in handling the detection of large bridges
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TABLE 3
Accuracy (%) of ablation studies on the impact of different strategies used in the proposed SDFF architecture on the OBB task on GLH-Bridge.

“DIP” denotes that using the proposed dynamic image pyramid. “Unified detector” denotes that all layers in the SDFF use a unified object detector.
“Separate detector” denotes that each layer in the SDFF uses a separate detector. “Distillation” denotes using cross-scale-transfer distillation in

the training phase of the SDFF.

Structure Setting Distillation IFF mAP AP50 AP75 APsh APmd APlg APhg

DIP

Unified detector × × 34.61 69.95 26.71 32.97 38.15 30.79 12.36
Separate detector × × 34.65 69.93 26.83 33.02 38.06 30.47 14.25
Separate detector ✓ × 34.87 70.18 27.34 33.11 38.23 31.22 15.76
Separate detector ✓ ✓ 35.08 70.58 28.06 33.27 38.51 32.11 17.30

that may exceed the typical cropping size, particularly for
instances with a length exceeding 800 pixels. Additionally,
our method also shows benefits in detecting small objects,
which constitute a significant portion of the dataset.

For the HBB task, we consider that the aspect ratio of
the horizontal box is determined by both the orientation
of bridges and their true aspect ratios. Therefore, it does
not accurately reflect whether the bridges are elongated
in shape. As a result, we do not incorporate the SSRW
strategy for the HBB task, only utilizing the proposed SDFF
architecture as the employed approach. Under this setting,
the HBD-Net also achieves a remarkable performance of
34.49% mAP. Furthermore, in comparison to general object
detection methods, the HBD-Net showcases outstanding
performance in detecting large bridges. It obtains 35.21%
and 35.59% in the APlg and APhg metrics, respectively.

Additionally, for the methods designed for object de-
tection in large-size images, although SAHI achieves fine
small object detection by resizing overlapping patches, its
upsampling technique provides limited benefits for VHR
RSIs. CGL employs a fixed downsampling strategy, which
results in information loss and suboptimal performance in
APhg. GLSAN performs prediction on the downsampled
original image and selects sub-blocks for detailed detection
through clustering of the predicted results. However, it
tends to miss scattered small bridges, and is still hard to
comprehensively detect large bridges.

In conclusion, the experimental results from both the
OBB and HBB tasks demonstrate the effectiveness of the
HBD-Net in a general sense. It is capable of adapting to
the characteristics of both horizontal and oriented bounding
boxes, and the visual results are shown in Fig. 9. Addi-
tionally, our HBD-Net is independent of the specific object
detection methods. Therefore, it can seamlessly accommo-
date a wide range of advanced one-stage or two-stage object
detectors within the proposed SDFF without encountering
specific limitations. This observation highlights the versatil-
ity and applicability of the proposed approach in this study.

5.2 Component Analysis
We conduct ablation experiments on the GLH-Bridge
dataset to evaluate the impact of two key components in
our proposed HBD-Net (i.e., the SDFF architecture and the
SSRW strategy).

5.2.1 Effectiveness of the SDFF
As shown in Table 3, we explore the effectiveness of the
detector utilization strategy and IFF used in the proposed

SDFF architecture. Our proposed SDFF without cross-scale-
transfer distillation and IFF demonstrates a significant en-
hancement in accurately detecting large bridges, with a
notable 8.57% improvement in APhg metric compared to
the baseline. When considering whether each layer in the
SDFF employs an individual detector or if all layers share a
detector, the former slightly outperforms the latter. When
we incorporate a cross-scale-transfer distillation strategy
into the process of training the SDFF, the accuracy can be
improved, resulting in an additional improvement of 3.4%
improvements in APhg metric. Furthermore, through the
integration of the IFF module, the higher layer can benefit
from the finer details provided by the lower layer, leading
to the improved final performance in terms of the AP75 and
APhg metrics, which reach 28.06% and 17.30%, respectively.

