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Abstract—Effective features can improve the performance of 

a model, which can thus help us understand the characteristics 

and underlying structure of complex data. Previous feature 

selection methods usually cannot keep more local structure 

information. To address the defects previously mentioned, we 

propose a novel supervised orthogonal least square regression 

model with feature weighting for feature selection. The 

optimization problem of the objection function can be solved by 

employing generalized power iteration (GPI) and augmented 

Lagrangian multiplier (ALM) methods. Experimental results 

show that the proposed method can more effectively reduce the 

feature dimensionality and obtain better classification results than 

traditional feature selection methods. The convergence of our 

iterative method is proved as well. Consequently, the effectiveness 

and superiority of the proposed method are verified both 

theoretically and experimentally. 

 

Index Terms—Feature selection, feature weighting, 

orthogonal regression, supervised learning.  

I. INTRODUCTION 

EATURE selection is one of the most important research 

problems in machine learning, devoted to selecting the 
most effective elements from the original features in order to 

reduce the overall dimensions of high-dimensional data sets 

and improve the performance of learning algorithms [1].  
In general, there are three types of feature selection 

methods: filter methods, wrapper methods, and embedded 

methods [2]. Filter methods implement feature selection before 

classification and are usually based on a two-step strategy. First, 

the features are ranked by certain criteria. Second, the features 

with top scores are selected. There are many classic filter 

methods, such as the Chi-squared test, information gain (IG) [3], 

correlation coefficient (CC) scores, maximum relevance 
minimum redundancy (mRMR) [4], correlation-based feature 

selection (CFS) [5] and so forth. Wrapper methods generate 

different subsets of features and then evaluate the subsets under 

certain classifiers or learning algorithms, for example the 

Genetic Algorithm (GA) [6]. Embedded methods are similar to 

filter methods, but they determine the sort of features through 

training. L1 (LASSO) regularization [7] and decision trees [8] 

are typical examples of embedded methods. 
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Feature selection can also be sorted into supervised, 

semi-supervised, and unsupervised methods based on class 

label information. Supervised feature selection methods 
evaluate feature relevance using all class labels, for example 

Fisher Score [9] and ReliefF [10]. Recently, various 

semi-supervised methods, with some class labels, have been 

proposed, for example Chen et al. [11] proposed a 

semi-supervised feature selection utilizing rescaled linear 

regression. Without labels, unsupervised feature selection 

methods compute feature relevance through feature similarity, 

for example the Laplacian Score [12]. 

Least square regression is the most common statistical 

analysis model. It aims to find a projection matrix W  and 

minimizes a sum-of-squares error function [13]. At present, 

some feature selection methods exist that have been put 
forward based on least square regression. For example, Sparse 

LSR was proposed by Nie et al. in [14] and introduced 2,1l  to 

sparse the projection matrix W  so as to select the effective 

features. The orthogonal regression model can be considered 

the least square regression with orthogonal constrains. It can 

preserve more discrimination information in a subspace, and 

avoid trivial solutions, compared to the least square regression 

[15]. The optimization problem of the classical least square 

regression can be solved easily. However, the objective 

function with orthogonal constrains is an unbalanced 

orthogonal procrustes problem which is difficult to obtain an 
optimal solution.   

In this paper we propose a novel supervised feature selection 

method, named Feature Selection with Orthogonal Regression 

(FSOR). The proposed method is a technique for feature 

selection, based on orthogonal regression, which aims to 

minimize the perpendicular distance from the data points to the 

fitted function. Unlike other classical orthogonal regression 

models, we introduce the feature weighting information in our 

model. The new scale factors can express the ranking or 

proportion of all features with the aim to minimize the 

perpendicular distance from the data points to the fitted 
function. In other words, they are used to evaluate the 

importance of features. The feature subsets are then formed by 

selected the features with the top rankings. Moreover, 

motivated by the previous study [16], the generalized power 

iteration (GPI) method was employed in our work to solve the 

regression matrix W , and an effective iterative algorithm was 

derived to minimize the objective function. To assess the 

reliability, the proposed method FSOR was compared with 

eight other state-of-the-art supervised feature selection methods, 

including ReliefF, CC, IG, trace ratio criterion (TRC) [17], 

robust feature selection (RFS) [14], conditional mutual 
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information maximization criterion (CMIM) [18], Fisher and 

mRMR. The experiment results prove the convergence of our 

method and show the superiority on various data sets when 

compared with five feature selection methods. 

