
1

MatchXML: An Efficient Text-label Matching
Framework for Extreme Multi-label Text

Classification
Hui Ye, Rajshekhar Sunderraman, and Shihao Ji, Senior Member, IEEE

Abstract—The eXtreme Multi-label text Classification (XMC)
refers to training a classifier that assigns a text sample with
relevant labels from an extremely large-scale label set (e.g.,
millions of labels). We propose MatchXML, an efficient text-
label matching framework for XMC. We observe that the label
embeddings generated from the sparse Term Frequency-Inverse
Document Frequency (TF–IDF) features have several limitations.
We thus propose label2vec to effectively train the semantic dense
label embeddings by the Skip-gram model. The dense label
embeddings are then used to build a Hierarchical Label Tree by
clustering. In fine-tuning the pre-trained encoder Transformer,
we formulate the multi-label text classification as a text-label
matching problem in a bipartite graph. We then extract the dense
text representations from the fine-tuned Transformer. Besides the
fine-tuned dense text embeddings, we also extract the static dense
sentence embeddings from a pre-trained Sentence Transformer.
Finally, a linear ranker is trained by utilizing the sparse TF–IDF
features, the fine-tuned dense text representations, and static
dense sentence features. Experimental results demonstrate that
MatchXML achieves the state-of-the-art accuracies on five out of
six datasets. As for the training speed, MatchXML outperforms
the competing methods on all the six datasets. Our source code
is publicly available at https://github.com/huiyegit/MatchXML.

Index Terms—Extreme multi-label classification, label2vec,
text-label matching, bipartite graph, contrastive learning

I. INTRODUCTION

THE eXtreme Multi-label text Classification (XMC) refers
to learning a classifier that can annotate an input text with

the most relevant labels from an extremely large-scale label
set (e.g., millions of labels). This problem has many real world
applications, such as labeling a Wikipedia page with relevant
tags [1], providing a customer query with related products
in product search [2], and recommending relevant items to a
customer in recommendation systems [3].

To address the issue of the extremely large output space
in XMC, the Hierarchical Label Tree (HLT) [2] has been pro-
posed to effectively reduce the computational complexity from
O(L) to O(logL), where L is the number of labels. Taking
label embeddings as input, an HLT can be constructed by parti-
tion algorithms [2], [4] based on the K-means clustering. Prior
works [2], [4]–[7] have applied the Positive Instance Feature
Aggregation (PIFA) to compute label embeddings, where one

This work was supported by the Presidential Fellowship in the Transcultural
Conflict and Violence Initiative (TCV) at Georgia State University, in part by
the National Science Foundation Major Research Instrumentation (MRI) grant
number CNS-1920024.

H. Ye, R. Sunderraman, and S. Ji are with the Department of Com-
puter Science at Georgia State University, Atlanta, GA, USA (E-mail:
hye2@student.gsu.edu, rsunderraman@gsu.edu, sji@gsu.edu).

label embedding is the summation of the TF–IDF features of
the text samples when the label is positive. However, the label
embeddings generated from PIFA have several limitations.
First, current machine learning algorithms are more efficient
to process the data of small dense vectors than the large
sparse vectors. Second, the TF–IDF features of text data,
which are required by PIFA to generate the label embeddings,
may not be always available and thus limits the applications
of PIFA. Inspired by the word2vec [8], [9] in training word
embeddings, we propose label2vec to learn the semantic dense
label embeddings. We consider a set of labels assigned to a
text sample as an unordered sequence, where each label can
be treated as one word/token, and the Skip-gram model [8],
[9] is applied to train the embedding for each label. The
label2vec approach has better generalization than PIFA as it
does not require the TF–IDF features. Besides, the dense label
embeddings have smaller storage size that are more efficient to
process by the downstream machine learning algorithms. Our
experiments demonstrate that the dense label embeddings can
capture the semantic label relationships and generate improved
HLTs compared to the sparse label embeddings, leading to
improved performance in the downstream XMC tasks.

Most of the early works in XMC [2], [10]–[22] leverage
the statistical Bag-Of-Words (BOW) or Term Frequency-
Inverse Document Frequency (TF–IDF) features as the text
representations to train a text classifier. This type of text
features is simple, but it can not capture the semantic meaning
of text corpora due to the ignorance of word order. Recent
works [5], [6], [23]–[25] explore deep learning approaches
to learn the dense vectors as the text representations. These
methods leverage the contextual information of words in text
corpora to extract the dense text representations, leading to
improved classification accuracies. On the other hand, the
recently proposed XR-Transformer [7] and CascadeXML [26]
have showed that sparse TF–IDF features and dense text
features are not mutually exclusive to each other, but rather
can be leveraged together as the text representations to boost
the performance. Inspired by this strategy, we generate the
final text representations by taking advantage of both sparse
TF–IDF features and dense vector features, and we propose a
novel method to improve the quality of dense vector features
for XMC. Specifically, in the fine-tuning stage of pre-trained
encoder Transformer, we formulate the multi-label text classi-
fication as a text-label matching problem in a bipartite graph.
Through text-label alignment and label-text alignment in a
bipartite graph, the fine-tuned Transformer can yield robust

ar
X

iv
:2

30
8.

13
13

9v
2

 [
cs

.C
L

]
 1

1
M

ar
 2

02
4

 https://github.com/huiyegit/MatchXML

2

and effective dense text representations. Besides the dense text
representations fine-tuned from the above-mentioned method,
we also utilize the static dense sentence embeddings extracted
from pre-trained Sentence Transformers, which are widely
used in NLP for the tasks, such as text classification, clus-
tering, retrieval, and paraphrase detection, etc. Compared with
the sparse TF-IDF representations, the static dense sentence
embeddings can capture the semantic meaning and facilitate
the downstream applications. In particular, we extract the static
sentence embeddings from Sentence-T5 [27] and integrate
them into our MatchXML. We have found that this approach
is very effective as shown in our ablation study.

The remainder of the paper is organized as follows. In
Section II, we review the related works from the perspectives
of extreme classification, cross-modal learning and contrastive
learning. The proposed method MatchXML is presented in
Section III, where its main components: label2vec, hierar-
chical label tree, text-label matching, and linear ranker are
introduced. Experimental results on six benchmark datasets are
presented in Section IV, with comparisons to other algorithms
currently in the literature. Conclusions and future work are
discussed in Section V.

II. RELATED WORKS

Extreme classification. A great number of works have been
proposed to address the extreme classification problem [19],
[21], [22], [28]–[47], which can be categorized to One-
vs-All approaches, tree-based approaches, embedding-based
approaches, and deep learning approaches. The One-vs-All
approaches, such as PDSparse [13], train a binary classifier
for each label independently. To speed up the computation,
these approaches leverage the negative sampling and parallel
computing to distribute the training over multiple cores or
servers. The tree-based approaches, such as FastXML [10],
train a hierarchical tree structure to divide the label set into
small groups. These approaches usually have the advantage of
fast training and inference. The embedding-based approaches,
such as SLEEC [11], seek to lower the computational cost
by projecting the high-dimensional label space into a low-
dimensional one. However, information loss during the com-
pression process often undermines the classification accuracy.

Deep learning approaches leverage the raw text to learn
semantic dense text representations instead of the statisti-
cal TF-IDF features. Recent works (e.g., X-Transformer [5],
APLC-XLNet [25], LightXML [6]) fine-tune the pre-trained
encoder Transformers, such as BERT [48], RoBERTa [49]
and XLNet [50], to extract the dense text features. Further,
a clustering structure or a shallow hierarchical tree structure
is designed to deal with the large output label space rather
than the traditional linear classifier layer. For example, XR-
Transformer [7] proposes a shallow balanced label tree to fine-
tune the pre-trained encoder Transformer in multiple stages.
The dense vectors extracted from the last fine-tuning stage
and sparse TF-IDF features are leveraged to train the final
classifier. Compared with XR-Transformer, we generate the
Hierarchical Label Tree by the label embeddings learned
from label2vec rather than the TF-IDF features. Besides, we

formulate the XMC task as a text-label matching problem
to fine-tune the dense text representations. In addition, we
extract the static dense sentence embeddings from a pre-
trained Sentence Transformer for the classification task.

Cross-Modal Learning. In the setting of text-label match-
ing, we consider the input texts (i.e., sentences) as the text
modality, while the class labels (i.e., 1, 2, 3) as another
label modality. Therefore, the line of research in cross-modal
learning is relevant to our text-label matching problem. The
cross-modal learning involves processing data across different
modalities, such as text, image, audio, and video. Some typical
Image-Text Matching tasks have been well studied in recent
years, including Image-Text Retrieval [51], [52], Visual Ques-
tion Answering [53], [54] and Text-to-Image Generation [55]–
[59]. The general framework is to design one image encoder
and one text encoder to extract the visual representations and
textual representations, respectively, and then fuse the cross-
modal information to capture the relationships between them.
In contrast to the framework of Image-Text Matching, we
develop one text encoder for the text data and one embedding
layer to extract the dense label representations. Furthermore,
the relationship between image and text in Image-Text Match-
ing usually belongs to an one-to-one mapping, while the
relationship between text and label in the context of XMC
is a many-to-many mapping.