5.2.2 Effectiveness of the SSRW strategy

As our proposed HBD-Net utilizes respective detectors in
the proposed SDFF, as shown in Table 4, we examine
the effectiveness of the SSRW strategy when applied to
these detectors individually. It can be observed that the
proposed SSRW strategy enhances the regression accuracy
of the detector when it is applied solely to the detector of
the bottom layer, it results in 1.37% and 3.30% improve-
ments in APlg and APhg metrics, respectively, compared
to the baseline. Furthermore, with the incorporation of the
SDFF architecture, we extend the application of the SSRW
strategy to detectors corresponding to the higher layers of
the pyramid, leading to a further improvement of 2.29%
in APhg metric. Given the typically larger aspect ratios
of large bridges, the above experiments demonstrate the
effectiveness of our proposed SSRW strategy in directing the
network’s focus toward bridges with larger aspect ratios,
thereby improving detection accuracy. Finally, in addition
to the overall improvement in all metrics, the HBD-Net
achieves a significant improvement of 2.40%, 4.17% and
14.93% in AP75, APlg and APhg metrics, respectively, com-
pared to the baseline. This study affirms the effectiveness
of the proposed method in enhancing bridge detection
performance in large-size images, especially concerning the
detection of large bridges in their entirety. It is important
to note that, with the implementation of the SSRW strategy
for higher-layer detectors within the SDFF, a decrease in the
APsh metric was observed. This decrease is attributed to a
decrease in the proportion of small-scale labels at the higher
layers resulting from the label filtering. As a result, SSRW’s
role in maintaining the balance of loss between small and
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TABLE 4
Accuracy (%) of ablation studies on the impact of the SDFF architecture and the SSRW strategy on the OBB task of GLH-Bridge. SSRWl denotes
using the SSRW strategy only on the baseline detector or the detector of the bottom layer of SDFF. SSRWg denotes using the SSRW strategy only

on the detectors of the layers except for the bottom layer of SDFF.

SSRWl SDFF SSRWg mAP AP50 AP75 APsh APmd APlg APhg

× × × 34.16 69.87 26.29 32.83 37.74 29.30 5.68
✓ × × 35.20 70.94 27.85 33.34 38.11 30.67 8.98
× ✓ × 35.08 70.58 28.06 33.27 38.51 32.11 17.30
✓ ✓ × 35.12 71.28 28.37 33.44 38.82 32.76 18.32
✓ ✓ ✓ 35.35 71.69 28.69 33.38 38.93 33.47 20.61

TABLE 5
Accuracy (%) of ablation studies on the OBB task on DOTA-v1.0.

SSRW denotes using the SSRW strategy only on the detector of the
bottom layer of SDFF.

SSRW SDFF mAP AP50 AP75 APBR

× × 44.92 75.80 45.45 54.52
✓ × 45.63 76.25 45.98 55.48
× ✓ 45.92 76.53 46.32 55.78
✓ ✓ 46.11 76.95 46.76 56.02

large objects is diminished, aligning with its intended design
principles.

Moreover, to comprehensively evaluate the effectiveness
of our method, we further conducted ablation experiments
on the DOTA-v1.0 dataset [7]. These experiments demon-
strate how our designed modules progressively enhance
the performance step by step. As shown in Table 5, our
proposed SSRW strategy and SDFF architecture result in
0.96% and 1.26% improvement respectively in APBR metric.
Our HBD-Net achieves 46.11% mAP and 56.02% APBR

based on the baseline. These results highlight the capability
of our proposed HBD-Net to enhance the performance of
existing state-of-the-art object detection methods.

5.3 Cross-Dataset Generalization Experiments
5.3.1 Datasets
We choose two public datasets (DOTA-v1.0 and DIOR-
R) for the cross-dataset generalization experiments. These
datasets are chosen based on their large-scale and diverse
data characteristics, making them fundamental benchmarks
in the field of remote sensing object detection. The details
are as follows.

DOTA-v1.0 [7]: DOTA-v1.0 is a large-scale dataset for
object detection in aerial images. Its training and validation
sets contain a total of 2,541 bridges in 288 images.

DIOR-R [9]: DIOR-R is a large aerial images dataset
and has various spatial resolutions, containing 4,000 bridges
among 1,576 images with OBB annotation. For the DIOR-R
dataset, the provided training, validation, and testing sets
are utilized for the cross-dataset generalization experiments.

5.3.2 Experimental Setting
Cross-dataset generalization analysis is an important evalu-
ation method for assessing the generalization performance

of a dataset. We conduct cross-dataset generalization exper-
iments using the bridge subset of the DOTA-v1.0 dataset [7]
and the DIOR-R dataset [9]. For the DOTA-v1.0 dataset, we
extract the bridge subset from the official training and vali-
dation sets for training purposes. The inference is performed
on the official unlabeled test set using the standard format.
Finally, the test results are uploaded to the official server
to obtain accuracy. For the DIOR-R dataset, we select the
bridge subset within the provided training and validation
sets for training and evaluate the official test set.