The rest of the paper is organized as the follows. Section II 
gives the notations and definitions of the norms employed in 

this paper. In Section III, we give a detailed introduction of the 

proposed FSOR method. Next, in Section IV, the experiment 

results and discussions are presented. Finally, a conclusion is 

given in Section V. 

II. NOTATIONS AND DEFINITIONS 

We summarize the notations and definitions of the norms 

that are used in this paper. nI  denotes an n n  identity matrix. 

( ) 11,1,...1
T n

n R = 1 . For any matrix M , the Frobenius norm is 

defined as ( )
2 T

F
M Tr M M= . 

III. PROPOSED METHOD 

In [19], the orthogonal least square regression (OLSR) can 

be written as: 

 
2

,
min  s.t. T T T

n kFW b
W X b Y W W I+ − =1    (1) 

where the data matrix d nX R  , the label matrix k nY R  , the 

regression matrix d kW R   with orthogonal constrain 
T

kW W I= , and 1kb R   is the bias vector. d , n  and k  

represent the number of features, samples and categories, 

respectively.  

To express the ranking or proportion of all features, we 

introduce feature weighting information in our model. Based on 

the OLSR and feature weighting, we propose a new supervised 

feature selection method by solving the optimization problem, 

this can be written as:                           

 
2

, ,
min  

s.t. , 1, 0

T T

n FW b

T T

k d

W X b Y

W W I



 

 + −

= = 

1

1

 
  (2) 

Where the diagonal matrix, d dR   with 1T

d =1  and 

0  , measures the importance of features. Due to the extreme 

value condition w.r.t. b , we can derive that:                                            
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W X b Y

b

  + −

=
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Where b  can be computed as                    

 ( )
1 T

n nb Y W X
n

= − 1 1  (4) 

Substituting Eq. (4) into Eq. (2), Eq. (2) can be simplified to 

the following form: 
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,
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s.t. , 1, 0

T

FW

T T

k d

W XH YH

W W I



 

 −

= = 1

 
(5) 

where n

1 T

n nH I
n

= − 1 1  

Hence, the problem can be converted to Eq. (5). In the 

following, we propose a new effective method to solve the 

problem (5). 

A. Update W with   fixed 

When fixing  , we can deduce the following formula 

 min ( 2 )
T

k

T T

W W I
Tr W AW W B

=
−  (6) 

in which: 
T T

T

A XHX

B XHY

 =  


= 

 

Eq. (6) has the same form as the quadratic problem on the 

Stiefel manifold (QPSM) [18], where d kW R  , d kB R   and 

symmetric matrix d dA R  . Nie et al. propose a novel 

generalized power iteration (GPI) method to solve the QPSM 

[20], and whereby the efficiency of the GPI method is verified 

both theoretically and empirically. The algorithm of the GPI is 

described in Algorithm 1. 

Thus, we can update W  when   is fixed using the 

Algorithm 1.  

 

Algorithm 1    Generalized power iteration (GPI) method  

1. Input: the symmetric matrix d dA R   and matrix
d kB R  . 

2. Output: the matrix d kW R  . 

3. Initialize the random d kW R  and parameter   such as 
d d

dA I A R = −   is a positive definite matrix. 

4. Repeat 

5.     Update 2 2M AW B + .  

6.     Calculate TUSV M= via the compact SVD method of    

M . 

7.     Update TW UV . 

8. until converges. 