Contrastive Learning. Another line of research in con-
trastive learning is also related to our proposed method.
Recently, self-supervised contrastive learning [60]–[62] has
attracted great attention due to its remarkable performance
in visual representation learning. Typically, a positive pair of
images is constructed from two views of the same image,
while a negative pair of images is formed from the views
of different images. Then a contrastive loss is designed to
push together the representations of positive pairs and push
apart the ones of negative pairs. Following the framework
of self-supervised contrastive learning, supervised contrastive
learning [63] constructs additional positive pairs by utilizing
the label information. The application of the supervised con-
trastive loss can be found in recent works [64]–[67] to deal
with text classification. In this paper, we leverage the super-
vised constrastive loss as the training objective for text-label
matching, and we develop a novel approach to construct the
positive and negative text-label pairs for XMC. MACLR [67]
is a recent work that applies the contrastive learning for
the Extreme Zero-Shot Learning, and thus is related to our
MatchXML. However, there are two main differences between
these two works. First, the contrastive learning paradigm
in MACLR belongs to self-supervised contrastive learning,
while MatchXML is a supervised contrastive learning method.
Specifically, MACLR constructs the positive text-text pair,
where the latter text is a sentence randomly sampled from a
long input sentence, while MatchXML constructs the positive
text-label pair, where the label is one of the class labels of the
input text. Secondly, MACLR utilizes the Inverse Cloze Task
which is a frequently used pre-training task for the sentence
encoder, while MatchXML is derived from the Cross-Modal
learning task.

3

III. METHOD

A. Preliminaries

Given a training dataset with N samples {(xi, yi)}Ni=1,
where xi denotes text sample i, and yi is the ground truth
that can be expressed as a label vector with binary values of
0 or 1. Let yil, for l ∈ {1, · · · , L}, denote the lth element of
yi, where L is the cardinality of the label set. When yil = 1,
label l is relevant to text i, and otherwise not. In a typical
XMC task, number of instances N and number of labels L
can be at the order of millions or even larger. The objective of
XMC is to learn a classifier f(x, l) from the training dataset,
where the value of f indicates the relevance score of text x
and label l, with a hope that f can generalize well on test
dataset {(xj , yj)}Nt

j=1 with a high accuracy.
The training of MatchXML consists of four steps. In the

first step, we train the dense label vectors by our proposed
label2vec. In the second step, a preliminary Hierarchical Label
Tree (HLT) is constructed using a Balanced K-means Cluster-
ing algorithm [4]. In the third step, a pre-trained Transformer
model is fine-tuned recursively from the top layer to bottom
layer through the HLT. Finally, we train a linear classifier
by utilizing all three text representations: (1) sparse TF-IDF
text features, (2) the dense text representations extracted from
the fine-tuned Transformer, and (3) the static dense sentence
features extracted from a pre-trained Sentence Transformer.
As for the inference, the computational cost contains the
feature extraction of input text from the fine-tuned Transformer
and the beam search guided by the trained linear classifier
through the refined HLT. Thus, the computational complexity
of MatchXML inference can be expressed as

O(T1 + kbd log(L)), (1)

where T1 denotes the cost of extracting the dense text repre-
sentation from the text encoder, kb is the size of beam search,
d is the dimension of the concatenated text representation,
and L is the number of labels. The details of MatchXML are
elaborated as follows.

B. label2vec

The Hierarchical Label Tree (HLT) plays a fundamental role
in reducing the computational cost of XMC, while the high-
quality label embeddings is critical to construct an HLT that
can cluster the semantically similar labels together. In this
section, we introduce label2vec to train the semantic dense
label embeddings for the HLT. Note that the training label
set {yi}Ni=1 contains a large amount of semantic information
among labels. We therefore treat the positive labels in yi as a
label sequence1, similar to the words/tokens in one sentence
in word2vec. We then adopt the Skip-gram model to train
the label embeddings, which can effectively learn high-quality
semantic word embeddings from large text corpora. The basic
mechanism of the Skip-gram model is to predict context words

1The label order doesn’t matter in label2vec. Therefore, the label sequence
here is actually a label set. However, for easy understanding of label2vec, we
adopt the same terminology of word2vec and treat the positive labels of yi
as a label sequence.

from a target word. The training objective is to minimize the
following loss function:

− log σ(wT
t wc)−

∑k
i=1 Ezi∼ZT

[
log σ(−wT

t wzi)
]
, (2)

where wt and wc denote the target word embedding and
context word embedding, respectively, and zi is one of the
k negative samples. To have the Skip-gram model adapt
to the label2vec task, we simply make several necessary
modifications as follows. First, in word2vec the 2nk training
target-context word pairs can be generated by setting a context
window of size nk, consisting of nk context words before and
after the target word. A small window size (i.e., nk=2) tends
to have the target word focusing more on the nearby context
words, while a large window size (i.e., nk=10) can capture the
semantic relationship between target word and broad context
words. The Skip-gram model adopts the strategy of dynamic
window size to train word2vec. However, in label2vec there
is no distance constraint between target label and its context
labels since they are semantically similar if both labels co-
occur in one training sample. Therefore, we set the window
size nk to the maximum number of labels among all training
samples. Secondly, the subsampling technique is leveraged to
mitigate the imbalance issue between the frequent and rare
words in word2vec since the frequent/stop words (e.g., “in”,
“the”, and “a”) do not provide much semantic information to
train word representations. In contrast, the frequent labels are
usually as important as rare labels in XMC to capture the
semantic relationships among labels in label2vec. Therefore,
we do not apply the subsampling to the frequent labels in
label2vec.

C. Hierarchical Label Tree

Once the dense label vectors W = {wi}Li=1 are extracted
from {yi}Ni=1 with label2vec, we build a Hierarchical Label
Tree (HLT) of depth D from the label vectors W by a Bal-
anced K-means Clustering algorithm [4]. In the construction
of HLT, the link relationships of nodes between two adjacent
layers are organized as 2D matrices C = {Ct}Dt=1 based on the
clustering assignments. Then the ground truth label assignment
of t-th layer Y (t) can be generated by the (t + 1)-th layer
Y (t+1) as follows:

Y (t) = binarize(Y (t+1)C(t+1)). (3)

The original ground truth yi corresponds to Y (D) in the bottom
layer, and thus the ground truth label assignment Y (t) can be
inferred from the bottom layer to the top layer according to
Eq. 3. Subsequently, we fine-tune the pre-trained Transformer
in multiple stages from the top layer to the bottom layer
through the HLT.

D. Text-label Matching

In this section, we present our text-label matching frame-
work for XMC. In the fine-tuning stage, we consider the multi-
label classification as a text-label matching problem. We model
this matching problem in a bipartite graph G(U, V (t), E),
where U and V (t) denote a set of text samples and the labels
in the t-th layer of HLT, respectively, and E is a set of edges

4

7

Text

Encoder

Embedding

Layer

Label representations

Text representations

Matching

Text samples

"Text 1"

"Text 2"

…

 "Text n"

Label (integer) samples

 1

2

…

m

Mini-batch

Sampling

Text set U

Label set V(t)

Fig. 1. Architecture of text-label matching in a bipartite graph. When fine-tuning a pre-trained encoder Transformer for the t-th layer of HLT, we consider
the input text set U (i.e., training samples) as the text modality, while the label set V (t) (i.e., training labels Y (t)) as the label modality.

connecting U and V (t). If text i has a positive label j, edge eij
is created between them. A text node in U can have multiple
edges connecting it to multiple label nodes in V (t). Vice versa,
a label node in V (t) can have multiple edges connecting it to
multiple text nodes in U . We fine-tune a pre-trained encoder
Transformer and the HLT from the top layer to the bottom
layer in multiple stages. Fig. 1 illustrates the framework of
our approach for fine-tuning the encoder Transformer and
one layer of the HLT. During training, we sample a mini-
batch of training data, from which the text samples are fed
to a text encoder to extract the text representations, and the
corresponding labels are fed to an embedding layer to extract
the label representations. We consider the text-label matching
problem from two aspects: text-label alignment and label-text
alignment.

Text-label alignment. In the text-label matching setting,
one text sample aligns with multiple positive labels and
contrasts with negative labels in a mini-batch. We construct the
set with multiple positive text-label pairs {(zi, ep)}, where p is
a positive label of text i. Following the previous work [7], we
also mine the hard negative labels (e.g., negative labels with
high output scores) to boost the performance. We then generate
the set with a number of negative text-label pairs {(zi, en)},
where n is one of hard negative labels of text i. We utilize
the dot product (zi, ej) as the quantitative metric to measure
the alignment of the text-label pair. To align the text with
labels, we train our model to maximize the alignment scores
of positive text-label pairs and minimize the ones of negative
text-label pairs. The loss function of text-label alignment is
defined as

Ltl =
1
Nb

∑Nb

i=1
1

|P1(i)|
∑

p∈P1(i)
− log

exp((zi,ep)/τ)∑
a∈A1(i)

exp((zi, ea)/τ)
, (4)

where Nb denotes the batch size, P1(i) is the set of indices
of positive labels related to text i, |P1(i)| is its cardinality,
A1(i) is the set of indices of positive and negative labels
corresponding to text i, and τ ∈ R+ is a scalar temperature
parameter.

