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Abstract—This paper introduces a square-root velocity (SRV) representation for analyzing shapes of curves in Euclidean spaces
under an elastic metric. Due to this SRV representation the elastic metric simplifies to the 1.2 metric, the re-parameterization
group acts by isometries, and the space of unit length curves becomes the unit sphere. The shape space of closed curves is
quotient space of (a submanifold of) the unit sphere, modulo rotation and re-parameterization groups, and we find geodesics
in that space using a path-straightening approach. These geodesics and geodesic distances provide a framework for optimally
matching, deforming and comparing shapes. These ideas are demonstrated using: (i) Shape analysis of cylindrical helices for
studying protein backbones, (ii) Shape analysis of facial curves for recognizing faces, (iii) A wrapped probability distribution for
capturing shapes of planar closed curves, and (iv) Parallel transport of deformations for predicting shapes from novel poses.

Index Terms—Elastic curves, Riemannian shape analysis, elastic metric, Fisher-Rao metric, square-root representations, path-
straightening method, elastic geodesics, parallel transport, shape models.
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1 INTRODUCTION the space of closed curves and in a manner that is invariant

Shape is an important feature for characterizing objedfy '¢-Parameterization. Among other things, they applied
in several branches of science, including computer visioffiS framework to statistical modeling and analysis using
medical diagnostics, bioinformatics, and biometrics. TH@9€ databases of shapes [30]. Michor and Mumford [18]
variability exhibited by shapes within and across class@§d Mennucci [17], [32] have exhaustively studied several
are often quite structured and there is a need to capt@¥Pices of Riemannian metrics on spaces of planar curves
these variations statistically. One of the earliest works {0 the purpose of comparing their shapes. Mio et al. [20]

statistical analysis and modeling of shapes of objects caff¢Sented a family of elastic metrics that quantified the
from Kendall and colleagues [6], [12]. While this formut€lative amounts of bending and stretching needed to de-

lation took major strides in shape analysis, its limitatiof?™™ Shapes into each other. Similarly, Shah [27] derived
was the use of landmarks in defining shapes. Since #godesic equations for planar closed curves under differen
choice of landmarks is often subjective, and also beca l@stic metrics _and different represen_tatlon_s of curvealll
objects in images or in imaged scenes are more naturafﬁ&‘f’se formulat!ons, a shape space is typ|cally_ constructed
viewed as having continuous boundaries, there has beell H¥0 Steps. First, a mathematical representation of curve
recent focus on shape analysis of curves and surfaces, aljdi" a@ppropriate constraints leads topae-shape space

in the same spirit as Kendall's formulation. Consequently,’én: one identifies elements of the pre-shape space that
there is now a significant literature on shapes of continé-elong to the same orbits of shape-preserving transforma-
ous curves as elements of infinite-dimensional Riemannidfns (rotations, translations, and scalings, as well as re
manifolds called shape spaces. This highly-focused afd@@meterizations). The resulting quotient spaeethe set

of research started with the efforts of Younes [33] wh8f orbits under the respective group actions, is the de'_5|red
first defined shape spaces planar curves and imposed shape space. If a pre-shape space is a Riemannian (Hilbert)
Riemannian metrics on them. In particular, he computéﬁanifmd' then the shape space can inherit this Riemannian

geodesic paths between curves under these metrics as opgffture and become a quotient manifold or an orbifold.

curves and “closed” the curves along those geodesics to! he choice of a shape representation and a Riemannian

obtain deformations between closed curves. Klassen "Bgtric are critically important - for improved understand-
al. [14] restricted to arc-length parameterized planavesr N9, Physical interpretations, and efficient computingisTh
and derived numerical algorithms for computing geodesiP&Per introduces a particularly convenient represemtatio

between closed curves, the first ones to do so directly it €nables simple physical interpretations of the rieglt
deformations. This representation is motivated by the-well
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idea was introduced by Younes [33] and later used in

Younes et al. [34] for studying shapes pfanar curves




under an elastic metric. The representation used in the cBrl SRV Representation and Pre-Shape Space

re_nt paper is similar to these earlier ideas, but is sufftbien | o 3 be a parameterized curve ( D — R™), where D
different to beapplicable to curves in arbitrary R™. The s 5 certain domain for the parameterization. We are going
main contributions of this paper are as follows: to restrict to those3 that are absolutely continuous d.
1) Presentation of a square-root velocity (SRV) repren generalD will be [0, 1], but for closed curves it will be
sentation for studying shapes of elastic closed curvgsyre natural to havé — S'. We define a mappingF :
in R™, first introduced in the conference papers [8lgn _, pn according toF (v) = v/+/J[o[] if ||v]| # 0 and0
[9]. This has several advantages as discussed latepiherwise. Here| - || is the Euclidear2-norm in R"; note
2) The use of a numerical approach, termpath- inat F is a continuous map. For the purpose of studying
straightening for finding geodesics between shapeg,e shape of3, we will represent it using the square-root

of closed elastic curves. It uses a gradient-basggd|ocity (SRV) function defined ag: D — R™, where
iteration to find a geodesic where, using the Palais

_metrlc on th_e space of_ paths, the gradient is available a(t) = F(B®) = Bt)/\/ 18] -
in a convenient analytical form.

3) The use of a gradient-based solution for optimal rg-his representation includes those curves whose parame-
parameterization of curves when finding geodesi¢srization can become singular in the analysis. Also, for
between their shapes. This paper compares theeryq € L?(D,R") there exists a curve (unique up
strengths and weaknesses of this gradient solutitha translation) such that the givenis the SRV function
versus the commonly used Dynamic Programmingf that 3. In fact, this curve can be obtained using the
(DP) algorithm. equation: 8(t) = fot q(s)llq(s)|lds. The motivation for

4) The application and demonstration of this frameworktsing this representation and comparisons with other such
to: (i) shape analysis of cylindrical helices R® representations are presented in the Section 3.1.
for use in studies of protein backbone structures, To remove the scaling variability, we rescale all curves
(i) shape analysis of 3D facial curves, (iii) develto be of unit length. This restriction to an orthogo-
opment of a wrapped normal distribution to captursal section of the full space of curves is identical to
shapes in a shape class, and (iv) parallel transp&ndall’s [12] approach for removing the scale variability
of deformations from one shape to another. The laghe remaining transformations (rotation, translatior e
item is motivated by the need to predict individuaparameterization) will be dealt with differently. This isel
shapes or shape models for novel objects, or nouelthe differences in the actions of scaling and other groups
views of the objects, using past data. A similapn the representation space of curves, as described later.
approach has been applied to shape representatidhe restriction thats is of unit length translates to the
using deformable templates [35] and for studyingondition that |, [|q(¢)[|?dt = [, ||3||dt = 1. Therefore,
shapes of 3D triangulated meshes [13]. the SRV functions associated with these curves are elements

The proposed representation spaces for curves &fea unit hypersphere in the Hilbert manifolcf (D, R™);

infinite-dimensional manifolds, or rather their quotienwe will use C° to denote this hypersphere. According to
spaces under the actions of infinite-dimensional grougsang [15] pg. 27¢¢ is a Hilbert submanifold ifi.?(D, R™).
The infinite-dimensionality of such representations is an For studying shapes of closed curves, we impose an
important challenge. At a conceptual level, however, it magdditional condition that the curve starts and ends at the
help a reader to understand the proposed solutions on finig@me point. In view of this condition, it is natural to have
dimensional manifolds at first and consider the issue #fe domainD be the unit circleS* for closed curves. For
infinite-dimensionality later. Also, we clarify the use ofa certain placement of the origin &1, it can be identified
word geodesic in this paper. We refer to a path with with [0,1] using the functiont — (cos(27t),sin(27t)).
(covariantly) constant velocity (defined later in Sectidf) | We will use either one according to convenience. In terms
as ageodesicand the shortest geodesic between any twaf the SRV function, this closure condition is given by:
points as aminimizing geodesic Jsra@®)llq(t)[|dt = 0. Thus, we have a space of fixed

The paper is organized as follows. Section 2 introducéngth, closed curves represented by their SRV functions:

the proposed elastic shape framework, while Section 3 dis-

cusses its merits relative to existing literature. Secfiate- C° = {q € ]LQ(Sl,R”ﬂ/ llq(t)||?dt = 17/ q(t)||q(t)||dt = 0}.
scribes a path-straightening approach for finding geodesic st st

and a gradient-based approach for elastic curve regwtrati The superscriptc implies the closure condition. With
Section 5 presents four applications of this framework. THbe earlier identification of0,1] with S!, ¢¢ c C° C

paper ends with a short summary in Section 6. L?(D,R™). What is the nature of the sat“? In the
Appendix, we sketch a proof th&l® is a codimensiom:
2 SHAPE REPRESENTATION submanifold ofce.