B. Update  with W  fixed 

When W is fixed, the problem (5) becomes 

 
, ,

min ( ) (2 )

s.t. , 1, 0

T T T T

W b

T T

k d

Tr XHX WW Tr XHY W

W W I



 

   −  

= = 1
 (7) 

Lemma 1. If S  is diagonal, then ( ) ( )T TTr SASB s A B s=  

Proof:    

( ) ( ) { } {( ) }

( ) ( )

T T T T T

i i i i

T T T T T

Tr SASB s diag ASB s vec a Sb s vec a b s

s A B s s A B s

= = =

= =
 

By using the lemma 1, the problem (7) becomes 

 
( ) ( )

, ,
min

s.t. , 1, 0

T
T T T T

W b

T T

k d

XHX WW b

W W I


  

 

   −
    

= = 1

 (8) 

The problem (8) can be written as the following form 

 
1, 0

min
T

d

T TA b
 

  
= 

−
1

 (9) 

in which: 
( ) ( )

( )b 2

T T T

T T

A XH X WW

diag XHY W

 =


=

 

Therefore, problem (5) is converted into a solution to the 

problem (9). We use the augmented Lagrangian multiplier 

(ALM) method to solve the constrained minimization problem 
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and decompose the problem into multiple subproblems [21, 22]. 

The ALM method is introduced to solve the following 

constrained minimization problem: 

 
( ) 0
min ( )

X
f X

 =
 (10) 

The solution is described in Algorithm 2. 

 

Algorithm 2     The augmented Lagrangian multiplier (ALM) 

method 

1. Set 1 2  , initialize 0  ,  .  

2. Output: X . 

3. repeat 

4.     Update X  by 

2

1
min ( ) ( )

2X
F

f X X

 


+ + . 

5.     Update   by ( )= + X   . 

6.     Update   by =  . 

7. Until convergence. 

We rewrite the problem (9) as the following:   

 
1, 0, =

min
T

d

T T

v v
A b

 
  

= 
−

1
 (11) 

According to Algorithm 2, the augmented Lagrangian 

function of (9) is defined as: 
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2

1 2 1

2

2

1
, , , ,

2

1
1

2

s.t. v 0

T T

F

T

d

L v A b v


        



 



= − + − +

 
+ − + 

 



1  

 

(12) 

 

where v  and 
1  are column vectors,   is the Lagrangian 

multipliers. When fixing v , problem (12) can be equivalently 

rewritten as: 

 1
min

2

T TE f


  −  (13) 

                  

in which: 
2 1

2 T

d d d

d d

E A I

f v b

 

   

 = + +


= + − − +

1 1

1 1
 

It can be easily seen that 1E f −= . 

In the same way, when fixing  , problem (12) can be 

rewritten as:   

 2

1
0

1
min

v
v  



 
− + 
 

 (14) 

It can be verified that the optimal solution of v  is 

 
1

1
( )v pos  


= +  (15) 

( )pos t  is a function which assigns 0 to each negative element 

of t . 

To sum up, the detailed algorithm for solving the problem (9) 

is described in Algorithm 3. 

 

 

Algorithm 3      Algorithm to solve the problem (9) 

1. Initialize 1  , ( )
1

1i i d
d

 =   , v = ,
2 0 = ,

0  ,
1

1 (0,0,...0)T dR =  .  

2. Output:  

3. Repeat 

4.     Update E  by 2 T

d d dE A I = + + 1 1     

5.     Update f  by 
2 1d df v b   = + − − +1 1  

6.     Update   by -1=E f   

7.     Update v  by 
1

1
( )v pos  


= +  

8.     Update 
1  by ( )1 1 v   = + −   

9.     Update 
2 by ( )2 2 1T

d   = + −1  

10.     Update   by =   

11. Until convergence. 

The detailed algorithm for solving the problem (2), named 

Feature Selection with Orthogonal Regression (FSOR), is 

summarized in Algorithm 4. In this algorithm, the regression 

matrix W  and the diagonal matrix   are alternately updated 

until convergence. 