Label-text alignment. We also consider the label-text
alignment in a reverse way for the text-label matching prob-

lem. In the above-mentioned text-label alignment, we mine
a number of hard negative labels for each text to facilitate
the training process. On the contrary, if we form the label set
by combining all the positive labels and hard negative labels
within a mini-batch, the computational cost is likely to increase
notably due to the large cardinality of the label set. To reduce
the computational cost, we construct the label set only from all
the positive labels within a mini-batch. Similar to the previous
text-label alignment, one label sample corresponds to several
text samples and contrasts with the remaining text samples
in the mini-batch. We generate the set with several positive
label-text pairs {(ei, zp)}, where i is a positive label for text p.
Otherwise, they form the set with a number of negative label-
text pairs {(ei, zn)}, where i is a negative label for text n. To
align the label with texts, we train our model to maximize the
alignment scores of positive label-text pairs and minimize the
ones of negative label-text pairs. Similarly, the loss function
of label-text alignment is defined as

Llt =
1
M

∑M
i=1

1
|P2(i)|

∑
p∈P2(i)

− log
exp((ei,zp)/τ)∑

a∈A2(i)

exp((ei, za)/τ)
, (5)

where M is the number of positive labels in the mini-batch,
P2(i) is the set of indices of positive text samples related to
label i, |P2(i)| is its cardinality, and A2(i) is the set of indices
of text samples within the mini-batch.

Loss function. The overall loss function of our text-label
matching task is a linear combination of the two loss functions
defined above

L = λLtl + (1− λ)Llt, (6)

with λ ∈ [0, 1]. Experiments show that the setting of hy-
perparameter λ has a notable impact on the performance of
MatchXML, and we thus tune it for different datasets.

E. Linear Ranker

Once the multi-stage fine-tuning with Eq. (6) is completed,
we extract the dense text representations from the text encoder.
The extracted dense representations are then concatenated
with the static dense sentence embeddings from the Sentence
Transformer and the sparse TF-IDF features as the final text
representations {x̃i}Ni=1, which are used to train a linear

5

TABLE I
STATISTICS OF DATASETS. Ntrain IS THE NUMBER OF TRAINING SAMPLES, Ntest IS THE NUMBER OF TEST SAMPLES, D IS THE DIMENSION OF FEATURE

VECTOR, L IS THE CARDINALITY OF LABEL SET, L̄ IS THE AVERAGE NUMBER OF LABELS PER SAMPLE, L̂ IS THE AVERAGE SAMPLES PER LABEL.

Dataset Ntrain Ntest D L L̄ L̂
EURLex-4k 15,449 3,865 186,104 3,956 5.30 20.79

AmazonCat-13k 1,186,239 306,782 203,882 13,330 5.04 448.57
Wiki10-31k 14,146 6,616 101,938 30,938 18.64 8.52
Wiki-500k 1,779,881 769,421 2,381,304 501,070 4.75 16.86

Amazon-670k 490,449 153,025 135,909 670,091 5.45 3.99
Amazon-3M 1,717,899 742,507 337,067 2,812,281 36.04 22.02

1

(a) (b) (c) (d)

Fig. 2. Label distributions of Amazon-670K and Amazon-3M follow the power (Zipf’s) Law, as shown in (a) and (b). Text distributions of Amazon-670K
and Amazon-3M don’t follow a particular standard form, as shown in (c) and (d).

Algorithm 1 MatchXML Training

Input: Training dataset {X,Y } = {(xi, yi)}Ni=1, TF-IDF features
{X̄} = {(x̄i)}Ni=1, static dense sentence embeddings {X̌} =
{(x̌i)}Ni=1, Skip-gram model h, text encoder g, the depth of HLT
D

Output: Optimized text encoder g and the hierarchical linear ranker
{R(t)}Dt=1

1: Generate label pairs {(lki , lkj)}Kk=1 from {Y } = {yi}Ni=1

2: for {1, · · · , # of training epochs} do
3: for {1, · · · , # of training steps} do
4: Sample a mini-batch of label pairs {(li, lj)}
5: Update Skip-gram model h to minimize Eq. 2
6: end for
7: end for
8: Obtain dense label vectors W = {wi}Li=1 ← h
9: {C(t)}Dt=1 ← Balanced K-means Clustering(W)

10: Get hierarchical ground truth label assignment {Y (t)}Dt=1 by
Eq. 3

11: for {1, · · · , D } do
12: Initialize label embedding layer E(t) by the Bootstrap
13: for {1, · · · , # of training steps} do
14: Sample a mini-batch of training samples {(xi, y

(t)
i }

15: Construct text-label pairs {(zi, ej}
16: Construct label-text pairs {(eî, zĵ)}
17: Update Encoder g and Embedding E(t) to minimize Eq. 6
18: end for
19: end for
20: Obtain dense text features X̂ = {x̂i}Ni=1 ← g(X)
21: Obtain final text features X̃ = {x̃i}Ni=1 ← Concat(X̂, X̄, X̌)
22: for {1, · · · , D } do
23: Train the linear ranker R(t) of the t-th layer by Eq. 7
24: end for

ranking model based on XR-LINEAR [4]. Specifically, let
W (t) denote the learnable parameter matrix of the ranker
corresponding to the t-th layer of HLT, M̂ (t) denote the matrix

of sampled labels by the combination of the Teacher-Forcing
Negatives (TFN) and Matcher-Aware Negatives (MAN), Y (t)

denote the label assignment at the t-th layer of HLT. The linear
ranker at the t-th layer can be optimized as:

arg min
W (t)

∑
ℓ:M̂

(t)
i,ℓ ̸=0

L(Y (t)
iℓ ,W

(t)⊤
ℓ x̃i)) + α∥W (t)∥2, (7)

where α is the hyperparameter that balances the classification
loss and the L2 regularization on the parameter matrix W (t).

In summary, the training procedure of MatchXML is pro-
vided in Algorithm 1.

IV. EXPERIMENTS

We conduct experiments to evaluate the performance of
MatchXML on six public datasets [68]2, including EURLex-
4K, Wiki10-31K, AmazonCat-13K, Wiki-500K, Amazon-
670K, and Amazon-3M, which are the same datasets used
by XR-Transformer [7]. The statistics of these datasets can be
found in Table I. It is well-known that the label distribution
of the XMC datasets follows the power (Zipf’s) law, where
most of the probability mass is covered by a small fraction
of the label set. As for the text distribution, each document
is categorized by a different number of labels, and this
distribution doesn’t follow a particular standard form. This can
be observed from Fig. 2, where the label and text distributions
of Amazon-670K and Amazon-3M are provided.

We consider EURLex-4K, Wiki10-31K, and AmazonCat-
13K as medium-scale datasets, while Wiki-500K, Amazon-
670K, and Amazon-3M as large-scale datasets. We are more
interested in the performance on large-scale datasets since they
are more challenging XMC tasks.

2https://ia802308.us.archive.org/21/items/pecos-dataset/xmc-base/

https://ia802308.us.archive.org/21/items/pecos-dataset/xmc-base/

6

TABLE II
SETTINGS OF HYPERPARAMETERS TO TRAIN label2vec ON SIX DATASETS. wsize DENOTES THE WINDOW SIZE, ns DENOTES EXPONENT VALUE USED TO
SHAPE THE NEGATIVE SAMPLING DISTRIBUTION, nepoch IS THE NUMBER OF TRAINING EPOCHS, dim IS THE DIMENSION OF LABEL VECTOR, nneg IS

THE NUMBER OF NEGATIVE LABELS, lrmax AND lrmin DENOTE THE MAXIMUM AND MINIMUM LEARNING RATE IN THE TRAINING PROCESS,
RESPECTIVELY, rsample IS THE DOWNSAMPLING THRESHOLD, AND sg = 1 REFERS TO SKIP-GRAM MODEL.

Dataset wsize ns nepoch dim nneg lrmax lrmin rsample sg

Eurlex-4K 24 0.5 20

100 20 2.5e-2 1e-4 0.1 1

Wiki10-31K 30 1.0 20
AmazonCat-13K 57 0.5 20
Wiki-500K 274 -1.0 50
Amazon-670K 7 0.5 50
Amazon-3M 100 -0.5 20

TABLE III
SETTING OF LEARNING RATES AND TRAINING STEPS ON SIX DATASETS. lrt AND lrl DENOTES THE LEARNING RATE OF THE TEXT ENCODER AND

EMBEDDING LAYER, RESPECTIVELY. nstep DENOTES THE NUMBER OF TRAINING STEPS.

Stage I Stage II Stage III Stage IV
Dataset lrt lrl nstep lrt lrl nstep lrt lrl nstep lrt lrl nstep

Eurlex-4K 5e-5 1e-3 480 5e-5 1e-3 620 5e-5 1e-3 600 – – –
Wiki10-31K 5e-5 1e-3 500 5e-5 1e-3 520 5e-5 1e-3 350 – – –
AmazonCat-13K 1e-4 1e-3 10,000 1e-4 1e-3 10,000 1e-4 1e-3 20,000 – – –
Wiki-500K 1e-4 1e-3 10,000 1e-4 1e-3 10,000 1e-4 1e-3 20,000 1e-4 1e-3 20,000
Amazon-670K 5e-5 1e-3 4,000 5e-5 1e-3 4,000 2e-4 1e-3 12,000 – – –
Amazon-3M 1.5e-4 5e-3 10,000 1.5e-4 5e-3 10,000 1.5e-4 5e-3 10,000 – – –

TABLE IV
SETTING OF HYPERPARAMETERS FOR FINE-TUNING ON SIX DATASETS. NBtrn AND NBtst DENOTE THE BATCH SIZE FOR TRAINING AND INFERENCE,

RESPECTIVELY. Length REFERS TO THE SEQUENCE LENGTH. τ IS A SCALAR TEMPERATURE DEFINED IN EQ. 4 AND EQ. 5. λ IS THE COEFFICIENT
DEFINED IN EQ. 6. emb DENOTES WHICH TYPE OF LABEL EMBEDDINGS IS LEVERAGED FOR THE CONSTRUCTION OF HIERARCHICAL LABEL TREE. wd ,

betas, eps DENOTES THE VALUE OF WEIGHT DECAY, BETAS AND EPSILON, RESPECTIVELY, FOR THE OPTIMIZER.