In order to develop a formal framework for analyzing Now we have two submanifoldsG® andC* — containing
shapes of curves, one needs a mathematical representagibrcurves and only closed curves iR"™, respectively.
that is natural, general and efficient. We describe one suthey are calleghre-shape spacdsr their respective cases.
representation. We will call C° the pre-shape space of open curves just



to emphasize that the closure constraint is not enforced
here, even though doescontain closed curves also, while
C¢ is purely the pre-shape space of closed curves. To

impose Riemannian structures on these pre-shape spaces, -

we consider their tangent spaces. ~(t)
1. Open Curves: SinceC’ is a sphere inL?([0,1],R™), -
its tangent space at a poigtis given by:7,(C°) = {v € t

L2([0,1],R™)|{v,q) = 0}. Here (v, q) denotes the inner
product inL2([0, 1], R™): (v, q) = [ (u(t), q(t))dt.
2.Closed Curves: The tangent space t at a pointy is, of
course, a subset @?(S*, R"). SinceC® is a submanifold,
this subset is often defined using the differential of the

mapq — G(q) = [. q(t)||lg(t)||dt. In fact, the tangent C xT'— C, (¢,7) = (g°~)v/¥. In order for our shape
spaceT,(C) at a pointg € C° is given by the kernel comparison to be invariant to these transformations, it is
of the differential of G at that point [19]. Therefore, it is important for these groups to act by isometries. We note
often easier to specify the normal spate, the space of the following properties of these actions.

functions inIL?(S',R™) that are perpendicular t,(C). Lemma 1. The actions ofSO(n) andT' on C commute.

This normal space is found using the directional derivativé’roof: It follows from the definition.

Fig. 1. Re-parameterizations of open and closed
curves using orientation-preserving diffeomorphisms.

of G and is given by: Therefore, we can form a joint action of the product group
ai(t) SO(n) x I on C according to((0,7),q) = O(q o ¥)V3.
N,y (C°) = span{q(t), (|| 1(t)||q(t)+||q(t)||ei), i=1,...,n} Lemma 2: The action of the product group x SO(n) on
q (1) C is by isometries with respect to the chosen metric.
Hence, T,(C°) = {v € L2(S',R™)|(v,w) = 0, Yuw € Proof: For a ¢ € C, let u,v,e T4C). Since
N, (€)Y (Ou(t),Ov(t)) = (u(t),v(t)), for all O € SO(n) and

The standard metric oh?(D,R") restricts to the two teD, the proof forSO(n) follows. For thel" part, fix an
manifolds C° and C¢ to form Riemannian structures on@roitrary elementy € I, and define a map : C — C by

them. These structures can then be used to determffd) = (¢,7)- A glance at the formula fofg, ~) confirms
geodesics and geodesic lengths between elements of tH88&¢ is @ linear transformation. Hence, its derivatie
spaces. Le€ be a Riemannian manifold denoting eitigsr  1@s the same formula as In other words, the mapping
or ¢, and leta : [0,1] — C be a parameterized path suchl? : 14(C) — T(4)(C) is given by:u — a4 = (uo 'Z)ﬁ-
that a(0) = go anda(1) — ¢,. Then, the length ofv is TN€ Riemannian metric after the transformation(is:7)=
defined to beL[a] = [ {c(7), &(7))/2dr, anda is a said NN . .

to be aminimizing gg%desitf L[a] achieves the infimum D<u(t)’v(t)>dt - /D<u(7(t)> YO, v )V A))dt
over all such paths. The length of this geodesic becomes a ,

distance:dc(qo,ql) = inf{a:[O,I]HC\Q(O):qg,a(l):ql}L[CY]. :L<U(7)7U(7)>d7, with T:’y(t) .

The computation of geodesics i@ is straightforward,
since it is a sphere, but the casedsfis more complicated
and requires a numerical methods described in Section

Putting these two results together, the joint actiorl"of
§O(n) on C is by isometries with respect to the chosen
metric. (]

. Since the action of the product group is by isometries,
2.2 Shape Space as Quot|_ent Space _ we can form a quotient space 6fmoduloI’ x SO(n) and

By representing a parameterized cuf¥éy its SRV func- try to inherit the Riemannian metric frothto that quotient

tion ¢, and imposing the constrainft,(¢(t),q(t))dt = 1, space. The orbit of a functiope C is given by:
we have taken care of the translation and the scaling :
variability, but the rotation and the re-parameterization [q) = {O(g07)V/H)|(7,0) €T x SO(n)} .

variability_ still remain. A rotation is an elemgnt 60(n), An orbit is associated with a shape uniquely and com-
the special orthogonal group of x n matrices, and a parisons between shapes are performed by comparing the
re-parameterization is an element df the set of all yppits of the corresponding curves and, thus, the need for
orientation-perserving diffeomorphisms @. In the fol- 5 metric on the set of orbits. We would like to use the
lowing discussion¢ stands for eithec” or C*. basic fact that if a compact Lie groufi acts freely on
The rotation and re-parameterization of a cuyeére 4 Riemannian manifold/ (i.e., no elements of\/ are
denoted by the actions o5O(n) and.l“ on its SRV. fixed by h € H unlessh is the identity) by isometries,
While the action ofSO(n) is the usual:SO(n) x C —  anq if the orbits are closed, then the quotiewy/H is
C,  (0,4(t)) = Oq(1), the action ofl' is derived as 5 manjfold, and inherits a Riemannian metric frabf.
follows. For ay € I', the compositions o  denotes its The trouble is that while we have our grolipx SO(n)
re-parameterization (as shown in Fig. 1); the SRV of theing by isometries, the orbits are not closed. The reason

re-parameterized curve B(5(v(t))¥(t)) = q(~(t))y/~y(t), for this is that the space of diffeomorphisms is not closed
where ¢ is the SRV of3. This gives us thaight action with respect to either th&? or the Palais metric, since a



sequence of diffeomorphisms might approach a map whichDefinition 1 (Elastic Metric):Let « and b be positive
is not a diffeomorphism under either of these two metricseal numbers. Fofu1,v1), (uz,v2) € T(4,6)(PxO), define
To resolve this theoretical difficulty, we propose thatéast an inner product:

of modding out by the orbits, we mod out by the closures

of these orbits. Thus, if we there is a sequengén the  ((ug,v1), (uz,v2)) (s = a2/ uy (t)uz (t)e®® dt
orbit [¢], and this sequence converges to a functoim D