Algorithm 4      Feature Selection with Orthogonal 

Regression (FSOR) method 

1. Input:  the data matrix d nX R  , the label matrix  
k nY R   

2. Output: the regression matrix d kW R  , the diagonal 

matrix d dR  . 

3. Initialize d dR   satisfying 1T

d =1  and 0  . 

n

1 T

n nH I
n

= − 1 1  

4. repeat 

5.     Update W  via Algorithm 1. 

6.     Update   via Algorithm 3. 

7. Until convergence. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

To verify the correctness and reliability of our algorithm, we 

chose eight Benchmark datasets from Feiping Nie’s page1 as 

the experimental data. The detailed information regrading these 

datasets is summarized in Table I. 

TABLE I 

DESCRIPTION OF 8 BENCHMARK DATASETS  

Datasets #of samples #Features #Classes 

Vehicle 846 18 4 

Segment 2310 19 7 

Chess 3196 36 2 

Control 600 60 6 

Uspst 2007 256 9 

Binalpha 1404 320 36 

Corel_5k 5000 423 50 

Yeast 1484 1470 10 

 
1 http://www.escience.cn/system/file?fileId=82035 
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In the experiment, we compared the FSOR algorithm with 

eight other state-of-the-art feature selection algorithms, 

including ReliefF, CC, IG, CMIM, fisher, mRMR, TRC and 

RFS. In view of the above eight datasets, we employed four 

classifiers to classify the datasets after feature selection, such as 
support vector machine (SVM) with linear kernels, SVM with 

RBF kernels, Random Forest (RF) and k-nearest neighbor 

(KNN). For the selected features, we used a random 70% of the 

data to act as the training sets to train the best classifier model, 

then we test the model using the remaining 30% testing sets. 

We calculated the results 100 times and took an average value 

as the final classification accuracy. It should be noted that we 

use the LIBSVM toolbox to employ the SVM classifier. 

 
Fig. 1.  Magnetization Classification accuracy vs. dimension. 

 

The varied circumstances of classification accuracy of SVM 

with linear kernels under different feature selection methods for 

each dataset are described in Fig. 1. The comparisons of 

average classification accuracy for all the feature set sizes, and 

 
Fig. 2.  The convergence of FSOR algorithm. 

 

deviation using FSOR, and the other eight feature selection 

methods for the eight benchmark datasets are performed in 

Table II. We can see that the FSOR algorithm performs well in 

most datasets. The accuracy gained by employing the FSOR 

method is the highest and the deviation is the lowest, excluding 

the control dataset.  Furthermore, the FSOR method also works 

well on the Control dataset and only performes worse than TRC 

method. 

As shown in Fig. 1(b, c, d, e, g, h), the recognition accuracy 

of the proposed FSOR method first keeps growing as the 

feature number size increases, and then falls down slightly. 
This can be attributed to the fact that, initially, more features 

can provide more information to distinguish samples belonging 

to different classes, but, as the number of features continues to 

increase excessively, the features with noisy information might 

be added into the selected feature subset and thus reduce the 

recognition accuracy of the FSOR method. Compared with 

other feature selection methods, the recognition rate of the 

proposed method increases to the highest value significantly 

faster, and then maintains more stable. This is because the 
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TABLE II 

THE COMPARISONS OF AVERAGE CLASSIFICATION ACCURACY (%) OF 9 FEATURE SELECTION METHODS AND FOUR CLASSIFIERS ARE PERFORMED ON 8 BENCHMARK 

DATASETS. HERE, THE “*” INDICATES THE DIFFERENCE BETWEEN THE RESULTS OF FSOR AND THOSE OF THE CORRESPONDING ALGORITHM (EXCLUDING FSOR) IS 

SIGNIFICANT BY T-TEST,I.E., THE P-VALUE OF T-TEST IS LESS THAN 0.05. 

