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On the Number of Errors Correctable with Codes
on Graphs

Alexander Barg and Arya Mazumdar

Abstract—We study ensembles of codes on graphs (generalizederrors compared td [15] and by Zyablov et al.|[14] who pro-
low-density parity-check, or LDPC codes) constructed fromran-  vided estimates of the number of errors under the assumption
dom graphs and fixed local constrained codes, and their extsion of local single error-correcting (Hamming) codes. The seco

to codes on hypergraphs. It is known that the average minimum . o . , . .
distance of codes in these ensembles grows linearly with toede 1N€ Of work, initiated in Tanner's paper [12] and in Sipser

length. We show that these codes can correct a linearly growy and Spielman’s [10], pursues estimates of error corretitm
number of errors under simple iterative decoding algorithms. codes on regular graphs with a small second eigenvalue and
In particular, we show that this property extends to codes ensuing expansion properties. Presently it is known thel su
constructed by parallel concatenation of Hamming codes and ¢q4eg under iterative decoding can correct the number ofrr
other codes with small minimum distance. Previously known . .
results that proved this property for graph codes relied on gaph qual to_ a half_ of.the deglgned distance of graph codes. [2].
expansion and required the choice of local codes with |arge Th|S estimate f|tS In a series Of analogous resu|tS fOI‘ variou
distance relative to their length. “concatenated” coding schemes and has prompted a view of
Index Terms—Graph codes, hypergraph codes, iterative decod- graph codes_ as paraIIeI_ concatenati_ons of _th(_e local c_:o(jes [2
ing, parallel concatenation of codes. However, this result relies on certain restrictive assuomst
discussed below.
An extension of Tanner’s construction from graphs to hyper-
graphs was proposed by Bilu and Hoory [4] who showed that
Considerable attention in recent years was devoted to #i&h codes (for high code rates) can have minimum distance
study of error correction with codes on graphs. In this papgfeater than the best known bipartite-graph constructions
we are interested in estimating the number of errors cabéet |nterestingly, the codes consideredin [4] are a directresits
with codes on graphs constructed as generalizations of LDBEa construction in[[7] in the same way as Tanner’s graph
codes. LDPC codes are constructed on a bipartite gragddes extend LDPC codes.
G(V,E),V = Vi UV, by associating code’s coordinates As is well known, graphs with high expansion and random
with the vertices in one part of7, replicating the values graphs share many properties that can be used to prove esti-
of each vertex on the edges incident to it, and imposingngates of error correction. This similarity in the codingdhe
parity-check constraint at each vertex of the other partzof context was emphasized in our recent wark [1] where we
The generalization that we have in mind is concerned wilhowed that ensembles of codes on random graphs and explicit
replacing the repetition and single-parity-check codeleal expander-like constructions share many common featu@s su
codes at the graph’s vertices with other error-correctodes. as properties of the minimum distance and weight distritouti
Error correction with codes on graphs has been studiedregarding the proportion of errors corrected by graph codes
along two lines, namely, by computing the average numbefder iterative decoding, we note one difference between
of errors correctable with some decoding algorithm by codegeneralized) LDPC codes on random graphs and explicit
from a certain random ensemble of graph codes, or by epnstructions based on the graph spectrum. The explicit con
amining explicit code families whose construction inv@vestructions based on regular graphs depend on the difference
graphs with a large spectral gap. The first direction origisa between the largest and the second largest eigenvalue of the
in the works of Gallager_|7] and Zyablov and Pinsker![15§raph (the “spectral gap”). For this reason, one is forced to
who showed that random LDPC codes of growing leng#ely on local codes with rather large minimum distanke
can correct a nonvanishing fraction of errors. Recently thgr instance,d, greater than the square root of the degree
decoding algorithm of [15] was studied by Burshtein [6] whe, of the graph. Even though in the construction [of|[10] and
derived an improved estimate of the number of correctaliiger worksn is kept constant, this effectively rules out of
_ _ consideration local codes with small minimum distance such
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hypergraph codes under iterative decoding. The first part @dde C, consider ann-regular bipartite graptz(V = V4 U
the paper is devoted to codes on regular bipartite graphs. ig E), where the set of verticeg” consists of two disjoint
construct long graph codes, we assume that the degreepafts V;,V, of size m each, all the edges are of the form
the graph is fixed and the number of vertices in both parts,v),u € Vi,v € Va, and the degree of every vertexn V' is
approaches infinity. Assuming that local constraint codes au. Let A[n, Ryn, do] be a linear binary code of lengthcalled
used to correct 2 or more errors, we show that almost all codbs local code below. We identify the coordinates(dfwith

in the ensemble of graph codes are capable of correctingthké setF and for a vertexo € V denote byx(v) € {0,1}"
error patterns of weight that forms a constant fraction @f tithe projection of a vectat € {0,1}V, N = nm, on the edges
code length. This is a much less restrictive assumption en tincident tov. A graph codeC(G) is defined as follows:

local codes than the one taken in earlier works on decoding of

graph coded |2],[[13]. The proof of this result employs some C={xc{0,1}V: Yyeyz(v) € A}. (1)
ideas of [1] introduced there for the analysis of the weight
distribution of graph codes. The ensemble of codeg( A, m) is constructed by associating