C° (with respect to thd.2-metric), then we identify; with +b2/ (v (1), 1}2(t)>6¢(t) dt.  (3)
G in this quotient construction. As evidence that this idea D

has merit, one can prove that in this situation, if wefet Note that(-, -) in the second integral on the right denotes the
and 3 be the curves corresponding4oandg, both 5 and  standard dot product i". This elastic metric, introduced
(3 contain exactly the same points. (This is assuming th@{[20], has the interpretation that the first integral measu
we set3(0) = 5(0).) With a slight abuse of notation, Wethe amount of “stretching”, since; andu, are variations
will use [¢] to denote the closure of the orbit of Define 45 e log speeds of the curve, while the second integral
the quotient spac& as the set of all such closed orbit§easures the amount of “bending”, since and v, are
associated with the elements ©fi-e. S = {[gllg €C}.  variations of the direction of the curve. The constanis

_ Since we have a quotient map frafrio S, its differential - anqp2 are weights that we choose depending on how much
induces a linear isomorphism betwedh; (S) and the \ye want to penalize these two types of deformations.
normal space tdg| at any pointj € [¢]. The Riemannian  perhaps the most important property of this Rieman-
metric onC (i.e. theL? inner product) restricts to an innerpian metric is that the groupSO(n) and T both act by
product on the normal space which, in turn, induces ag,metries. To elaborate on this, recall ti@ate SO(n)
inner product onTi,(S). The fact thatl’ x SO(n) acts 4cts on a curved by (0,3)(t) = OB(t), andy € T

by isom_etr_ies implies that the resplting inner produ.ct Ofcts ong by (v, 3)(t) = B(~(t)). Using our identification
Tig)(S) s independent of the choice af < [g]. In this of the set of curves with the spade x © results in the
manner,S inherits a Riemannian structure froth Conse- following actions of these group€) € SO(n) acts on
quently, the geodesics i correspond to those geodesic%’ 0) by (O, (6,0)) = (¢,00) and~ € T acts on(¢, 0)

in C that are perpendicular to all the orbits they meetin (7, (6,0)) = (do v +1Ino¥,007).

and the geodesic distance between any two points ia We now need to understand the differentials of these

given by: group actions on the tangent spacesiok ©. SO(n) is
d, ’ _ inf de(qo, O(qy o ) (2) e€asy; since eaclh € SO(n) acts by the restriction of a
(lgol. [ ]) (7,0)€TxSO(n) (a0 Olar e V3) - @) linear transformation o® x L2?(D,R"), it acts in exactly

We state without proof that if, andg lie in two different the same way on the tangent spades;:(u, v)) = (u, Ov),

orbits which are not in each others closure, then thi¥here(u,v) € Tis 0)(® x ©), and(u, Ov) € Ty, 00)(P x
distance is strictly positive. ©). The action ofy € T given in the above formula is

not linear, but affine linear, because of the additive term
In o%. Hence, its action on the tangent space is the same, but
3 MOTIVATION & COMPARISONS without this additive term(y, (u,v)) = (uo~, o), where

We first motivate the choice of SRV and the elastic metri@:, v) € T(4,0)(®x0), and(uo~y, 0ovy) € T(4, (4,0))(PxO).

for shape analysis and then compare our choice wi@ombining these actions &fO(n) andT" with the above

previous ideas. inner product onb x O, it is an easy verification that these
actions are by isometriese. ,

3.1 Motivation for the SRV _Representat|on (O, (u1,11)), (O, (U2, v2))) 0.0y = (1,01, (u2,02)) (0)

Let 3: D — R" be a curve inR". Assume that for all (7, (u1,v1))s (7, (2, 02))) (o)) = ((ur,v1), (w2, 02)) (5.6)-

t € D, B(t) # 0 (this is only for comparing with past

works, our method does not require it). We then defirfgéince we have identified the space of curves withx

¢: D — Rby¢(t) =In(|3t)]), andd : D — S*~! by ©, we may identify the space of shapes with the quotient

0(t) = B(t)/||3(t)|. Clearly, andd completely specify3, spacg®x0)/(SO(n)xT). Furthermore, since these group

since for allt, 3(t) = e?V9(t). Thus, we have defined aactions are by isometries with respect to all the metrics

map from the space of open curvesRfi to ® x ©, where we introduced aboveno matter what values we assign to

® and© are sets of smooth maps. This map is surjective;dtand b, we get a corresponding two-parameter family of

is not injective, but two curves are mapped to the same paietrics on the quotient spa¢® x ©)/(SO(n) x I'). Note

(¢, 0) if and only if they are translates of each othieg,, that in distinguishing between the structures (for example

if they differ by an additive constant. In physical termas, geodesics) associated to these metrics, only the ratio of

is the (log of the) speed of traversal of the curve, while to b is important, since if we multiply both by the same

is the direction of the curve at each real number we just rescale the metric, which results in the
The tangent space d@f x © at any point(¢, #) is given same geodesics.

by T(4,6)(® x ©) = @ x {v € L*(D,R™)[v(t) L 6(t),Vt € This is not the only consideration, however. The issue of

D}. We now define a Riemannian metric énx ©. computing geodesics between curves for different choices



of ¢ = b/2a remains, especially once we restrict attention thiotice that whenc = 1, the integrand is the Euclidean
the space of unit length curves. One can ask: Is there sometric onR", otherwise it is not. If we use a discrete rep-
particular choice of weights which will be especially naur resentation of curves, say usiig points sampled on each
and which will result in the geodesics becoming easieurve, one can calculate the curvature of the resultingefinit
to compute? We now show that the SRV representatidimensional representation space (details are omittdu3. T

provides an answer to this question. calculation shows that:

In terms of (¢,0) SRV is given byq(t) = e2?(V0(t). . whenec # 1: for n = 2, the representation space of
A simple derivation shows that fu, v) € T(4,0)(® x ©), curves is flat except aj. = 0, where it is singular;
then the corresponding tangent vectoiLf D, R") atq is for n > 2, the curvature is again singular @t = 0,
given by f = Le2%uf+e2%v. Now let (uy,v;) and(usg, va) otherwise it is non-flat (the curvature is not zero).
denote two elements df 4 ¢)(® x ©), and letf; and f» « Whenc = 1: the curvature isdentically zero for all
denote the corresponding tangent vector&.toD, R") at n; the space of curves is flat.

g Computing thel.” inner product off; and f> yields Euclidean coordinates thus exist for al only when
B 11, 1, 1oy, 14 ¢ = 1: these coordinates are th®8RV representation
(fifo) = /D<§e2 urf +e2%vy, sexPusf + e2%v2) dt \ne conjecture that this situation continues to hold in the
1 infinite-dimensional case. This would mean that the SRV
= /D (—€¢u1uQ +€¢<v1,vz>) dt. (4) representation occupies unique position amongst curve

representations. We are unaware of any previous work that
In this computation we have used the fact tftt), 6(¢)) = discusses an SRV-type representation#for 2; the method
1, since d(t) is an element of the unit sphere, and thadescribed in Younes et al. [34] is for = 2.
(0(t),v;(t)) = 0, since eachy;(t) is a tangent vector to
the unit sphere afl(t). This expression, when compare
with Eqgn. 3, shows that th&2? metric on the space ofd4 COMPUTATION OF GEODESICS
SRV representations corresponds precisely to the eladfidhis section, we focus on the task of computing geodesics
metric on® x ©, with @ = 1/2 andb = 1. However, between any given pair of shapes in a shape space. This
expressed in terms of the SRV functions, th&-metric task is accomplished in two steps. First, we develop tools
is the “same” at every point of.2(D,R™) (it is simply for computing geodesics in the pre-shape spacésor
(fi, f2) = [5{f1(t), f2(t)) dt, which does not depend onC¢ and, the_n, we remove the remaining shape-preserving
the point at which these tangent vectors are defined), and fi@hsformations to obtain geodesics in the shape spaces. In
will thus have access to more efficient ways of computid§e case oC?, the underlying space is a sphere and the
geodesics in our pre-shape and shape spaces using the &Y of computing geodesic paths there is straightforward.
formulation. We emphasize again that this is true for curv&r any two pointsy, andg; in C?, a geodesic connecting
in arbitrary dimension. them is given byx : [0, 1] — C°,

3.2 Comparison with Prior Work olr) sin(6) (sin ({1 = 7))o + sinlbr)ar) , - (6)
The previous subsection showed that the SRV representdiere § = cos™'({qo,q1)) is the length of the geodesic.
tion provides Euclidean coordinates for the space of pelowever, we will use a path-straightening approach to
rameterized curves iR" equipped with the elastic metric.compute geodesics ifi°.