Dataset Encoder NBtrn NBtst Length τ λ emb wd betas eps

Eurlex-4K BERT 128 256 128 0.05 1.0 TF-IDF 0.1 (0.9,0.98) 1e-6
Wiki10-31K RoBERTa 128 256 256 0.05 0 label2vec 0.1 (0.9,0.98) 1e-6
AmazonCat-13K BERT 128 256 256 0.05 1.0 label2vec 0.1 (0.9,0.98) 1e-6
Wiki-500K BERT 128 256 128 0.05 0.67 label2vec 0.1 (0.9,0.98) 1e-6
Amazon-670K RoBERTa 256 512 128 0.05 0.5 label2vec 0.1 (0.9,0.98) 1e-6
Amazon-3M BERT 256 512 128 0.05 0.9 label2vec 0.1 (0.9,0.98) 1e-6

A. Evaluation Metrics

The widely used evaluation metrics for XMC are the preci-
sion at k (P@k) and ranking quality at k (nDCG@k), which
are defined as

P@k =
1

k

∑
l∈rankk(ŷ)

yl, (8)

DCG@k =
1

k

∑
l∈rankk(ŷ)

yl

log(l + 1)
, (9)

nDCG@k =
DCG@k∑min(k,||y0||)

l=1
1

log(l+1)

, (10)

where y ∈ {0, 1}L is the ground truth label, ŷ is the predicted
score vector, and rankk(ŷ) returns the k largest indices of ŷ,
sorted in descending order.

For datasets that contain a large percentage of head (popu-

lar) labels, high P@k or nDCG@k may be achieved by simply
predicting well on head labels. For performance evaluation on
tail (infrequent) labels, the XCM methods are recommended
to evaluate with respect to the propensity-scored counterparts
of the precision P@k and nDCG metrics (PSP and PSnDCG),
which are defined as

PSP@k =
1

k

∑
l∈rankk(ŷ)

yl

pl
, (11)

PSDCG@k =
1

k

∑
l∈rankk(ŷ)

yl

pl log(l + 1)
, (12)

PSnDCG@k =
PSDCG@k∑k
l=1

1
log(l+1)

, (13)

where pl is the propensity score of label l that is used to
make metrics unbiased with respect to missing labels [68]. For

7

TABLE V
COMPARISON OF OUR APPROACH WITH RECENT XMC METHODS ON SIX PUBLIC DATASETS.THE BEST RESULT AMONG ALL THE METHODS IS IN BOLD.
THE SYMBOL P@k DENOTES THE EVALUATION METRIC DEFINED IN EQ. 8. THE SYMBOL “ ” DENOTES THE SECOND BEST RESULT. THE SYMBOL “∗ ”

REFERS TO OUR REPRODUCED RESULT. THE SYMBOL “–” DENOTES THAT THE RESULT IS NOT PROVIDED IN THE ORIGINAL PAPER.

Eurlex-4K Wiki10-31K AmazonCat-13K
Method P@1 P@3 P@5 P@1 P@3 P@5 P@1 P@3 P@5

AnnexML [16] 79.66 69.64 53.52 86.46 74.28 64.20 93.54 78.36 63.30
DiSMEC [15] 83.21 70.39 58.73 84.13 74.72 65.94 93.81 79.08 64.06
PfastreXML [12] 73.14 60.16 50.54 83.57 68.61 59.10 91.75 77.97 63.68
Parabel [2] 82.12 68.91 57.89 84.19 72.46 63.37 93.02 79.14 64.51
eXtremeText [18] 79.17 66.80 56.09 83.66 73.28 64.51 92.50 78.12 63.51
Bonsai [20] 82.30 69.55 58.35 84.52 73.76 64.69 92.98 79.13 64.46
XR-Linear [4] 84.14 72.05 60.67 85.75 75.79 66.69 94.64 79.98 64.79
XML-CNN [23] 75.32 60.14 49.21 81.41 66.23 56.11 93.26 77.06 61.40
AttentionXML [24] 85.49 73.08 61.10 87.10 77.80 68.80 95.65 81.93 66.90
LightXML [6] 86.02∗ 74.02∗ 61.87∗ 87.80 77.30 68.00 96.55∗ 83.70∗ 68.46∗

APLC-XLNet [25] 83.60∗ 70.20∗ 57.90∗ 88.76∗ 79.11∗ 69.63∗ 96.14∗ 82.86∗ 67.58∗

XR-Transformer [7] 87.22∗ 74.39∗ 61.69∗ 88.00 78.70 69.10 96.25∗ 82.72∗ 67.01∗

MatchXML(ours) 88.12(+0.90) 75.00(+0.61) 62.22(+0.35) 89.30(+0.54) 80.45(+1.34) 70.89(+1.26) 96.50(-0.05) 83.25(-0.45) 67.69(-0.77)

Wiki-500K Amazon-670K Amazon-3M
Method P@1 P@3 P@5 P@1 P@3 P@5 P@1 P@3 P@5

AnnexML [16] 64.22 43.15 32.79 42.09 36.61 32.75 49.30 45.55 43.11
DiSMEC [15] 70.21 50.57 39.68 44.78 39.72 36.17 47.34 44.96 42.80
PfastreXML [12] 56.25 37.32 28.16 36.84 34.23 32.09 43.83 41.81 40.09
Parabel [2] 68.70 49.57 38.64 44.91 39.77 35.98 47.42 44.66 42.55
eXtremeText [18] 65.17 46.32 36.15 42.54 37.93 34.63 42.20 39.28 37.24
Bonsai [20] 69.26 49.80 38.83 45.58 40.39 36.60 48.45 45.65 43.49
XR-Linear [4] 65.59 46.72 36.46 43.38 38.40 34.77 47.40 44.15 41.87
XML-CNN [23] – – – 33.41 30.00 27.42 – – –
AttentionXML [24] 75.10 56.50 44.40 45.70 40.70 36.90 49.08 46.04 43.88
LightXML [6] 76.30 57.30 44.20 47.30 42.20 38.50 – – –
APLC-XLNet [25] 75.47∗ 56.84∗ 44.20∗ 43.54∗ 38.91∗ 35.33∗ – – –
XR-Transformer [7] 78.10 57.60 45.00 49.10 43.80 40.00 52.60 49.40 46.90
MatchXML (ours) 79.80(+1.70) 59.28(+1.68) 46.03(+1.03) 50.83(+1.73) 45.37(+1.57) 41.30(+1.30) 54.22(+1.62) 50.84(+1.44) 48.27(+1.37)

consistency, we use the same setting as XR-Transformer [7]
for all datasets.

Following the prior works, we also record the Wall-clock
time of our program for speed comparison.

B. Experimental Settings

We train the dense label embeddings by using the Skip-
gram model of the Gensim library, which contains an efficient
implementation of word2vec as described in the original
paper [8]. We take the label sequences {yi}Ni=1 of training data
as the input corpora, and set the dimension of label vector to
100 and number of negative label samples to 20. In word2vec,
some rare words would be ignored if the frequency is less
than a certain threshold. We keep all the labels in the label
vocabulary regardless of the frequency. The settings of the
Skip-gram model for the six datasets are listed in Table II.

Following the prior works, we utilize BERT [69] as the
major text encoder in our experiments. Instead of using the
same learning rate for the whole model, we leverage the
discriminative learning rate [25], [70] to fine-tune our model,
which assigns different learning rates for the text encoder
and the label embedding layer. Following XR-Transformer,
we use different optimizers AdamW [71] and SparseAdam for
the text encoder and the label embedding layer, respectively.
Since the size of parameters in the label embedding layer
can be extremely large for large datasets, the SparseAdam

optimizer is utilized to reduce the GPU memory consumption
and improve the training speed. Further, prior Transformer-
based approaches [5], [6], [25] have shown that the longer
input text usually improves classification accuracy, but leads
to more expensive computation. However, we find that the
classification accuracy of MatchXML is less sensitive to the
length of input text since MatchXML utilizes both dense
feature vectors extracted from Transformer and the TF-IDF
features for classification. We therefore truncate the input
text to a reasonable length to balance the accuracy and
speed. In the multi-stage fine-tuning process, we only apply
the proposed text-label matching learning in the last stage,
while we keep the original multi-label classification learning
for the other fine-tuning stages. As shown in Table III,
we set different learning rates for the text encoder and the
label embedding layer in each fine-tuning stage. There is a
three-stage process for fine-tuning the Transformer on five
datasets, including Eurlex-4K, Wiki10-31K, AmazonCat-13K,
Amazon-670K, and Amazon-3M, and a four-stage process
on Wiki-500K. Table IV provides the further details of the
hyperparameters. We extract the static sentence embeddings
from the pre-trained Sentence-T5 model [27].

We compare our MatchXML with 12 state-of-the-art
(SOTA) XMC methods: AnnexML [16], DiSMEC [15],
PfastreXML [12], Parabel [2], eXtremeText [18], Bon-
sai [20], XML-CNN [23], XR-Linear [4], AttentionXML [24],

8

TABLE VI
COMPARISON OF OUR APPROACH AND BASELINES IN TERMS OF ENSEMBLE MODEL. THE RESULTS OF THE BASELINES ARE CITED FROM

XR-TRANSFORMER. THE SYMBOL P@k DENOTES THE EVALUATION METRIC DEFINED IN EQ. 8. THE SUFFIX −3 AND −9 DENOTE THE ENSEMBLE
MODEL HAS THREE OR NINE MODELS, RESPECTIVELY. THE UNDERLINE SYMBOL “ ” DENOTES THE SECOND BEST RESULT.