We employ Oriented R-CNN [20] as the algorithm
for training and testing. We train models on these three
datasets respectively and conduct cross-dataset evaluation.
The training settings for DOTA-v1.0 and DIOR-R are kept
consistent with the original papers, both with the “1×”
training schedule [58]. For our constructed GLH-Bridge
dataset, we utilize the training set to train our models while
maintaining consistent training settings with the benchmark
baseline. To ensure image size compatibility, we implement
a cropping strategy with window sizes of 1024×1024 pixels
for DOTA-v1.0 and 800×800 pixels for DIOR-R, along with
a 200-pixel overlap. The evaluation of cross-dataset general-
ization experiments is conducted based on the AP metric.

TABLE 6
Accuracy (%) on cross-dataset generalization experiments.

Test on
Train on

GLH-Bridge DOTA-v1.0 DIOR-R

GLH-Bridge 34.16 15.78 15.01
DOTA-v1.0 49.55 45.76 18.46
DIOR-R 20.74 12.14 19.88

5.3.3 Results and Analysis
The experimental results are shown in Table 6, which show
that GLH-Bridge has achieved excellent zero-shot general-
ization results on two mainstream benchmarks. Specifically,
it has achieved a performance improvement of 3.79% on
the DOTA-v1.0 dataset and 0.86 % on the DIOR-R dataset.
These results indicate that the ability of the GLH-Bridge
dataset to provide a more comprehensive and accurate
representation of bridge characteristics within the domain
of the perspective of remote sensing imagery.

The visual results of the DIOR-R dataset generated by
the model trained on the GLH-Bridge dataset are shown
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Fig. 10. The visualized prediction results of the DIOR-R dataset by the
model trained on the GLH-Bridge dataset.

Fig. 11. The visualized prediction results of the DOTA-v1.0 dataset by
the model trained on the GLH-Bridge dataset.

in Fig. 10. It can be observed that despite the significant
variation in image resolution within the DIOR-R dataset
(ranging from 0.5m to 30m), the model trained on GLH-
Bridge exhibits the capability to identify bridges in low-
resolution images. Additionally, the DIOR-R dataset con-
tains bridges with diverse color tones and extreme aspect
ratios. Despite differences in satellite sources between these
images and those in the GLH-Bridge dataset, the model
trained on GLH-Bridge demonstrates strong generalization

ability by successfully detecting bridges in backgrounds
with high interference and images with lower resolutions.

The visualized prediction results of the DOTA-v1.0
dataset by the model trained on the GLH-Bridge dataset are
shown in Fig. 11. It can be observed that despite the inclu-
sion of panchromatic remote sensing images in addition to
RGB images in the DOTA-v1.0 dataset, the proposed model
trained on the GLH-Bridge dataset is still able to accurately
identify bridges. This demonstrates that the GLH-Bridge
dataset can capture the core features of bridges in remote
sensing images, which are invariant to color. Moreover, the
trained model achieves good performance in identifying
small bridges in the DOTA-v1.0 dataset, which proves that
the GLH-Bridge dataset has meticulous and high-quality
annotations.

6 CONCLUSION

In this paper, we propose a large-scale dataset named GLH-
Bridge for holistic bridge detection in large-size VHR RSIs.
The proposed dataset consists of 6,000 VHR RSIs, with
image sizes ranging from 2,048 × 2,048 to 16,384 × 16,384
pixels, and contains 59,737 bridges spanning diverse back-
grounds with OBB and HBB annotation. The large image
size, the large sample volume, and the diversity of object
scale and background type make GLH-Bridge a valuable
dataset, which has the premise to promote one new chal-
lenging but meaningful task: holistic bridge detection in
large-size VHR RSIs. Furthermore, we present the HBD-Net,
a cost-effective solution tailored for holistic bridge detection
in large-size images. Based on the proposed GLH-Bridge
dataset, we establish a benchmark and provide empirical
validation of the effectiveness of the proposed HBD-Net.
In future work, we will continue to enrich the GLH-Bridge
dataset in terms of its sample volume and sub-category
annotation. Additionally, we aim to generalize the proposed
HBD-Net to address multi-class object detection in large-
size images.
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