In this subsection, we compare the SRV representation toNotationally, we are using to parameterize paths on
previous work, and provide evidence that this is the onpaces of curves andto parameterize individual curves.
case for which Euclidean coordinates can be found.

When no= 1 there is no§ component and the , ) Path-Straightening Method: Theory
elastic metric in Eqn. 3 takes the form{ui,us) =

[ ui(t)yus(t)e?Ddt. This is called theFisher-Raometric  FOF any two closed curves, denotedfyandg, in C¢, we
and has been used for imposing a Riemannian structure®f interested in finding a geodesic path between them in
the space of probability density functions n[1], [2], [4]. C* We start with an arbitrary path(r) connecting, and
Note thate?® can be interpreted as a probability densitg1: € @ : [0, 1] — C* such thaia(0) = ¢o anda(1) = gi.
function for a curve of fixed length. It is well known, at least! "€N. We iteratively “straightent until it achieves a local
since 1943 [2], that under the square-root representati@inimum of the energy:
i.e. for ¢(t) = e2?®, this metric reduces to the® metric, 1 do . de
given by Eqn. 4 withn = 1. E(a) = 5/ (1), —~(7))dr @)
To discussn > 1, it is useful to use a slightly different 0 N
representation. Let us defige = B(t)/||ﬁ('t)|\1*%. Forv,, Over all paths fromy, to ¢;. It can be shown that a critical

w, in the tangent space at, the elastic metric becomes: Point of £ is a geodesic orC“. However, it is possible
that there are multiple geodesics between a given @air

(e, we)g, = b2 | 1lge(®)]|2™2 (v (t), we(t)) dt . (5) @ndqi, and a local minimum off may not correspond
qec e . .
D to a minimizing geodesic. Therefore, this approach has the




Fig. 2. An example of path-straightening method for
computing geodesics between two points on S2. The
right panel shows the decrease in the path length.

w along the pathv is calledcovariantly linear if Dw/dr

is a covariantly constant vector field.

Lemma 3: The orthogonal complement of, (H,) in
T, (H) is the space of all covariantly linear vector fields
w alonga.

Proof: Please refer to the appendix.

A vector field v is called theforward parallel trans
lation of a tangent vectorw, € T,)(C¢), along a, if
and only if u(0) = wy and Dg—f) =0 for all 7 € [0,1].
Similarly, u is called thebackward parallel trandation
of a tangent vectomw; € T, )(C°), along , when for

limitation that it finds a geodesic between a given pair b@(7) = a(1—7), u is the forward parallel translation af;

may not reach the minimizing geodesic, if it exists.

Let H be the set of all paths i@° and?, be the subset
of H of paths that start ajp and end aly;. The tangent
spaces of{ andH, are:T,(H) = {w| V7 € [0,1],w(T) €
Ta(T) (CC)}' WhereTa(T) (CC)
to N,(C°) (defined in Eqn. 1). A tangent is actually a
tangent vector field along such thatw(r) is tangent to
Ce at o). Similarly, T,,(Ho) = {w € To(H)|w(0) =

w(1) = 0}. To ensure that stays at the desired end points

the allowed vector field o has to be zero at the ends.
Our study of paths ort requires the use of covarian

derivatives and integrals of vector fields along these pat

For a given pathh € H and a vector fieldv € T, (H),
the covariant derivative of w along « is the vector

field obtained by projectin@ﬁ(r) onto the tangent space

T+ (C¢), for all 7, and is denoted byz (7). Similarly, a
vector fieldu € T,,(H) is called acovariant integral of w
along if the covariant derivative of; is w, i.e. % =
To makeH a Riemannian manifold, an obvious metri
would be (wy, ws) = [ (w1 (7),ws(7))dr, for wi, ws €
T, (H). Instead, we use the Palais metric [22], which is

! le

< D’LUQ
dr

dr

(7), (7))dr

(fw1,02)) = (w20, wa(O)+ |
0
where(-, -} is the chosen metric ofr. The reason for using
the Palais metric is that with respect to this metfig(H,)
is a closed linear subspace 6f (H), andH, is a closed
subset ofH. Therefore, any vectow € T,(H) can be

is specified as a set orthogona% (Ho)

t

alonga. It must be noted that parallel translations, forward
or backward, lead to vector fields that are covariantly
constant.

According to Lemma 3, to project the gradiemtinto
, we simply need to subtract off a covariantly linear
vector field which agrees with at7 = 0 andr = 1 (recall
that u(0) = 0). Clearly, the correct covariantly linear field
is simply 7a(7), where a(7) is the covariantly constant
field obtained by parallel translating 1) backwards along
. Hence, we have proved the following theorem.
Theorem 2: Let o : [0,1] — C© be a pathp € Hy. Then,
rﬁgr u as defined in Theorem 1, the gradient of the energy
unction E restricted tdH is w(7) = u(r) —ra(r), where
@ is the vector field obtained by parallel translatingl)
backwards alongv.
To finish this discussion we show that the critical points of
E are geodesics.
Lemma 4: For a given pairg, ¢1 € C¢, a critical point of
E on H, is a geodesic 0@ connectinggy, and ;.
Proof: Let o be a critical point ofE in Hy. That is, the
gradient of £ is zero atw. Since the gradient vector field is
given byu(r) — 7a(7), we have that(r) = 7a(r) for all
T Therefore,j—i‘ =St = % = 4. Sincea is a parallel
translation ofu(1), it is covariantly constant, and therefore,
the velocity field‘;—‘j is covariantly constant. By definition,
this implies thatn is a geodesic]

4.2 Path-Straightening Method: Implementation
We present some numerical procedures for computing

uniquely projected intd’, (Hy). This enables us to derivegeodesic paths between curves representegqband ¢;

the gradient ofy as a vector field ornv.
Our goal is to find the minimizer oF' in Hy, and we

in C¢. There are two basic items that are used repeatedly
in these procedures: 1. For projecting arbitrary points in

will use a gradient flow to do that. Therefore, we wish t@.2(S',R") into C¢, and 2. For projecting arbitrary points

find the gradient ofZ in T,,(Hy). To do this, we first find
the gradient off' in T,,(H) and then project it intd’, (Ho).
Theorem 1: The gradient vector oF in 7,,(H) is given
by the unique vector field. such thatDu/dr = do/dr
and u(0) = 0. In other words,u is the covariant integral
of da/dr with zero initial value atr = 0.

Proof: Please refer to the appendix.

in L2(S*, R") into T,(C¢) for someq € C¢.

Item 1: The projection fromL?(D,R™) to C° is simple:
q — q/llq||. The further projection frong° to C¢ is realized
as follows. Recall the mapping : C° given by G(q) =
fo% q(t)||q(t)||dt € R™. Our idea is to iteratively update
in such a way thati(q) becomes(0,...,0). The update
is performed in the normal spadé,(C°) since changing

We will introduce some additional properties of vectoalong the tangent spa@&(C©) does not change its value.
fields alonga that are useful in our construction. A vectoiThe question is: which particular normal vector should be

field w is calledcovariantly constant if Dw/dr is zero at
all points alonga. Similarly, a patha is called ageodesic

if its velocity vector field is covariantly constant. That is
is a geodesic if2 (42) = 0 for all 7. Also, a vector field

used in this update?
1) Calculate the Jacobian matrix/; ;
if ¢ =4, else it is zero.