Eurlex-4K Wiki10-31K AmazonCat-13K
Method P@1 P@3 P@5 P@1 P@3 P@5 P@1 P@3 P@5

AttentionXML-3 [24] 86.93 74.12 62.16 87.34 78.18 69.07 95.84 82.39 67.32
X-Transformer-9 [5] 87.61 75.39 63.05 88.26 78.51 69.68 96.48 83.41 68.19
LightXML-3 [6] 87.15 75.95 63.45 89.67 79.06 69.87 96.77 83.98 68.63
XR-Transformer-3 [7] 88.41 75.97 63.18 88.69 80.17 70.91 96.79 83.66 68.04
MatchXML-3(ours) 88.85(+0.44) 76.02(+0.05) 63.30(-0.15) 89.74(+0.07) 81.51(+1.34) 72.18(+1.27) 96.83(+0.04) 83.83(-0.15) 68.20(-0.43)

Wiki-500K Amazon-670K Amazon-3M
Method P@1 P@3 P@5 P@1 P@3 P@5 P@1 P@3 P@5

AttentionXML-3 [24] 76.74 58.18 45.95 47.68 42.70 38.99 50.86 48.00 45.82
X-Transformer-9 [5] 77.09 57.51 45.28 48.07 42.96 39.12 51.20 47.81 45.07
LightXML-3 [6] 77.89 58.98 45.71 49.32 44.17 40.25 - - -
XR-Transformer-3 [7] 79.40 59.02 46.25 50.11 44.56 40.64 54.20 50.81 48.26
MatchXML-3(ours) 80.66(+1.26) 60.43(+1.41) 47.09(+0.84) 51.64(+1.53) 46.17(+1.61) 42.05(+1.41) 55.88(+1.68) 52.39(+1.58) 49.80(+1.54)

TABLE VII
COMPARISON OF OUR APPROACH WITH RECENT XMC METHODS ON SIX PUBLIC DATASETS.THE BEST RESULT AMONG ALL THE METHODS IS IN BOLD.

THE SYMBOL “ ” DENOTES THE SECOND BEST RESULT. THE SYMBOL nDCG@k DENOTES THE EVALUATION METRIC DEFINED IN EQ. 10. THE SYMBOL
“–” DENOTES THAT THE RESULT IS NOT PROVIDED IN THE ORIGINAL PAPER. THE SUFFIX −3 DENOTES THE ENSEMBLE MODEL HAS THREE MODELS.

Eurlex-4K Wiki10-31K AmazonCat-13K
Method nDCG@1 nDCG@3 nDCG@5 nDCG@1 nDCG@3 nDCG@5 nDCG@1 nDCG@3 nDCG@5

AnnexML [16] 79.26 68.13 61.60 86.49 77.13 69.44 93.54 87.29 85.10
DiSMEC [15] 82.40 72.50 66.70 84.10 77.10 70.40 93.40 87.70 85.80
PfastreXML [12] 76.37 66.63 60.61 83.57 72.00 64.54 91.75 86.48 84.96
Parabel [2] 82.25 72.17 66.54 84.17 75.22 68.22 93.03 87.72 86.00
Bonsai [20] 82.96 73.15 67.41 84.69 76.25 69.17 92.98 87.68 85.92
XML-CNN [23] 76.38 66.28 60.32 81.42 69.78 61.83 93.26 86.20 83.43
AttentionXML-3 [24] 87.12 77.44 71.53 87.47 80.61 73.79 95.92 91.97 89.48
XR-Transformer-3 [7] 88.20 79.29 72.98 88.75 82.37 75.38 96.71 92.39 90.31
MatchXML-3(ours) 88.85(+0.65) 79.50(+0.21) 73.26(+0.28) 89.74(+0.99) 83.46(+1.09) 76.53(+1.15) 96.83(+0.12) 92.59(+0.20) 90.62(+0.31)

Wiki-500K Amazon-670K Amazon-3M
Method nDCG@1 nDCG@3 nDCG@5 nDCG@1 nDCG@3 nDCG@5 nDCG@1 nDCG@3 nDCG@5

AnnexML [16] 64.22 54.30 52.23 42.39 39.07 37.04 49.30 46.79 45.27
DiSMEC [15] 70.20 42.10 40.50 44.70 42.10 40.50 – – –
PfastreXML [12] 59.20 30.10 28.70 39.46 37.78 36.69 43.83 42.68 41.75
Parabel [2] 67.50 38.50 36.30 44.89 42.14 40.36 47.48 45.73 44.53
Bonsai [20] 69.20 60.99 59.16 45.58 42.79 41.05 48.45 46.78 45.59
XML-CNN [23] 69.85 58.46 56.12 35.39 33.74 32.64 – – –
AttentionXML-3 [24] 76.95 70.04 68.23 47.58 45.07 43.50 50.86 49.16 47.94
XR-Transformer-3 [7] 79.43 71.74 69.88 50.01 47.20 45.51 54.22 52.29 50.97
MatchXML-3 (ours) 80.66(+1.23) 73.28(+1.54) 71.20(+1.32) 51.63(+1.62) 48.81(+1.61) 47.04(+1.53) 55.88(+1.66) 53.90(+1.61) 52.58(+1.61)

LightXML [6], APLC-XLNet [25], and XR-Transformer [7].
For deep learning approaches (XML-CNN, AttentionXML,
LightXML, APLC-XLNet, XR-Transformer, MatchXML), we
list the results of the single model for a fair comparison.
We also provide the results of ensemble model. The results
of the baseline methods are cited from the XR-Transformer
paper. For parts of the results that are not available in XR-
Transformer, we reproduce the results using the source code
provided by the original papers. The original paper of APLC-
XLNet has reported the results of another version of datasets,
which are different from the ones in XR-Transformer. We
therefore reproduce the results of APLC-XLNet by running
the source code on the same datasets as XR-Transformer. Our
experiments were conducted on a GPU server with 8 Tesla
V100 GPUs and 64 CPUs, which has the same number of

Tesla V100 GPUs and CPUs as the AWS p3.16xlarge utilized
by XR-Transformer.

C. Experimental Results

Classification accuracy. Table V shows the classification
accuracies of our MatchXML and the baseline methods over
the six datasets. Overall, MatchXML has achieved state-of-
the-art results on five out of six datasets. Especially, on three
large-scale datasets: Wiki-500K, Amazon-670K, and Amazon-
3M, and the gains are about 1.70%, 1.73% and 1.62% in terms
of P@1, respectively, over the second best results. Compared
with the baseline XR-Transformer, MatchXML has a better
performance in terms of precision on all the six datasets. For
AmazonCat-13K, our approach has achieved the second best

9

TABLE VIII
COMPARISON OF OUR APPROACH AND BASELINES ON THREE LARGE DATASETS W.R.T. PSP@k. THE SYMBOL PSP@k DENOTES THE EVALUATION

METRIC DEFINED IN EQ. 11.THE SYMBOL “∗” REFERS TO OUR REPRODUCED RESULT. THE UNDERLINE SYMBOL “ ” DENOTES THE SECOND BEST
RESULT. THE SUFFIX −3 DENOTES THE ENSEMBLE MODEL HAS THREE MODELS. THE RESULTS OF XR-TRANSFORMER AND MATCHXML ARE FROM

SINGE MODEL.

Wiki-500K Amazon-670K Amazon-3M
Method PSP@1 PSP@3 PSP@5 PSP@1 PSP@3 PSP@5 PSP@1 PSP@3 PSP@5

Pfastrexml [12] 32.02 29.75 30.19 20.30 30.80 32.43 21.38 23.22 24.52
Parabel [2] 26.88 31.96 35.26 26.36 29.95 33.17 12.80 15.50 17.55

XR-Transformer-3 [7] 35.45∗ 42.39∗ 46.74∗ 29.88∗ 34.31∗ 38.54∗ 16.61∗ 20.06∗ 22.55∗

MatchXML-3(ours) 35.87(+0.42) 43.12(+0.73) 47.50(+0.76) 30.30(+0.42) 35.28(+0.97) 39.78(+1.24) 17.00(-4.38) 20.55(-2.67) 23.16(-1.36)

TABLE IX
TRAINING TIME (IN HOURS) OF SINGLE MODEL OF OUR APPROACH AND RECENT DEEP LEARNING METHODS ON SIX PUBLIC DATASETS. THE SYMBOL

“∗” AND “–” HAVE THE SAME MEANINGS AS IN TABLE V.

Method Eurlex-4K Wiki10-31K AmazonCat-13K Wiki-500K Amazon-670K Amazon-3M
AttentionXML [24] 0.30 0.50 8.1 12.5 8.1 18.27
X-Transformer [5] 0.83 1.57 16.4 61.9 57.2 60.2
LightXML [6] 5.63 8.96 103.6 90.4 53.0 –
APLC-XLNet [25] 3.15∗ 2.16∗ 43.2∗ 118.9∗ 63.0∗ –
XR-Transformer [7] 0.26 0.50 13.2 12.5 3.4 9.7
MatchXML (ours) 0.20 0.22 6.6 11.1 3.3 8.3

TABLE X
TRAINING TIME (IN HOURS) OF label2vec.