We then observe that if the degree of the graph is alloweddocode C(G) with a graph G sampled from the set of
increase then graph codes with local codes of constantdistagraphs defined by a random permutationmelements which
do not correct a linearly growing number of errors under thestablishes how the edges originatinglin are connected to
proposed iterative decoding. This motivates us to studplyrathe vertices inVs.
codes with long local codes correcting a growing number of Generalizing this construction, consider aspartite n-
errors that forms a fixed proportion of the degree. The resufegular uniform hypergraptf = (V,E) i.e., a finite set
obtained in this case parallel earlier theorems for prodedes v = v, U ... U Vj, where |Vi| = --- = |Vj| = m, and a
and graph codes based on the spectral gap. collection E of I-subsets (hyperedges) &f such that every

In the second part of the paper we establish similar resuts- E intersects each;, 1 < i < [ by exactly one element and
for codes on hypergraphs, showing that a constant proporti@ach vertex € V appears in exactly different subsets of’.
of errors is corrected by an iterative decoding algorithmiming at constructing anN, RN| binary linear codeC' by
that combines some ideas cfl [1] with the results proveghposing local constraints at the vertices, we again idetiie
for codes on bipartite graphs in the first part of the pape&oordinates ofC’ with the (hyper)edges off. By definition,
Constructing the code ensemble based on regular hypesyragle codeC' is formed of the vectors that satisfy conditior{{1)
of a fixed degree, we show that they contain codes capablef@f every vertex inV. The ensemble of code#’(A, 1, m) in
correcting a constant proportion of errors. The proof imesl this case is constructed by sampling a random hypergraph fro
no assumptions on the distance of the local codes; in p&atjcuthe set of hypergraphs defined by- 1 independent random
we show that networks of Hamming codes correct a fixgsbrmutations onV elements. Foi = 1,2,...,1 — 1, the ith
proportion of errors under iterative decoding. This factswaermutation accounts for the placement of edges betweés par
previously proved by Tanner [12] under the assumption thgt andV;,, of H. Of course (A, 1, m) becomes? (A, m)
the underlying graph is a tree. This assumption is not needed | — 2.
in our results. As in the case of the graph ensemble, we alsorpe following is known about the parameters of codes in
perform the analysis of the decoding algorithm for the cagge graph and hypergraph ensembles considered here. It is
of growing degree, finding the proportion of errors corrbtta easy to see that the rat@ of the codesC' € #(A,l,m)
with hypergraph codes based on long local codes. satisfiesR > IRy — (I—1),1 = 2,3,.... Denote byd(.#) =

This paper is dedicated to the memory of Ralf Koetter. Tl’mjf(A’ 1,m)) the average value of the minimum distance of
first-named author discussed the problem of estimating thgdes in the hypergraph ensemble and let

performance of codes on graphs with Ralf in the beginning
of 2004. Ralf’s idea at that point was to investigate the rerro aa L L d(I)
correcting capability of codes defined on some distancalaeg §=0(2)= 1}?1_}(?5 N @)
graph, with local constraints imposed at the vertices of the
graph. Presently it is understood that the setting most ablen A way to bound the value of below using the distribution
to analysis is that of codes defined on a regular bipartied distances in the local codd was suggested iri [5][8].
graph. Ralf himself made an initial attempt to analyze sudfiore explicit results in this direction were obtained!in,[[d].
codes in a joint paper with Xiangyu Tarig [11]. The emphasig particular, [1] shows thaé(#’) > 0 if the local distance
in [11] is on the estimation of the largest channel error ratk satisfiesdy > 1/(I — 1). For the bipartite graph ensemble
tolerated by graph codes under such decoding. In the preséftl,m) (i.e., for I = 2) this implies thatd, > 3, ie.,
paper, similarly to[[10],[[13] and later works, the local esd with high probability codes in ensemble are asymptotically
are decoded up to their correction radius guaranteed by @®od (have nonvanishing rate and relative distance) when th
minimum distance. local codes correct one or more errors. For hypergraphs with
I = 3 or more parts any local codes (without repeated vectors)
account for an asymptotically good ensemble. An explicit
lower bound ford(#) that depends only ohandd, is given