5ij +
.,n. Here,0;; =1



2) Compute the residual = ¢/(¢) and solve the equa- 4.3 Path-Straightening Algorithm
tion J5 = —r for 5 € R™.

3) Updateq = g+ i, Bibi, 6 > 0, where{b;|i =
1,...,n} form an orthonormal basis of the norma
spaceN,(C¢) given in Eqn. 1. Rescale using —

Now we describe an algorithm for computing geodesics in

ﬁc using path straightening. The sub-algorithms referred to
ere are listed in the previous section.

Path-Straightening Algorithm: To find a geodesic be-

q/4ll- i Ce
4) If ||[r(q)|| < e, stop. Else, go to Step 1. tween two curvesio and 5, in C*.

Item 2: For the second item, take the orthonormal basis
{b;} of the normal spaceV,(C°) and project the given
vectorw usingw — w — Y7 (bi, w)b;.

With these two items, we can address the task of
straightening paths into geodesics. Let(r/k) : 7 =
0,1,2,...,k} be a given path betweeqy and ¢, in C°.

First, we need to compute the velocity vec%r at discrete
points alonga. 5) Compute the backward parallel transport of the vec-

Algorithm 1: [Computeg—i along o] tor u(1) along « using .Algorithm 3;_ denote it by.
Forallz =0,1,....k 6) Compute the full gradient vector field of the energy

1) Computer(r/k) = k(a(r/k) — a((r — 1)/k)). This £ along the pa/ilho" .ﬂf”"fd byw, using w(r) =
difference is computed ifi.?(S*, R™). - 1l.LJ(To)I ; mll(T) (thgorl [n f').ldu ina Algorithm 5

2) Projecte(r/k) into T,,(;/x)(C¢) using Item 2 to get ) Up atea along the vector fieldu using Algorithm .
an approximation forle (k). If >, (w(r),w(r)) is small, then stop. Else, return

Next, we want to approximate the covariant integral of 0 Ste? 3 . ]
% along «, using partial sumsi.e. we want to add the In the;e implementations, each curve is representeq by
current sum, say:((7 — 1)/k), to the velocity % (7 /k). its coordln_ates at some sampled points and the algorithm
However, these two quantities are elements of two differefff?00thly interpolates between them when needed. The
tangent spaces and cannot be added directly. Therefore,df&vatives are approximated using symmetric finite differ
projectu((r — 1)/k) into the tangent space at the poinENCes and integrals are approximated using summations.
a(r/k) firstand then add it t§2 (7/k) to estimateu(r/k).
Algorithm 2: [Compute covariant integral og% alonga]
Setu(0) =0 € Ty0)(C°). Forallr =1,2,...,k,

1) Project u((r — 1)/k) into the tangent spaceNOwW that we have procedures for constructing geodesics be-

To(r1)(S¢) (tem 2) and rescale to the originaltween points in a preshape spateC” or C©), we focus on

1) Compute their representatiorgs and ¢, in C°.

2) Initialize a path a betweeng, and ¢; in C° using
Eqgn. 6 and project it inC¢ using Item 1.

3) Compute the velocity vector fieléh,/dr along the
path « using Algorithm 1.

4) Compute the covariant integral dfv/dr, denoted by
u, using Algorithm 2.

4.4 Removing Shape-Preserving Transformations

length to result inull((7 — 1)/k). the same task for shape spaces. Towards this goal, we need

2) Setu(r/k) = %Z_Q(T/k) +ull((r = 1)/k) to solve the joint minimization problem opy, O) stated in
Next, we compute an estimate for the backward parallgfin- 2, with the cost function beinf : I' x SO(n) — R,
transport ofu(1): H{(v,0) = de(qo, O(q10v)v/7). This optimization problem
Algorithm 3: [Backward parallel transport af(1)] is depicted using a cartoon diagram in Fig. 3 (left). Our
Set@(1) = u(1) andl = ||lu(1)|. Forall7 = k — 1,k — Strategy is to fix one variable and iteratively optimize over
2.....0, the other. In case of?, this procedure is simple since

"1\ Proiects ; c i the solutions to individual optimizations are well known.

1) Project 1)/k) into T, /1) (C°) using ltem 2 . R

) to C)Jbtai?\(c((q;j_k))/ ) (/0 (€) g For a fixed~, the optimization ofH, = H(v,-) over
2) Seta(r/k) = lC(T/k)/”C(T//C)H. SO(n) is obtained using the SVD while, for a fixed,

the optimization ofHpo = H(-,0) overT is performed

Now we can compute the desired gradient: using the dynammic programming (DP) algorithm.

Algorithm 4: [Gradient vector field ofF in H]

Forall - — 1.9 k, computew(r/k) = u(r/k) — In case ofC, these direct solutions do not apply and we
(r/k)ii(r/k) e resort to a gradient-based approach. 46t) = ~, 0 v, o

. . . . e (m) — O eve e i
By construction, this vector fieldy, is zero atr = 0 and ©ym andOY™ = Oy - Oy O be the cumulative

group elements and at thié" iteration we seek the incre-

= k. As a final step, we need to update the pathn Her:
d f P P ments (Y41, Omy1) that minimize H(y(m+1) O0m+1)),

direction opposite to the gradient &f.

Algorithm 5: [Path update] Let ¢; denote the curreqt element of the orljt], i.e.
Select a smalk > 0 as the update step size. For al= §; = O (g o y(™)4/4(m) and leta : [0,1] — C be
0,1,...,k, perform a geodesic fromy, to ¢;. So, &, is the velocity vector at

1) Compute the gradient updaté(r/k) = a(r/k) — ¢ and definev = &(1)/[|a(1)|. This v is precisely the
ew(T/k). This update is performed in the ambiengradient ofd.(qo,q1) with respect taj; .
spa_ceLQ(/Sl,R"). . _ 1) Rotations: In the case ofC°, sinceC’ is a sphere,

2) Projecto/(r/k) to C¢ using Item 1 to obtain the the geodesic length is given by an arc-length, and
updateda(r/k). minimizing arc-length is same as minimizing the
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Fig. 3. Left: Computing geodesics in the quotient space

c/(T

x SO(n)). Right: The mapping from u € T4 () to

the tangent vector in Tg, ([g1]) in two steps.

2)

corresponding chord-length. Therefore, the optimal
rotation is directly written as:

Omi1 = argmm lgo — Oq || =UVT , (8)
0eS0O(n)
whereUSVT = svd(B) andB = [, qo(t)q (t)" dt.

If the det(B) < 0, then the last column o™
changes sign before multiplication.

In the case o, the update uses the gradient/éf.
The tangent space to the rotation orbit{id¢;|A €
R™ " A 4 AT = O} Let £y, FEs, ..., En(n—l)/Q
be an orthonormal basis for the space rofx n

u € T1(V), the differential of the first mapping
at 1 is u(t) — 2a(t) = 2 [ u(s)ds and for a
tangentw € T, (T), the dlfferentlal of the second
mapping aty;q is: w(t) — ¢.(w) = DL + L.
Concatenating these two linear maps we obtain the
directional partial derivative ofHp in a direction
ueTy(V) as:

VwHo(u):/D@(t), (2dq;—§wu(t)+q~1(t)u(t)>>dt.