Eurlex-4K Wiki10-31K AmazonCat-13K Wiki-500K Amazon-670K Amazon-3M
label2vec 0.01 0.02 0.05 0.27 0.08 3.60

TABLE XI
COMPARISON OF THE EMBEDDING SIZES (IN MB) BETWEEN TF-IDF FEATURES AND DENSE VECTORS ON SIX DATASETS.

Eurlex-4K Wiki10-31K AmazonCat-13K Wiki-500K Amazon-670K Amazon-3M
TF-IDF 29.1 344.5 179.9 7,109.2 783.8 7,422.4
label2vec 1.6 12.4 5.1 200.4 268.0 1,073.0

result, with the performance gap of 0.05% compared with
LightXML. Note that the number of labels for this dataset
is not large (about 13K), indicating that it can be handled
reasonably well by the linear classifier in LightXML, while our
hierarchical structure is superior when dealing with datasets
with extremely large label outputs.

Results of ensemble models. We have the similar ensemble
strategy as XR-Transformer. That is, three pre-trained text
encoders (BERT, RoBERTa, XLNet) are utilized together as
the ensemble model for three small datasets, including Eurlex-
4K, Wiki10-31K, and AmazonCat-13K; and one text encoder
with three different Hierarchical Label Trees are formed the
ensemble model for three large datasets, including Wiki-
500K, Amazon-670K, and Amazon-3M. As shown in Ta-
ble VI, our MatchXML again achieves state-of-the-art results
on four datasets: Wiki10-31K, Wiki-500K, Amazon-670K, and
Amazon-3M in terms of three metrics P@1, P@3 and P@5,
which is consistent with the results of the single model setting.
For dataset Eurlex-4K, P@1 and P@3 of our approach are
the best, similar to the single model results, while the P@5
is the second best with a slight performance gap of 0.15,

compared with the best result. For AmazonCat-13K, P@1 of
our approach achieves the best result, while P@3 and P@5
are the second best, similar to the ones in single model.

Table VII shows the performances in terms of the ranking
metric nDCG@k of our MatchXML and the baselines over
the six datasets. Similarly, our MatchXML achieves state-of-
the-art results on all the six datasets. For the three medium-
scale datasets, Eurlex-4K, Wiki10-31K, AmazonCat-13K, the
performance gains of nDCG@1 are about 0.65%, 1.0% and
0.12% over the second best results, respectively. For the three
large-scale datasets: Wiki-500K, Amazon-670K and Amazon-
3M, the gains are about 1.23%, 1.62% and 1.66% over the
second best results, respectively.

Results of propensity scored precision. We compute
the propensity scored precision (PSP@k) to measure the
performance of MatchXML on tail labels. The results of
the baselines: PfastreXML and Parabel are cited from the
official website3. The results reported in the XR-Transformer
paper are computed using a different version of source code.

3http://manikvarma.org/downloads/XC/XMLRepository.html

http://manikvarma.org/downloads/XC/XMLRepository.html

10

TABLE XII
ABLATION STUDY OF OUR MATCHXML. “L2V” REFERS TO THE LABEL2VEC METHOD,“TLM” REFERS TO THE TEXT LABEL MATCHING METHOD AND
“SEN” DENOTES THE STATIC SENTENCE EMBEDDINGS. THE SYMBOL P@k DENOTES THE EVALUATION METRIC DEFINED IN EQ. 8. THE BEST RESULT

AMONG ALL THE METHODS IS IN BOLD.

l2v tlm sen Eurlex-4K
P@1 P@3 P@5

1 87.99 74.76 61.98
2

√
87.35 (- 0.64) 74.89 (+ 0.13) 62.05 (+ 0.07)

3
√ √

87.66 (+ 0.31) 75.27 (+ 0.38) 62.54 (+ 0.49)
4

√ √ √
87.87 (+ 0.21) 74.94 (- 0.33) 62.25 (- 0.29)

l2v tlm sen Wiki10-31K
P@1 P@3 P@5

1 88.80 80.17 70.41
2

√
89.10 (+ 0.30) 80.22 (+ 0.05) 70.69 (+ 0.28)

3
√ √

89.21 (+ 0.11) 80.13 (- 0.09) 70.24 (- 0.45)
4

√ √ √
89.30 (+ 0.09) 80.45 (+ 0.32) 70.89 (+ 0.65)

l2v tlm sen AmazonCat-13K
P@1 P@3 P@5

1 96.42 83.18 67.63
2

√
96.41 (- 0.01) 83.19 (+ 0.01) 67.63 (+ 0)

3
√ √

96.48 (+ 0.07) 83.24 (+ 0.05) 67.69 (+ 0.06)
4

√ √ √
96.50 (+ 0.02) 83.25 (+ 0.01) 67.69 (+ 0)

l2v tlm sen Wiki-500K
P@1 P@3 P@5

1 78.65 58.02 45.24
2

√
78.84 (+ 0.19) 58.46 (+ 0.44) 45.49 (+ 0.25)

3
√ √

79.14 (+ 0.30) 58.56 (+ 0.10) 45.51 (+ 0.02)
4

√ √ √
79.80 (+ 0.66) 59.28 (+ 0.72) 46.03 (+ 0.52)

l2v tlm sen Amazon-670K
P@1 P@3 P@5

1 49.33 43.91 40.01
2

√
49.53 (+ 0.20) 44.21 (+ 0.30) 40.36 (+ 0.35)

3
√ √

50.44 (+ 0.91) 44.94 (+ 0.73) 41.00 (+ 0.64)
4

√ √ √
50.83 (+ 0.39) 45.37 (+ 0.43) 41.30 (+ 0.30)

l2v tlm sen Amazon-3M
P@1 P@3 P@5

1 52.92 49.67 47.22
2

√
53.11 (+ 0.19) 49.88 (+ 0.21) 47.39 (+ 0.17)

3
√ √

53.27 (+ 0.16) 49.96 (+ 0.08) 47.44 (+ 0.05)
4

√ √ √
54.22 (+ 0.95) 50.84 (+ 0.88) 48.27 (+ 0.83)

We reproduce the results of XR-Transformer and compute
the PSP@k using the official source code4. As shown in
Table VIII, our MatchXML again achieves state-of-the-art
results on two out of three large datasets Wiki-500K and
Amazon-670K in terms of three metrics PSP@1, PSP@3
and PSP@5. For Amazon-3M, our approach has achieved the
second best performance. Note that Parabel has developed
specific techniques to boost the performance on tail labels, and
thus has the best performance on tail labels of Amazon-3M.
However, as shown in Table V, the performance of Parabel on
all the labels is about 6% lower than our approach.

Computation Cost. Table IX reports the training costs of

4https://github.com/kunaldahiya/pyxclib

our MatchXML and other deep learning based approaches.
The baseline results of training time are cited from XR-
Transformer. For the unavailable training time of a single
model, we calculate it by dividing the training time of en-
semble model by the number of models in the ensemble. In
XR-Transformer, 13.2 hour is the reported training time of
the ensemble of three models for AmazonCat-13K. We have
checked the sequence length (which is 256) and the number of
training steps (which is 45,000). We believe this cost should be
the training time of single model. Overall, our approach has
shown the fastest training speed on all the six datasets. We
fine-tune the text encoder in three stages from the top layer to
the bottom layer through the HLT. Furthermore, we leverage
several training techniques, such as discriminative learning

https://github.com/kunaldahiya/pyxclib

11

rate, small batch size and less training steps, to improve the
convergence rate of our approach. Our MatchXML has the
same strategy for inference as XR-Transformer. The inference
time on six datasets can be found in Appendix A.4.2 of XR-
Transformer [7].

D. Ablation study

The framework of our MatchXML follows the training
procedure as the baseline XR-Transformer, including the con-
struction of HLT, fine-tuning the encoder Transformer from
the top to bottom layers through the HLT, and training a linear
classifier. Besides, we have proposed three novel techniques
to boost the performance, namely label2vec to learn the dense
label embeddings for the HLT construction, text-label match-
ing for fine-tuning the encoder Transformer, and extraction
of static dense text embeddings from pre-trained Sentence
Transformer. In the ablation study, we set up our technical
contribution one by one and report the experimental results to
show the effectiveness of each component. The performance
of our base model is comparable to or slightly better than
the baseline XR-Transformer, since we have leveraged some
techniques to speed up the training.

Performance of label2vec. Table XII reports the per-
formance comparison of label2vec (number 2) and TF-IDF
(number 1) in terms of precision for the downstream XMC
tasks. On the small datasets, e.g., Eurlex-4K, Wiki10-31K
and AmazonCat-13K, the performances of label embeddings
from label2vec are comparable to the ones from TF-IDF
features. However, on the large datasets, e.g., Wiki-500K,
Amazon-670K and Amazon-3M, label2vec outperforms TF-
IDF, indicating that a large training corpus is essential to learn
high-quality dense label embeddings. Our experimental results
show that label2vec is more effective than TF-IDF to utilize
the large-scale datasets.

Table X reports the training time of label2vec on the six
datasets. The training of label2vec is highly efficient on five
of them, including Eurlex-4K, Wiki10-31K, AmazonCat-13K,
Wiki-500K and Amazon-670K, as the cost is less than 0.3
hours. The training time on Amazon-3M is about 3.6 hours,
which is the result of large amount of training label pairs.
As shown in Table I, the number of instances Ntrain and the
average number of positive labels per instance L are the two
factors that determine the size of training corpus. Note that we
do not add the training time of label2vec into the classification
task since we consider the label2vec task as the preprocessing
step for the downstream tasks.