An [N, K] binary linear code is a linear subspacg0f1}" by [1], see Theorefi 5.5 below. For the case wheis large
of dimensionK. To construct ajN, RN| binary linear graph and dy = don, a lower estimate ob(s#) is given by the
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solution forz of the following equation[]1, Cor. 6]: proposed in[[1]. It proves to be the best choice in terms of
h(z) I h(d) the number of correctable errors among several possibte alg
I 5 (3)  rithms for these codes such as the on€ in [4] and procedures

. . analogous to Algorithm | above.
Finally, if the local codes are chosen randomly as opposeHLet C € #(A,1,m) be a code and leH(V, E),V —

to a fixed codeA used at every vertex off, then the codes . L
. Vi, U---UV, be the graph associated with it. For every
in the (hyper)graph ensemble match the best known ImedL . ; .
. P 1 =1,2...,1 we will define ani-th subprocedure that decodes
codes, i.e., reach the asymptotic Gilbert-Varshamov bamd .
o ) the local codeA on every vertex in the paiit;. Suppose that
the minimum distance [1].

N ; .
Remarks. 1. An equivalent description of the bipartite cod a vectoru € {0,1}7 is asso_uateq with the edgese E.
. . o o et v;1,...,v;.m be the vertices in the paft; of H and
ensemble is obtained by considering an edge-vertex inceden ’ '
raph of the grapl&(V, E), i.e., a bipartite grap = (D; U et w1 = w(vi1), -, Uim = w(vim) be them subvectors
grapn grap VT P grap 1~ obtained fromu upon permuting its coordinates according to
D, F) whereD; = E, Dy = V7 U V,, each vertex inD; is . o X
. : the order of edges i, and projecting it on the vertices
connected to one vertex i, and to one vertex i, and

there are no other edges i Thus, for allv € Dy, deg(v) = >4 Vbm: In other words, the vecto(u;., ..., uim)
2 and for allv € Dy, deg(v) = n. The local code constrains 'S obtained fromw using the permutation that establishes

are imposed on the vertices iD,. By increasing the numberedge connections between paits and V;. The ith subpro-

of parts inD, from two to, we then obtain the hypergraphce(Jlure replaces the vecton; i, ..., u;,,) with the vector

i i ; e wA,t(Ui,l)a s aZZJA,t(ui,m))-
ﬁznggfzgﬂiiggopvrz;:ltzc?Ii\;eis‘:ﬁzn f ternate descnpndneof{ The algorithm proceeds in iterations. Lgtc {0,1}" be

- ( ) .
The ensemble of hypergraph codes with local constrairmse received vector. Denote by’ the set of estimates of

. ) . . e transmitted codeword (i.e., the set fvectors) stored
given by single parity-check codes was introduced by Gallag . L o
, : at the vertices ofH before thejth iterationj; = 1,2,....
[7l p.12]. The proportion of errors correctable with thesdes ; : . . )
: P ; . . After each iteration, this set is formed as the union of the
using the so-called “flipping” algorithm was estimated[iB][1

L ; .. yectors obtained upon decoding of the vertices initheart,
[S4(Jeveral generalizations of this ensemble were studied]in [ZXZ 1,....1. Decoding begins with setting) — {y}. After

2. The derivations of this paper are not specific to bina}he first iteration we obtaih potentially different vectors (one

codes: any local linear codes such as Reed-Solomon codes 5neaCh subprocedure) which form the current estimates of

be used in the construction with no conceptual changes to | & tralns|m|trt]ed vectpr. These verc]:torsé) form ;he 39%'7;] N
analysis and the conclusions. ,-..,1. In the next iteration each subprocedure will have to

be applied to each of theoutcomes of the preceding iteration.
lIl. DECODING ALGORITHMS FOR GRAPHGENERALIZED ~ Proceeding in this way, we observe ths}?| < 171,
LDPC) coDES This algorithm, called Algorithm 1l below, will only be