Since T1(¥) is an infinite-dimensional space, we
can approximate the gradient offp, with re-
spect to they-component, by considering a finite-
dimensional subspace df; (U), as follows. Form
a subspace off3(¥) = {f : D — R|(f,1) =
0} using: {(fsm(ant) — cos(2mnt))ln =
1,2,...,m/2}. Then, apprOX|mate the partial deriva-
tive of H with respect to ¢ wusing ¢ =
S VyHo(ci)e;, where thee;s are the basis el-
ements of that subspace. Then, update ¢theom-
ponent according tol — ;11 = cos(dyl|c|)1 +
sin((d4 HcH)”C , for a step sizey, > 0. Since V¥ is

a hypersphere this update is 5|mply the exponential
map on that sphere, at the poihtand applied to the
tangent vector. This,,11 in turn givesy,,+1(t) =

Yma1(0) + fg Ymy1(s)?ds and thusy(m+1),

We can now state the algorithm for computing geodesics
on shape spaces.

skew-symmetric matrices. The gradient updates f&hape Geodesic Algorithm: Find a geodesic between
rotation are performed by projectingin this space shapes of two parameterized curvés and 8, in S (S°
to obtain A = °,(E;q,v)E; and updating using OF S¢). Compute the representations of each curve;in

Op41 = e%4q, for a step sizel, > 0.
Re-parameterizations: In case ofC, the optimiza-
tion over Hp can be performed using the DP al-
gorithm but for C¢ we develop the following gra-
dient iteration. We seek the incrementg),; that

denote them byj, and ¢, respectively. Sef; = ¢;.
1) Compute the geodesie betweeng, and ¢; in the

preshape space. Fal°, use the analytical expression,
while for C¢ use the path-straightening algorithm
given in the previous section.

minimizes Hp. There are two possibilities: One is 2) Removal of nuisance variables:

to take the gradient offo(y(™*Y) directly with
respect toy,,4+; and use it to update(™*t1). The
other possibility, the one that we have used in this
paper, is to use a square-root representatioi thiat
often simplifies its analysis. Defing,, 11 = /ym+1
and re-express,,+1 as the pair(v,,+1(0), Ym41)-
With a slight abuse of notation, Iéf, be a function

of (Ym+1(0),¥m+1). Note that the spac& of all
y-functions is the unit hypersphere it? (D, R) (of
radius one). We initialize withy,(t) = ¢, with the
corresponding representation befiig1l) and1 being
the constant function with value one. At the iteration
m, we take the gradients offp, with respect to
Ym+1(0) and ¢,,,41, and update these individually. i
The der|vat|ve W|th respect t%+1( ), evaluated at
(0,1), is 87 = [, (v(t), D)t To obtain
the derlvatlve W|th respect t@izm+1, consider the
fo s)2ds N )

— 7,

sequence of mapg where
r = ¢(y) = (q1 o)V, as shown in Fig. 3 (right).

a) Rotation: For C°, use the SVD-based solution
(Egn. 8). For C¢ compute A, the derivative
of H, with respect toSO(n). and form the
rotation updateO,,, 1.

b) Re-parameterization: For C° one can use the
DP algorithm. More generally, compute the
derivatives of Ho with respect toy,,+; and
vm+1(0), and for the re-parameterization up-
date~,,+1-

3) Updategy — Oy 1(d1 © Yims1)VFms1-
4) If the norms of the increments are small, then stop.

Else return to step 1.

The two rows in Fig. 4 shows two examples of optimiza-
on overI'. In each case we start with a parameterized
curve, shown in (a) and represented by, generate a
random~ € T" (shown in (b)) and form a re-parameterized
curve usinggo = (g1 ©y)+v/4 (shown in (c)). Then, we use
the gradient approach described above to find an optimal
re-parameterization of;; that best matches thig, by

For the constant functiol € V¥ and a tangent minimizing the cost functiorf/o. The evolution of the cost
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Fig. 4. (a) The original shape represented by qq, (b) @?} g;} ;j im (\u;“ (*a:’?;\“ {*v’t} {j’?}
an arbitrary v € T, (c) the second shape formed using - -

qo = (q1 0 ¥)v/¥, (d) evolution of H in matching ¢; with @’:}} @m@@@@@
qo, (e) final curve represented by ;. I ]

Shapp Method PP Algorith ﬁrgd'geoms‘g"";ga‘:go( ) Fig. 5. Examples of planar elastic geodesics.
Circle Time (sec) 12.00 1(0.84L.722.593.39 4.22
CircldRelative Final Cost (%) 0.06 1.190.4(0.280.24 0.21
- . = 5
B Reae Fel CosT O 0016 Geieiagai 117  Show the optimal re-parametrizations. The spacings be-
tween the ticks are uniform in the leftmost shapgg but
TABLE 1 have been adjusted for the other shapes during the mini-
Timing analysis of gradient-based re-parameterization  mization of H. The reader can see that the combinations
and comparison with DP algorithm. of bending and stretching used in these deformations are
successful in the sense that geometrical features are well
preserved.
function Ho is shown in (d), and the final re-parameterized /| ./ =~ Af[\ AN AN AN AN AN
curve ¢; is shown in (e). In these examples, singgis y\ //\ C/ C/\ o) Z/\\) NN
simply a re-parmeterization af;, the minimum value of
Ho should be zero. Note that in the top row, where the ﬁ ﬁ % ﬁ % %
original v is closer to the identity, the cost function goes——
to zero but in the bottom case whefeis rather drastic, '/, &V VY O o0 o) (0]
AV A AN AW AWAN AW,

the algorithm converges to a final value &f that is not
close to zero. We conjecture that this can be mitigated by@ ™, @ @ w w w w
improved numerical implementation of the basic procedure.
Fig. 6. In each case the top row shows a non-elastic
To illustrate the strengths and limitations of a gradiengeodesic ( [14]) while the bottom rows the elastic
based approach with respect to a common DP algorithm [ggodesic between the same shapes.
[26], we present a comparison of computational costs (using

Matlab on a 2.4GHz Intel processor) and performance in

Table 1. In this experiment we consider the shape spacé:iglljre ,6 comrf)adresf thle elastic gTodesicsiﬁqwitrrl] the
S¢ since DP is not applicable for optimization in the casBon-elastic method of Klassen et al. [14] where the repre-

of closed curves. The computational complexity of thgent?fuon d|sfrestr|c_ted_ to arcl-lel?gtz_paran:jeterlzatldftr:; .
gradient approach i©(T'mk), whereT is the number of re”su t”:jg € oananon 'Sh purﬁy Ien _mghan no stlret_c 9 II
samples on the curvey is the number of basis functions,&''°"€d- We observe that the elastic shape analysis results

andk is the number of iterations, while that of DP algorithnil @ Petter matching of features across shapes and a more

is O(T2). The table is generated faF = 100 andk = 200. natural deformation along the geodesic path.