Table XI compares the sizes of label embedding from
label2vec and TF-IDF. The dense label vectors have much
smaller size than that of the sparse TF-IDF label represen-
tations. Especially, on the large dataset, such as Wiki-500K,
the size of label embeddings can be reduced by 35× (from
7, 109.2MB to 200.4MB), which benefits the construction of
HLT significantly.

Performance of text-label matching. Table XII reports
the performance of our text-label matching (number 3) on the
six datasets. The baseline objective is the weighted squared
hinge loss [7] (number 2). Our text-label matching approach

outperforms the baseline method on five out of six datasets,
including Eurlex-4K, Amazoncat-13K, Wiki-500K, Amazon-
670K and Amazon-3M. For Wiki10-31K, the metric P@1
is still better than the baseline, while P@3 and P@5 are
slightly worse. On the three large-scale datasets, the text-
label matching has achieved the largest gain of about 0.91%
on Amazon-670K, while the small gain of about 0.16% on
Amazon-3M.

Performance of static sentence embedding. Table XII
also reports the performance of static dense sentence em-
bedding (number 4) on the six datasets. The technique has
achieved performance gains in 16 out of 18 metrics over
the six datasets, with two performance drops of P@3 and
P@5 on Eurlex-4K. On the three large-scale datasets: Wiki-
500K, Amazon-670K and Amazon-3M, the performance gains
in P@1 are 0.66%, 0.39% and 0.95%, respectively. There
are three types of text features in our proposed MatchXML:
sparse TF-IDF features, dense text features fine-tuned from
pre-trained Transformer, and the static dense sentence em-
beddings extracted from Sentence-T5. The sparse TF-IDF
features contains the global statistical information of input
text, but it does not capture the semantic information. The
dense text features fine-tuned from pre-trained Transformer
are likely to lose parts of textual information due to the
truncation operation (i.e., context window size of 512 tokens),
while the static dense sentence embeddings can support much
longer text sequence than the fine-tuned text embeddings from
the encoder Transformer. Therefore, the static dense sentence
embeddings can be considered as an effective complement to
the sparse TF-IDF features and dense text features fine-tuned
from pre-trained Transformer. As shown in Table XII (number
4), including the static dense sentence embeddings boosts the
performance of MatchXML consistently over the sparse TF-
IDF baselines and the fine-tuned dense text feature baselines.

V. CONCLUSION

This paper proposes MatchXML, a novel text-label match-
ing framework, for the task of XMC. We introduce label2vec
to train the dense label embeddings to construct the Hi-
erarchical Label Tree, where the dense label vectors have
shown superior performance over the sparse TF-IDF label
representations. In the fine-tuning stage of MatchXML, we
formulate the multi-label text classification as the text-label
matching problem within a mini-batch, leading to robust and
effective dense text representations for XMC. In addition,
we extract the static sentence embeddings from the pre-
trained Sentence Transformer and incorporate them into our
MatchXML to boost the performance further. Empirical study
has demonstrated the superior performance of MatchXML in
terms of classification accuracy and training speed over six
benchmark datasets. It is worthy mentioning that although we
propose MatchXML in the context of text classification, our
framework is general and can be extended readily to other
modalities for XMC, including image, audio, and video, etc.
as long as a modality-specific encoder is available.

The training of MatchXML consists of four stages: training
of label2vec, construction of HLT, fine-tuning the text encoder,

12

and training a linear classifier. As of future work, we plan
to explore an end-to-end training approach to improve the
performance of XMC further.

REFERENCES

[1] O. Dekel and O. Shamir, “Multiclass-multilabel classification with more
classes than examples,” in Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, 2010, pp. 137–144.

[2] Y. Prabhu, A. Kag, S. Harsola, R. Agrawal, and M. Varma, “Parabel:
Partitioned label trees for extreme classification with application to
dynamic search advertising,” in WWW, 2018.

[3] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for
youtube recommendations,” in Proceedings of the 10th ACM conference
on recommender systems, 2016, pp. 191–198.

[4] H.-F. Yu, K. Zhong, J. Zhang, W.-C. Chang, and I. S. Dhillon, “Pecos:
Prediction for enormous and correlated output spaces,” Journal of
Machine Learning Research, vol. 23, no. 98, pp. 1–32, 2022.

[5] W.-C. Chang, H.-F. Yu, K. Zhong, Y. Yang, and I. S. Dhillon, “Taming
pretrained transformers for extreme multi-label text classification,” in
Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2020, pp. 3163–3171.

[6] T. Jiang, D. Wang, L. Sun, H. Yang, Z. Zhao, and F. Zhuang,
“LightXML: Transformer with dynamic negative sampling for high-
performance extreme multi-label text classification,” in AAAI, 2021.

[7] J. Zhang, W.-c. Chang, H.-f. Yu, and I. Dhillon, “Fast multi-resolution
transformer fine-tuning for extreme multi-label text classification,” Ad-
vances in Neural Information Processing Systems, vol. 34, 2021.

[8] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[9] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[10] Y. Prabhu and M. Varma, “Fastxml: A fast, accurate and stable tree-
classifier for extreme multi-label learning,” in KDD, 2014.

[11] K. Bhatia, H. Jain, P. Kar, M. Varma, and P. Jain, “Sparse local
embeddings for extreme multi-label classification,” in NIPS, 2015.

[12] H. Jain, Y. Prabhu, and M. Varma, “Extreme multi-label loss functions
for recommendation, tagging, ranking & other missing label applica-
tions,” in KDD, 2016.

[13] I. E. Yen, X. Huang, K. Zhong, P. Ravikumar, and I. S. Dhillon,
“PD-Sparse: A primal and dual sparse approach to extreme multiclass
and multilabel classification,” in International Conference on Machine
Learning (ICML), 2016.

[14] I. E. Yen, X. Huang, W. Dai, P. Ravikumar, I. Dhillon, and E. Xing,
“PPDsparse: A parallel primal-dual sparse method for extreme classifi-
cation,” in KDD. ACM, 2017.

[15] R. Babbar and B. Schölkopf, “DiSMEC: distributed sparse machines for
extreme multi-label classification,” in WSDM, 2017.

[16] Y. Tagami, “AnnexML: Approximate nearest neighbor search for ex-
treme multi-label classification,” in Proceedings of the 23rd ACM
SIGKDD international conference on knowledge discovery and data
mining, 2017, pp. 455–464.

[17] W. Siblini, P. Kuntz, and F. Meyer, “CRAFTML, an efficient clustering-
based random forest for extreme multi-label learning,” in Proceedings
of the 35th International Conference on Machine Learning, 2018.

[18] M. Wydmuch, K. Jasinska, M. Kuznetsov, R. Busa-Fekete, and K. Dem-
bczynski, “A no-regret generalization of hierarchical softmax to extreme
multi-label classification,” in NIPS, 2018.

[19] H. Jain, V. Balasubramanian, B. Chunduri, and M. Varma, “SLICE:
Scalable linear extreme classifiers trained on 100 million labels for
related searches,” in Proceedings of the Twelfth ACM International
Conference on Web Search and Data Mining. ACM, 2019, pp. 528–536.

[20] S. Khandagale, H. Xiao, and R. Babbar, “BONSAI-diverse and
shallow trees for extreme multi-label classification,” arXiv preprint
arXiv:1904.08249, 2019.

[21] K. Dahiya, A. Agarwal, D. Saini, K. Gururaj, J. Jiao, A. Singh,
S. Agarwal, P. Kar, and M. Varma, “Siamesexml: Siamese networks
meet extreme classifiers with 100m labels,” in International Conference
on Machine Learning. PMLR, 2021, pp. 2330–2340.

[22] K. Dahiya, D. Saini, A. Mittal, A. Shaw, K. Dave, A. Soni, H. Jain,
S. Agarwal, and M. Varma, “DeepXML: A deep extreme multi-label
learning framework applied to short text documents,” in Proceedings
of the 14th ACM International Conference on Web Search and Data
Mining, 2021, pp. 31–39.

[23] J. Liu, W.-C. Chang, Y. Wu, and Y. Yang, “Deep learning for extreme
multi-label text classification,” in Proceedings of the 40th International
ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM, 2017, pp. 115–124.

[24] R. You, Z. Zhang, Z. Wang, S. Dai, H. Mamitsuka, and S. Zhu,
“AttentionXML: Label tree-based attention-aware deep model for high-
performance extreme multi-label text classification,” in Advances in
Neural Information Processing Systems, 2019, pp. 5812–5822.

[25] H. Ye, Z. Chen, D.-H. Wang, and B. Davison, “Pretrained generalized
autoregressive model with adaptive probabilistic label clusters for ex-
treme multi-label text classification,” in International Conference on
Machine Learning. PMLR, 2020, pp. 10 809–10 819.

[26] S. Kharbanda, A. Banerjee, E. Schultheis, and R. Babbar, “Cascadexml:
Rethinking transformers for end-to-end multi-resolution training in ex-
treme multi-label classification,” in Advances in Neural Information
Processing Systems, 2022.

[27] J. Ni, G. H. Abrego, N. Constant, J. Ma, K. Hall, D. Cer, and Y. Yang,
“Sentence-t5: Scalable sentence encoders from pre-trained text-to-text
models,” in Findings of the Association for Computational Linguistics:
ACL 2022, 2022, pp. 1864–1874.

[28] I. Evron, E. Moroshko, and K. Crammer, “Efficient loss-based decoding
on graphs for extreme classification,” Advances in Neural Information
Processing Systems, vol. 31, 2018.