Even though the ensembi&( A, m) forms a particular case applied for a constant number of iterations until we can
of the ensembles#(A,1,m) in7 our analysis we employ guarantee that at least one subprocedure has reduced the

different decoding algorithms for the cases- 2 and] > 3. number of errors to a specified proportion, say frogiV
The reason for this is that edge-oriented procedures cotymolp SOMe71N, 71 < 7. We then let another algorithm take
used for bipartite-graph codes do not generalize well fY€r @nd decode all the’ candidates. Any low-complexity
hypergraphs. decoder of graph codes that removes an arbitrarily small
A. Decoding for the ensemble % (A, m). In our estimates of positive fraction of errorsy; will do at this stage. This is
the number of correctable errors for the ensentBleve rely Pecause taking the proportion of errors from to 71 > 0
upon the algorithm of [13] which iterates between decodirfg P& accomplished in a constant numberf steps, so the
all the vertices in part§; and V5 in parallel using some number of candidates that this decoder has to handle is d@t mos
decoding algorithm of the codd. Let C' € %(A,m) be a ! and does not depend o¥. _
code. For the ease of analysis we assume that the local codds?" the case of local codes correcting> 2 errors we
are decoded to correct up t@rrors, where > 0 is an integer let this algorithm to_be the deco_dlng algorithm _of bipartite
that satisfie2t + 1 < do andd, is the distance of the codé. 9raph codes (Algorithm 1), making sure thai is below
Formally, define a mapping.4; : {0,1}" — {0,1}" such the proportion of errors that are necessarily corrected by
that va(z) = = € A if x is the unique codeword thatthis algorithm for the ensembl& (A, m). This is possible
satisfiesd(z, z) < t and4,(z) = z otherwise. Lety® be because, Ie_avm_g any two parts of t_he original hypergrBEph
the estimate of the transmitted vector before dtheiteration, 0 form a bipartite graptt, we obtain a random code from

i > 1, wherey = y(1) is the received vector. The next stepéhe ensembl&/ (A, m) which with high probability (over the
are repeated for a certain number of iterations. ensemble) will remove all the residual errors from at least

Algorithm | (y1) one candidatg estimate_. For= 1 this gpproach fails for
 odd: f I Ve out D (v) — (i) ) the reasons discussed in the next section, so we resort to a
*? ° ..or alve b puty (iﬂ)(v) YAy (i)(v))’ procedure in[[14] that corrects a small linear fraction obes
* i even: for allv € V2 puty (V) =Yy v). for single-error-correcting Hamming codes.
B. Decoding for the ensemble 7 (A, 1, m). For the hyper-  Upon performing the described procedure we obtain a list
graph ensemble#”’(A, 1, m) we use the decoding algorithmof at mosti® candidate codewords of the codé The final
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Fig. 1. Alternate construction of the hypergraph code: Télel$; = {ei,...,en}, wheredeg(e;) = [ for all ¢, represents the coordinates of the code

(hyperedges off); the setsVi, ..., Vi, where|V;| = m for all j, represent the vertices of the hypergrafih Each vertexv; j,1 <7 < 1,1 <j <m
carries a codeword of the local codeof lengthn.

decoding result is found by choosing the codeword from this Theorem 4.2: Let A[n, Ron, do] be the local code, let, —
list closest toy by the Hamming distance. oo, and let2 <t < dy/2. All codes in the ensemblg (A, m)

Though the last step of the decoding algorithm describedagcept for an exponentially small (i) proportion of them
different from [1], the main idea is similar to that paper, seorrect any combination of errors of weightm in O(log m)
we refer to it for a more detailed description and a discussid@erations of Algorithm |, whered < o < oy and og is the
of the algorithm. smallest positive root of the equation

F, = (n—1)h(o).
IV. NUMBER OF CORRECTABLE ERRORS FOR THE ”’t(a) (n )h(o)

ENSEMBLEY/ (A, m) Remark. The case of local codes with= 1 is excluded from
Let C € 4(A,m) be a code and lef(V, E) be the graph this theorem becausg with high probability contains a large
associated with it. For a given subset of vertices  V;,i = number of 4-cycles, which means that correcting singlererro

1,2 and a vertexs denote bydegq(v) the number of edges at every vertex does not ensure overall convergence of the

betweenv and S. Let 7,.(S) = {v € V : degg(v) > r + 1}, decoding. Indeed, if two vertices are affected by two errors

wherer € {0,...,n — 1} is an integer. each, and the corresponding 4 edges form a cycle, then the
Below h(z) denotes the entropy of the probability vectoflecoder will loop indefinitely without approaching the et

z € R, In the particular case ofi = 1 we write h(z) decision. The theorem is still valid in this case, but givgs=

instead ofh(z,1 — z).