Dataset Vehicle Segment 

Accuracy  SVM (linear) SVM (rbf) KNN RF SVM (linear) SVM (rbf) KNN RF 

ReliefF 69.33  0.71 72.79  0.28 68.16  0.07 72.08  0.36 90.46  0.69 94.47  0.22 93.22  0.30 95.37  0.24 

TRC 65.57  1.30 70.13  0.32 60.88  0.19 67.13  0.69 89.39  0.46 94.37  0.14 93.63  0.16 94.15  0.20 

RFS 64.96  2.17 71.46  1.03 64.42  0.67 69.64  0.83 89.07  1.18 94.08  0.37 92.53  0.38 94.47  0.46 

Fisher 66.34  1.27 66.29  0.47 64.17  0.19 66.88  0.78 86.36  2.01 92.16  1.78 90.11  1.57 93.23  1.27 

CMIM 67.27  1.48 66.34  0.46 63.83  0.12 69.19  0.80 91.97  0.47 95.03  0.16 94.56  0.08 96.01  0.11 

mRMR 69.22  0.68 68.55  0.17 60.38  0.10 71.51  0.40 91.97  0.26 94.94  0.20 94.79  0.11 95.99  0.12 

CC 68.40  0.36 67.42  0.19 62.20  0.04 70.13  0.37 86.03  1.58 91.81  0.80 91.01  0.89 91.74  0.99 

IG 66.56  0.94 65.99  0.25 61.71  0.25 68.01  0.51 84.74  1.51 93.07  0.27 91.97  0.27 92.91  0.43 

FSOR(our) 69.37 
 2.32 73.08*  0.07 68.18  0.03 72.29  0.30 92.16  0.22 95.54  0.12 95.34 * 0.05 96.17  0.11 

Dataset Chess Control 

Accuracy  SVM (linear) SVM (rbf) KNN RF SVM (linear) SVM (rbf) KNN RF 

ReliefF 93.48  0.02 95.88  0.11 94.66  0.04 94.96  0.06 91.45  1.33 92.22  1.26 94.40  0.78 91.18  0.81 

TRC 88.88  1.16 94.94  0.07 94.28  0.03 95.17  0.03 87.33  1.38 91.72  0.64 92.42  0.44 91.31  0.43 

RFS 91.63  0.65 92.87  0.06 91.51  0.85 92.62  0.89 94.55  0.54 92.07  1.36 96.72  0.22 95.11  0.26 

Fisher 93.72  0.02 95.39  0.75 94.16  0.03 95.36  0.05 86.16  3.26 87.17  3.57 86.16  3.55 86.26  3.67 

CMIM 93.76  0.03 95.97  0.05 94.39  0.02 95.55  0.04 84.75  1.23 92.12  1.37 94.14  0.69 90.66  0.55 

mRMR 93.74  0.01  95.56  0.08 94.15  0.03 95.54  0.08 91.06  1.27 92.22  1.25 94.30  0.76 90.51  0.67 

CC 93.47  0.02 95.12  0.04 94.15  0.03 94.89  0.05 85.25  1.08 92.32  0.66 92.27  0.60 90.20  0.48 

IG 93.75  0.01 96.01  0.06 94.51  0.03 95.58  0.03 82.10  1.25 92.47  0.82 92.02  0.46 90.51  0.52 

FSOR(our) 93.84  0.01  96.13  0.10 94.92  0.02 96.25*  0.04 91.48*  2.32 92.88  0.96 94.69  0.67 91.36*  0.53 

Dataset Uspst Binalpha 

Accuracy  SVM (linear) SVM (rbf) KNN RF SVM (linear) SVM (rbf) KNN RF 

ReliefF 90.30  0.17 94.49  0.11 91.88  0.24 90.53  0.16 65.66  0.64 66.46  0.88 60.24  0.78 63.18  1.00 