[29] A. Jalan and P. Kar, “Accelerating extreme classification via adaptive
feature agglomeration,” in Proceedings of the 28th International Joint
Conference on Artificial Intelligence, 2019, pp. 2600–2606.

[30] I. Chalkidis, E. Fergadiotis, P. Malakasiotis, and I. Androutsopoulos,
“Large-scale multi-label text classification on eu legislation,” in Proceed-
ings of the 57th Annual Meeting of the Association for Computational
Linguistics, 2019, pp. 6314–6322.

[31] T. Medini, Q. Huang, Y. Wang, V. Mohan, and A. Shrivastava, “Extreme
classification in log memory using count-min sketch: a case study
of amazon search with 50m products,” in Proceedings of the 33rd
International Conference on Neural Information Processing Systems,
2019, pp. 13 265–13 275.

[32] Y. Prabhu, A. Kag, S. Gopinath, K. Dahiya, S. Harsola, R. Agrawal,
and M. Varma, “Extreme multi-label learning with label features for
warm-start tagging, ranking & recommendation,” in Proceedings of
the Eleventh ACM International Conference on Web Search and Data
Mining. ACM, 2018, pp. 441–449.

[33] A. Mittal, K. Dahiya, S. Agrawal, D. Saini, S. Agarwal, P. Kar, and
M. Varma, “DECAF: Deep extreme classification with label features,”
in Proceedings of the 14th ACM International Conference on Web Search
and Data Mining, 2021, pp. 49–57.

[34] A. Mittal, N. Sachdeva, S. Agrawal, S. Agarwal, P. Kar, and M. Varma,
“ECLARE: Extreme classification with label graph correlations,” in
Proceedings of The ACM International World Wide Web Conference,
April 2021.

[35] D. Saini, A. Jain, K. Dave, J. Jiao, A. Singh, R. Zhang, and M. Varma,
“GalaXC: Graph neural networks with labelwise attention for extreme
classification,” in Proceedings of The Web Conference, April 2021.

[36] N. Gupta, S. Bohra, Y. Prabhu, S. Purohit, and M. Varma, “Generalized
zero-shot extreme multi-label learning,” in Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, 2021,
pp. 527–535.

[37] A. Mittal, K. Dahiya, S. Malani, J. Ramaswamy, S. Kuruvilla, J. Ajmera,
K.-h. Chang, S. Agarwal, P. Kar, and M. Varma, “Multi-modal extreme
classification,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2022, pp. 12 393–12 402.

[38] K. Dahiya, N. Gupta, D. Saini, A. Soni, Y. Wang, K. Dave, J. Jiao,
P. Dey, A. Singh, D. Hada et al., “Ngame: Negative mining-aware mini-
batching for extreme classification,” in Proceedings of the Sixteenth
ACM International Conference on Web Search and Data Mining, 2023,
pp. 258–266.

[39] R. Babbar and B. Schölkopf, “Data scarcity, robustness and extreme
multi-label classification,” Machine Learning, pp. 1–23, 2019.

[40] M. Wydmuch, K. Jasinska-Kobus, R. Babbar, and K. Dembczynski,
“Propensity-scored probabilistic label trees,” in Proceedings of the 44th
International ACM SIGIR Conference on Research and Development in
Information Retrieval, 2021, pp. 2252–2256.

13

[41] M. Qaraei, E. Schultheis, P. Gupta, and R. Babbar, “Convex surrogates
for unbiased loss functions in extreme classification with missing labels,”
in Proceedings of the Web Conference 2021, 2021, pp. 3711–3720.

[42] E. Schultheis and R. Babbar, “Speeding-up one-versus-all training
for extreme classification via mean-separating initialization,” Machine
Learning, pp. 1–24, 2022.

[43] E. Schultheis, M. Wydmuch, R. Babbar, and K. Dembczynski, “On
missing labels, long-tails and propensities in extreme multi-label clas-
sification,” in Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2022, pp. 1547–1557.

[44] J.-Y. Jiang, W.-C. Chang, J. Zhang, C.-J. Hsieh, and H.-F. Yu, “Rele-
vance under the iceberg: Reasonable prediction for extreme multi-label
classification,” in Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval,
2022, pp. 1870–1874.

[45] T. Z. Baharav, D. L. Jiang, K. Kolluri, S. Sanghavi, and I. S. Dhillon,
“Enabling efficiency-precision trade-offs for label trees in extreme
classification,” in Proceedings of the 30th ACM International Conference
on Information & Knowledge Management, 2021, pp. 3717–3726.

[46] X. Liu, W.-C. Chang, H.-F. Yu, C.-J. Hsieh, and I. Dhillon, “Label
disentanglement in partition-based extreme multilabel classification,”
Advances in Neural Information Processing Systems, vol. 34, pp.
15 359–15 369, 2021.

[47] D. Zong and S. Sun, “Bgnn-xml: Bilateral graph neural networks for ex-
treme multi-label text classification,” IEEE Transactions on Knowledge
and Data Engineering, 2022.

[48] J. D. M.-W. C. Kenton and L. K. Toutanova, “Bert: Pre-training of deep
bidirectional transformers for language understanding,” in Proceedings
of NAACL-HLT, 2019, pp. 4171–4186.

[49] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “RoBERTa: A robustly optimized
BERT pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[50] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V.
Le, “XLNet: Generalized autoregressive pretraining for language under-
standing,” in NIPS, 2019.

[51] L. Wang, Y. Li, and S. Lazebnik, “Learning deep structure-preserving
image-text embeddings,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 5005–5013.

[52] K.-H. Lee, X. Chen, G. Hua, H. Hu, and X. He, “Stacked cross attention
for image-text matching,” in Proceedings of the European Conference
on Computer Vision (ECCV), 2018, pp. 201–216.

[53] Y.-C. Chen, L. Li, L. Yu, A. E. Kholy, F. Ahmed, Z. Gan, Y. Cheng, and
J. Liu, “Uniter: Universal image-text representation learning,” in ECCV,
2020.

[54] H. Tan and M. Bansal, “Lxmert: Learning cross-modality encoder
representations from transformers,” in Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), 2019, pp. 5100–5111.

[55] T. Xu, P. Zhang, Q. Huang, H. Zhang, Z. Gan, X. Huang, and
X. He, “Attngan: Fine-grained text to image generation with attentional
generative adversarial networks,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2018, pp. 1316–1324.

[56] M. Zhu, P. Pan, W. Chen, and Y. Yang, “Dm-gan: Dynamic memory
generative adversarial networks for text-to-image synthesis,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019, pp. 5802–5810.

[57] G. Yin, B. Liu, L. Sheng, N. Yu, X. Wang, and J. Shao, “Seman-
tics disentangling for text-to-image generation,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2019,
pp. 2327–2336.

[58] H. Zhang, J. Y. Koh, J. Baldridge, H. Lee, and Y. Yang, “Cross-modal
contrastive learning for text-to-image generation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 833–842.

[59] H. Ye, X. Yang, M. Takac, R. Sunderraman, and S. Ji, “Improving text-
to-image synthesis using contrastive learning,” The 32nd British Machine
Vision Conference (BMVC), 2021.

[60] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast
for unsupervised visual representation learning,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp. 9729–9738.

[61] X. Chen, H. Fan, R. Girshick, and K. He, “Improved baselines with mo-
mentum contrastive learning,” arXiv preprint arXiv:2003.04297, 2020.

[62] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in International
conference on machine learning. PMLR, 2020, pp. 1597–1607.

[63] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola,
A. Maschinot, C. Liu, and D. Krishnan, “Supervised contrastive learn-
ing,” Advances in Neural Information Processing Systems, vol. 33, pp.
18 661–18 673, 2020.

[64] Q. Chen, R. Zhang, Y. Zheng, and Y. Mao, “Dual contrastive learning:
Text classification via label-aware data augmentation,” arXiv preprint
arXiv:2201.08702, 2022.

[65] B. Gunel, J. Du, A. Conneau, and V. Stoyanov, “Supervised contrastive
learning for pre-trained language model fine-tuning,” arXiv preprint
arXiv:2011.01403, 2020.

[66] H. Sedghamiz, S. Raval, E. Santus, T. Alhanai, and M. Ghassemi,
“Supcl-seq: Supervised contrastive learning for downstream optimized
sequence representations,” in Findings of the Association for Computa-
tional Linguistics: EMNLP 2021, 2021, pp. 3398–3403.

[67] Y. Xiong, W.-C. Chang, C.-J. Hsieh, H.-F. Yu, and I. Dhillon, “Extreme
zero-shot learning for extreme text classification,” Proceedings of the
2021 Conference of the North American Chapter of the Association for
Computational Linguistics, 2022.

[68] K. Bhatia, K. Dahiya, H. Jain, P. Kar, A. Mittal, Y. Prabhu, and
M. Varma, “The extreme classification repository: Multi-label datasets
and code,” 2016. [Online]. Available: http://manikvarma.org/downloads/
XC/XMLRepository.html

[69] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understanding,”
in Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics (NAACL), 2019.

[70] J. Howard and S. Ruder, “Universal language model fine-tuning for
text classification,” in Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers),
2018, pp. 328–339.

[71] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
arXiv preprint arXiv:1711.05101, 2017.

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html

	Introduction
	Related Works
	Method
	Preliminaries
	label2vec
	Hierarchical Label Tree
	Text-label Matching
	Linear Ranker

	Experiments
	Evaluation Metrics
	Experimental Settings
	Experimental Results
	Ablation study

	Conclusion
	References