As a measure of matching performance, we also present the

relative final cost as a percentagéi({(final)/H o (initial))

x100). This table shows that while the DP algorithm i APPLICATIONS

very accurate in estimating the unknown its computa-

tional cost is relatively high. One gets to solutions, albein this section we illustrate the proposed elastic shapk ana

approximate, much faster when using the gradient methggis using some applications. Some additional application

An important limitation of the gradient method is that ithave been presented elsewhere: symmetry analysis of two-

solution is always local. and three-dimensional shapes [24]; shape classification of
Figure 5 shows some elastic geodesics between sevemiht clouds [29]; and joint gait-cadence analysis for hama

pairs of shapes. We have drawn ticks on these curvesidentification in videos [11].
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Fig. 9. Two proteins: 1CTF (left) and 2JVD (right) and

Fig. 7. (a), (b): original curves, (c) optimal registration the elastic geodesic between their shapes.
between them, and (d) optimal ~*. Bottom: correspond-
ing geodesic paths.

between curves for clustering and classification. In this
example, we study 12 cylindrical helices that contain diffe
s ent number, radii, and placements of turns. The first three
> helices have only one turn, the next three have two turns,
and so on. Using the elastic geodesic distances between
o them in §°, and the dendrogram clustering program in
1 2 3456789101112 Mgtlab, we _obtaln the clustering shown in the right panel.
This clustering demonstrates the success of the proposed
Fig. 8. A set of helices with different numbers and elastic metric in that helices with similar numbers of turns
placements of spirals and their clustering using the are clustered together.
elastic distance function. Finally, in Fig. 9, we present an example of comparing
real protein backbones. In this experiment we use two
simple proteins — 1CTF and 2JVD - that contain three
5.1 Shapes Analysis of 3D Helices and nNOQ-heI_ices respectively. The top row pf this figure
shows depictions of the two backbones, while the bottom
As the first example we will study shapes of helical ifow shows the geodesic path between thensin These
R?® by matching and deforming one into another. Ongsults suggest a role for elastic shape analysis in protein

motivation for studying shapes of cylindrical helices cemestrycture analysis. Additional details and experimenés ar
from protein structure analysis. A primary structure in gresented in [16].

protein is a linked chain of carbon, nitrogen, and oxygen
atoms known as the backbone, and the geometry of the N
backbone is often a starting point in structural analysis 8f2 3D Face Recognition

proteins. These backbones contain certain distinct ggémeHuman face recognition is a problem of great interest in
cal pieces and one prominent type is the so-cafldtelix. homeland security, client access systems, and several othe
In analyzing shapes of backbones it seems important deeas. Since recognition performance using 2D images has
match not only their global geometries but also the locaken limited, there has been a push towards using shapes
features (such as-helices) that appear along these curvess facial surfaces, obtained using weak laser scanners, to
We suggest the use of elastic shape analysis of curvesr@ognize people. The challenge is to develop methods and
a framework for studying shapes of protein backbones antktrics that succeed in classifying people despite changes
present some results involving both synthetic and real. daga shapes due to facial expressions and measurement errors.
Shown in Fig. 7 are two examples of geodesics betwe&amir et al. [23], [31] have proposed an approach that: (1)
some cylindrical helices. In each case, the panels (a) gnd ¢bmputes a function on a facial surface as the shortest-
show two helices, and (c) is the optimal matching betwegyath distance from the tip of the nose (similar to [3], [21]),
them obtained using the estimatedfunction shown in (2) defines facial curves to be the level curves of that
panel (d). The resulting geodesic pathsSthbetween these function, and (3) represents the shapes of facial surfaces
curves are shown in the bottom row. It is easy to see thging indexed collections of their facial curves. Figure
combination of bending and stretching/compression tha0 (top) shows two facial surfaces overlaid with facial
goes into deforming one shape into another. In the leftirves. These facial curves are closed curve®inand
example, where the turns are quite similar and the curviir shapes are invariant to rigid motions of the original
differ only in the placements of these turns along the curveurface. We compare shapes of facial surfaces by comparing
a simple stretching/compression is sufficient to deform os®apes of the corresponding facial curves, using geodesics
into another. However, in the right example, where thigetween them is¢. As an example, Fig. 10 (bottom) shows
number of turns is different, the algorithm requires botheodesics inS¢ between the two sets of facial curves. For
bending and stretching. display, these intermediate curves have been rescaled and
Figure 8 shows an example of using the elastic distandeanslated to the original values and, through reconstmgct
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Fig. 10. Top: Two facial surfaces represented by in-
dexed collections of facial curves. Bottom: Geodesics s ﬁ:@ E] E} ?1 m
econt.

between shapes of corresponding curves.
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9 Fig. 12. The left panel shows a set of 20 observed
o shapes of a “runner” from the Kimia dataset. The
- middle panel shows their Karcher mean, and the right
* panel shows a random sample of 20 shapes from the

I T learned wrapped nonparameteric model on S¢. The

bottom three rows show eigen variations of shapes
in three dominant directions around the mean, drawn
from negative to positive direction and scaled by the

] ) ) corresponding eigen values.
they result in a geodesic path such that points along that

path approximate full facial surfaces. These geodesicspath

can be used to compute average faces or facial parts, or to . )
define metrics for human recognition [5]. and associated observed variances. One can study these

Another example of elastic shape analysis of faces, tfff@minant directions of variability as shapes by projecting
time using facial profiles is shown in Fig. 11. vectors along the_zse directions to th_e shape_ space. _Let
(04,U;)’s be the singular values and singular directions in
5.3 Elastic Models for Planar Shapes the tangent space, then the mappiagU; — exp,, (7o;U;)
) o i i helps visualize these principal modes as shapes. The three
An important application of this elastic shape frameworbrincipm components of the 20 given shapes are given in
is in developing probability models for capturing the vari,e jower three rows of Fig. 12, each row displaying some
ability present in the observed shapes. For example, %pes fromr = —1tor = 1.
left panel of Fig. 12 shows examples of 20 observed two- | terms of probability models, there are many choices
dimensional shapes of a “runner” taken from the Kimigyajjaple. For the coefficient§z;} defined with respect
database. Our goal is derive a probaplhty mod_el on thg the basis{U;}, one can use any appropriate model
shape spac&®, so that we can use this model in futurgom muyltivariate statistics. In this experiment, we try a
inferences. Using ideas presented in earlier papers [}, [3non-parametric approach where a kernel density estimator,
we demonstrate a simple model where we: (i) first compUfiih 3 Gaussian kernel, is used for each coefficient
the sample Karcher mean [10] of the given shapes, (i) leaffyependently. One of the ways to evaluate this model
a probability model on the tangent space (at the mean) @i, generate random samples from it. Using the inverse
mapping the observations to that tangent space, and ({fnsform method to samptes from their estimated kernel
wrap the probability model back t§° using the exponential yensities, we can form a random veclo), z;U; and then

map. In this paper, we demonstrate the model using rand@ random shapexp, (3, z;U;). The right panel of Fig.
sampling: random samples are generated in the tanggbt shows 20 such random shapes. It is easy to see the

Fig. 11. Elastic geodesics between facial profiles.

space and mapped back;ﬁé. ) success of this wrapped model in capturing the shape
Let u = argminggese iy ds([g], [¢:])” be the Karcher \arapility exhibited in the original 20 shapes.
mean of the given shapes, ¢, ..., q,, whered, is the

geodesic distance os¢. The Karcher mean of the 20 ) )

observed shapes is shown in the middle panel of Fig. 124 Transportation of Shape Deformations

Once we have:, we can mapg;] into 7,,(S¢) using the One difficulty in using shapes for recognizing three-
inverse exponential magy;] — v; = exp;l([qi]). Since dimensional objects is that their two-dimensional appear-
the tangent space is a vector space, we can perform maree changes with viewing angles. Since a large majority
standard statistical analysis. The infinite-dimensiapadi of imaging technology is oriented towards two-dimensional
T,(S°) is not a problem since we usually have onlymages, there is a striking focus on planar shapes, thelr ana
a finite number of observations. For instance, one c#sis and modeling, despite the viewing variability. Within
perform PCA on the sefv;} to find dominant directions this focus area, there is an interesting problem of preuicti
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Fig. 13. In each case: a geodesic from the template
shape (hexagon) to the training shape (top) and defor-
mation of the test shape (circle) with the transported
deformation (bottom).