TRC 89.00  0.37 92.91  0.20 91.31  0.28 91.01  0.17 63.19  1.30 65.65  1.35 59.92  1.32 62.07  0.75 

RFS 91.75  0.07 94.37  0.05 92.66  0.14 91.54  0.12 68.15  0.34 71.76  0.31 64.44  0.29 64.70  0.20 

Fisher 91.10  0.17 93.64  0.17 90.83  0.24 90.03  0.20 54.96  3.99 58.72  3.26 51.73  2.58 54.32  2.95 

CMIM 92.57  0.01 95.32  0.01 92.72  0.20 92.87  0.01 68.22  0.31 70.83  0.22 65.04  0.16 67.67  0.06 

mRMR 91.54  0.07 94.72  0.06 93.02  0.08 92.11  0.05 64.35  0.72 67.08  0.78 62.64  0.70 62.95  0.73 

CC 90.30  0.26 93.11  0.42 90.96  0.37 90.10  0.29 63.51  1.03 64.58  1.26 59.57  1.35 62.07  1.04 

IG 90.46  0.15 93.27  0.16 90.42  0.27 90.32  0.13 63.55  0.99 65.63  1.21 60.12  1.44 61.90  0.87 

FSOR(our) 92.83  0.01 95.54  0.01 93.13  0.05 93.01  0.01 68.25  0.17 72.07  0.16 65.46 * 0.15 67.83 * 0.05 

Dataset Corel_5k Yeast 

Accuracy  SVM (linear) SVM (rbf) KNN RF SVM (linear) SVM (rbf) KNN RF 

ReliefF 40.15  0.04 41.08  0.08 29.96  0.09 41.31  0.03 49.08  1.80 43.60  1.57 40.24  2.30 41.91  1.38 

TRC 39.81  0.03 38.81  0.05 27.23  0.09 39.06  0.01 40.91  0.81 57.83  0.16 42.32  0.93 57.77  0.06 

RFS 37.43  0.12 39.73  0.07 28.35  0.08 36.92  0.11 56.50  0.04 60.41  0.21 55.00  0.06 58.26  0.04 

Fisher 36.73  0.19 37.87  0.16 26.10  0.19 34.89  0.18 32.12  0.02 48.50  0.86 31.40  0.02 34.29  1.07 

CMIM 40.52  0.07 42.73  0.03 31.90  0.02 41.82  0.02 55.41  0.10 61.87  0.19 54.70  0.09 58.73  0.04 

mRMR 40.58  0.07 42.73  0.03 31.63  0.03 42.17  0.02 41.63  0.88 57.68  0.15 42.23  0.75 59.95  0.07 

CC 38.80  0.18 39.49  0.22 27.63  0.22 37.39  0.17 43.58  0.69 61.65  0.29 43.69  0.60 57.02  0.03 

IG 37.17  0.22 38.18  0.29 27.64  0.19 37.50  0.19 57.30  0.02 57.73  0.04 56.21  0.10 59.61  0.05 

FSOR(our) 40.60  0.02 43.03  0.02 32.53  0.02 42.33  0.01 58.04  0.01 63.35*  0.04 56.98  0.02 60.46  0.03 
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TABLE III 

THE COMPARISONS OF SENSITIVITY AND SPECIFICITY (%) OF 9 FEATURE SELECTION METHODS AND FOUR CLASSIFIERS ARE PERFORMED ON YEAST DATASETS. 

Yeast dataset Sensitivity Specitivity 

(%) SVM (linear) SVM (rbf) KNN RF SVM (linear) SVM (rbf) KNN RF 

ReliefF 29.11 29.56 26.67 22.74 91.95 92.18 92.06 91.75 

TRC 17.39 27.90 17.80 44.48 91.33 94.34 91.55 93.94 

RFS 35.26 38.41 36.58 42.83 93.93 94.55 93.89 94.29 

Fisher 10.15 16.18 10.24 14.69 89.93 92.56 89.84 90.52 

CMIM 40.41 46.65 38.69 43.95 93.85 94.80 93.83 94.30 

mRMR 17.13 28.04 16.90 46.90 91.64 94.31 91.64 94.31 

CC 37.49 45.59 38.31 42.06 92.17 94.71 92.15 94.02 

IG 48.05 48.18 44.14 44.96 94.14 94.15 94.20 94.46 

FSOR(our) 51.83 48.81 45.53 45.90 94.19 95.03 93.96 94.57 

 

FSOR method introduces orthogonal constrains to limit the 

projection matrix W, which can preserve more discrimination 

information in subspace and avoid redundant and noisy 

information. Additionally, compared with the other popular 

algorithms, the results in Table II show the best recognition rate, 

collected during implementation of the proposed method, and 

hence the proposed method can be suggested to be more robust 

as its performance doesn’t depend on a particular classifier.  

To further evaluate the multi-class recognition ability, we 

also computed the specificity and sensitivity of the 
classification results. Taking the Yeast dataset as an example, 

Table III shows the average specificity and sensitivity of all the 

feature set sizes. Significantly, the FSOR algorithm is better 

than other algorithms overall. 

In addition, to prove effectiveness and stability, we tracked 

the changes in the FSOR’s objective function under different 

datasets. Here the number of iterations was set to 100. As 

illustrated in Fig. 2, we were able to identify that the objective 

function values decline and converge to a local minimum, 

step-by-step, with an increase in the number of iterations.  

  
TABLE IV 

 COMPUTATIONAL COMPLEXITY OF FEATURE SELECTION 

METHODS 

Method Computational Complexity 

CC 
IG 
ReliefF 

𝒪(dn) 
𝒪(dn) 
𝒪(dn) 

mRMR 𝒪(dmn) 
CMIM 𝒪(dmn) 
Fisher 𝒪(dn) 
TRC 𝒪(d𝑛2 + 𝑑2n) 
RFS 𝒪(𝑑3 + 𝑑2n + d𝑛2 + 𝑛3 + dkn) 
FSOR (our) 𝒪(dkn) 

 

Computational complexity is a key indicator regarding the 

performance of a certain method. In this section, we analyze the 
computational complexity of the proposed FSOR method, 

based on the number of multiplications of the matrix operations. 

The computational complexity of the FSOR algorithm can be 

mainly attributed to the calculation of the matrix W of the GPI 

algorithm. To reduce the computational complexity of the GPI 

algorithm, we choose to compute the matrix W directly instead 

of calculating A and then multiplying by W. The calculation of 

AW requires computational complexity to be determined of the 

order of 𝒪(ndk) . Hence, the order of the computational 

complexity of FSOR is 𝒪(ndk).  
Moreover, the computational complexity of the 

state-of-the-art supervised feature selection algorithms is 

provided in Table IV. In Table IV, m is the number of selected 

features (1 ≤ m < d). From the results, we could conclude that 

the computational complexity of FSOR is much less than that 

of the TRC and RFS methods and depends on d, n and k. When 

the value of k is small, the computational complexity of FSOR 

is approximately equal to that of CC, IG, ReliefF and Fisher. 

However, when the proposed method was implemented with 

the Binalpha and Corel_5k datasets, the computational time of 

FSOR was much longer than those of the filter methods. This 

can be attributed to the value of k being not much smaller than 

that of n and d. 

V. CONCLUSION 

In this paper, we have proposed a novel supervised feature 

selection algorithm named FSOR. This new method extends the 

orthogonal least square regression by adding feature weighting, 

which is used to evaluate the importance of features. Based on 

the existed GPI algorithm and ALM algorithm, the FSOR 
decreases the objective value of the model to a local minimum 

until convergence. Subsequently, we employ the FSOR method 

on the benchmark datasets and utilize eight feature selection 

methods as reference. From the experimental results, we reach 

the projected goal that, overall, the performance of FSOR is 

superior to the other eight state-of-the-art feature selection 

methods.  
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