Fig. 14. Shape predictions for novel pose. In each
column, the first two are given shapes of the M60
from 9 = 0 and 6°. The deformation between these
two is used to deform the T72 shape in the third row
and obtain a predicted shape in the fourth row. The

shapes of three-dimensional objects from novel Viewi%companymg pictures show the true shapes of the
angles. (The problem of predicting full appearances, usidd 2 &t those views.
pixels, has been studied by [25] and others.) Our solution
to the problem of shape prediction is the following. If
we know how a known object deforms under a viewpoirftom the other azimuthal angles. Since both the objects are
change, perhaps we can apply the “same” deformationtimks, they have similar but not identical geometries. For
a similar (yet novel) object and predict its deformatioimstance, both have mounted guns but the T72 has a longer
under the same viewpoint change. The basic technical isguen than the M60. In this experiment, we seléét= 0
is to be able to transport the required deformation fromnd predict the shape of the T72 for sevéfalThe results
the first object to the second object, before applying thate shown in Fig. 14. The first and the third rows show
deformation. Since shape spaces are nonlinear manifolthe shapes fojy{] and[¢5], respectively, the shapes for the
the deformations of one shape cannot simply be appliedM60 and the T72 looking from head on. The second row
another. shows|[¢!] for different#® given in the last column, while
The mathematical statement of this problem is as followthe fourth row shows the predicted shapes for the T72 from
Let [¢f] and [¢}] be the shapes of an obje@' when thosef®.
viewed from two viewing angled, and 0, respectively.  How can we evaluate the quality of these predictions?
The deformation in contours, in going from{] to [¢i] we perform a simply binary classification with and without
depends on some physical factors: the geometnOof the predicted shapes and compare results. Here is the
and the viewing angles involved. Consider another objegiperimental setup. We have 62 and 59 total azimuthal
O? which is similar but not identical t@" in geometry. yiews of the M60 and the T72, respectively. Of these, we
Given its shapegs] from the viewing angléJ,, our goal randomly select 31 views of M60 and one view of the
is to predict its shapéy3] from the viewing angl@,. Our 177 as the training data; the remaining 31 (58) views of
solution is based on taking the deformation that defornige Me0 (the T72) are used for testing. The classification
la¢] to [¢7] and applying it tolgs] after some adjustments. results, using the nearest neighbor classifier and thelast
1) Letos (1) be a geodesic betweéqt] and[q¢}] in S¢  distanced, (Eqn. 2), are shown in the table below. While
andv; = d1(0) € Tj)(S¢) be its initial velocity.  the classification for the M60 is perfect, as expected, the
2) We need taransportv; to [¢3]; this is done using classification for the T72 is 46.55%. (Actually, this number
forward parallel translation. Let;(7) be a geodesic is somewhat higher than expected — we would expect a
from [¢f] to [¢5] in S¢. Construct a vector field)(t) smaller performance with only one training shape.) Now
such thatw(0) = v; and 5% = 0 for all points along we generate additional 31 shapes for the T72 using the
a12. This is accomplished in practice using Algoprediction method described earlier. Using the 31 training
rithm 2 in Section 4.2. Theny; = w(1) € Tj4)(S°)  shapes of the M60, we generate 31 corresponding shapes of

is a parallel translation of; . . . the T72 using parallel transport. THe used here wa80°.
3) Construct a geodesic starting frapg] in the direc- The classification result after including the 31 predicted
tion of vs. shapes is found to be 60.34%, a 15% increase in the

Figure 13 shows two examples of this idea. In the top cageerformance when using shape predictions. We performed
a hexagon[¢]) is deformed into a squarégf]) using an the same experiment for another azimuth= 0°, and the
elastic geodesic; this deformation is then transported taresults are listed under experiment 2 in the table. In this
circle (¢3]) and applied to it to result in the predictigg}]. case we improve the classification performance from 6.8%
A similar transport is carried out in the bottom example.to 17.2%, an increase of almost 11%, using the predicted
Next, we consider an experiment involving the M60 tankhapes of the T72. While this experiment was performed
as O! and the T72 as0?. Given shapes for different with only one training shape, one can repeat this idea using
azimuthal pose (fixed elevation) of M60 and one azimuthultiple given shapes for the novel object and then perform
for the T72, we would like to predict shapes for the T7prediction for a novel view using joint information from
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Experiment 1 ¢ = 90°) Experiment 2¢“ = 0°) || Therefore, using [15]¢¢ is a codimension: submanifold
Est. /Truf M60 T72 M60 T72

o . ; .
MBO [T00% {100 %)53.45% B9.66%)[T00%(00 %)93.2% gze%y| ©f C’» for aII_pplnts except those in this measure zero
T72 | 0% (0 %) 146.55% 60.34%)| 0% (0 %) |6.8% (7.2%)|| Subset. We will ignore this subset since there is essentiall

a zero probability of encountering it in real problems. We

TABLE 2 conclude that, with the earlier proviso, is a submanifold
Classification rate with (bold fonts) and without of the Hilbert space&® and, thusL*(S', R™). O
(normal fonts) use of predicted shapes for the T72. Proof of Theorem 1: Define avariation of « to be a smooth

function, (7, s) with h : [0,1] x (—e,e) — H such that
h(7,0) = a(r) for all 7 € [0,1]. The variational vector
field corresponding ta is given byuv(r) = hs(7,0) where
these views. s denotes the second argumentinThinking of h as a path
of curves inH, indexed bys, we defineE(s) as the energy
6 SUMMARY of the curve obtained by restrictinfgto [0, 1] x {s}. That

. _ 1t
We have presented a new representation of curves that falcs|I-E(S) =3 Jo (hr(7:5), hr (7, 5))dr. We now compute,

itates an efficient elastic analysis of their shapes and-is ap. L' Dh.,

plicable toR™ for all n. Its most important advantage is that £(0) = /0 { ds (7,0), hr (7, 0))dr

the elastic metric reduces to a simflé metric. Geodesics 1 pp 1 Do da

between shapes of closed curves are computed using a path- (d—s(ﬂ 0), hr(7,0))dT = / <d_(T)’ d—(7)>d77
straightening approach. This framework is illustratechgsi 0 g o 67T g

several applications: shape analysis of helical curvé®®in since i (7,0) is simply ‘j—i(r). Now, the gradient ofE
with applications in protein backbone structure analysishould be a vector field, along o such thatE(O) =
shapes of 3D facial curves with applications in biometricg{v, u)). That is, £(0) = (v(0),u(0)) + [, (22, Du)dr.
wrapped probability models for capturing shape variapbilit From this expression it is clear that must satisfy the
and parallel transport of deformation models to predinitial condition «(0) = 0 and the ordinary (covariant)

shapes of 3D objects from novel viewpoints. differential equationfi’—f = 3—;’. O
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on pages 25-27 of [15]. L&t : C° — R™ be a map defined Hence,T,,(H,) is orthogonal to the space of covariantly
asG(q) = [q q(t)|lq(t)]|dt. First, we need to check thatlinear vector fields alongy in 7., (H). This proves that

its differential, dG, : T,(C°) — R", is surjective at every the space of covariantly linear vector fields is contained
q € G7'(0); 0 € R™ is the origin. For the’” component in the orthogonal complement dF,(H,). To prove that
Gi(q) = [q a:()llg(t)]|dt, i = 1,2,...,n, its directional these two spaces are equal, observe first that given any

derivative in a directionv € L(S*, R") is given by: choice of tangent vectors at0) anda(1), there is a unique
a(t) covariantly linear vector field interpolating them. It foiis
dGi(w) = / (w(t), WQ(L‘) + lla(t)lles)dt , that every vector field along can be uniquely expressed
Sl

as the sum of a covariantly linear vector field and a vector
wheree’ is a unit vector ifR™ along thei*” coordinate axis. field in To(Hp). The lemma follows.
To show thatG is surjective, we need to show the func-
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