Let ¢ > 0 be any integer such that + 1 < dy. The Proof: We need to verify the assumption of Proposition
calculation in this section is based on the following simpéd. Let S C Vi,[S| = om and letm; = [{v € V; :
observation. degg(v) =i}|,i=1,...,n. Clearly,

Proposition 4.1: Suppose that for allS < V;,i = n
1,2,|S| < om,o € (0,1), there existse > 0 such that Zml <m, Z mi = |T(S)], Zimi: |S|n.
|T:(S)| < |S| — em. Then anyotm = ot(N/n) errors will be i=t+1 j

corrected by Algorithm | inO(log m) iterations.

Proof: Suppose that no more thartm errors occurred
in the channel. LefS; be the set of vertices that are decode
incorrectly in iteration of Algorithm I. The assumption of the
proposition implies thatS; 1| < |S;|(1 — €/o), so O(logm)

Let us compute the probability (over the choice @ that
g} )| > (6 —€)m. Let p = (mq,...,m,) be a vector with
nonnegative integer components, Iet

iterations suffice to remove all the errors. B M(to)={p: Zml <m, szl =oN,
Define
Fo (o) =h(c) —onlogz Z m; > (o0 —e€)m},
1=t+1
+olog Z ( )x +(1-o 1ng < > @ (4 and let () denote the number of choices of subsets of size
=t mi1,...,my out of a set of sizen. We have
wherez > 0 is found from the equation " _
1 m n\""
o P(ITy(S)| > |S] —em) = -~ Z ( )H() :
Z Z ( )( ) (n— j)—i(l—cr))a:lﬂft*l =0. (5 (aN) peEM. (t,0) Byt
1=0 j=t+1 (6)

Let % (s) denote the event thdf contains a subs&, |S| = s

Let 2, = {z € [0, 1" : 330 o2z = 1} be the(n +1)- o pien IT:(S)| > |S| — em. We have

dimensional probability simplex.
The main result of this section is given by the next theorem.

P(ilom) < ([ ) PAT(S)| 2 15] - em)



and random variable. This probability is monotone increasimg o

U for o € [0,1], andp(0) = p'(0) = 0. Thus foro € [0, a)
P f < P f . o I 9 5
(U 1(2)) = mPiZilom)) where « is the smallest positive root OZ?:t_H zi (o) = o,
Denote by.% (o) an analogous event with respectifp Then we have

i . . 2m( " m\ o (n\" < > (1-0)"""<o,
P(Uziuzsin) < 2en) 5 < ) I1 <,> - z;l z;l
=1 (G’N) HEA’Is(t,U) © =1 . . .
(7) and so the point*(c) € .#'(t,0). Our claim will follow
Letting L to be the logarithm of the left-hand side dividedf we show thats < «. This is indeed the case because for
by m and omittingo,, (1) terms, we obtain the estimafe< 0<o <,
n~1F, (o), where

max g(z*(0)) < (n —1)h(0).
_ zeM' (t,0)
Fnlo) = =(n=Dh(o)+_ max ( +Z zilog < >) On the other handy(z*(a)) = nh(a). This establishes that
the maximum of;(z) onz € .#' is attained on the hyperplane
i1 % = O
M (t,0) {z €z, Z’Z’ = on, Z 2, >0 — e} Step 3. To compute the maximum @fz) on z, let us form
i=t+1 the Lagrangian

where

andz; = m;/m,zo = (m Zmz)/m
The rest of the proof is concerned with the evaluation of {/(z, 71, 7) )+ Zzl log < >
the above maximum. Define

z)—i—ézilog(?) (8) +71(iizi—on)—|—7'2( i zi—o).

=1 1=t+1
g=sup{oc>0:F,;(y)<0foral 0<y<o}. SettingVU = 0 andr; = logx, 72 = logy, we find that
As long aso < &, the probability of not being able to n\ ; . )
correctotm errors with a random code from the considered (Z)x D if0<i<t
ensemble approaches zero. Thus, we need to find the maxi- Z =
MUMmax.c_ 4 (1,0) 9(2) for all o € [0,5). The proof will be (”) ya'D ift<i<n
accomplished in the next three steps. Siaeell be assumed 1 -

arbitrarily small, we will omit it from our considerationsd
write .#' instead of.#. .
1. We find the pointz* that gives the maximum of(z) _ ny ; AN
without the constraind_"", ., z; > o. b= [ZO i)"Y ,_tzl i)* }
2. Next we show that fob < o < &, the pointz* ¢ = i
/', and therefore the maximum ove#’ is attained on the Adding these equations together, we find conditions:fand

where we have denoted

boundary, i.e., we can replac#’ with Y- .
n .
= D v
M (Lo { €z, Zzzl—an Z zz—a} 7 yiztzﬂ (z)x
1=t+1
3. Finally we compute the value of the maximum. . ; - ;
y. P o ) Un-D(Zi(ﬁ)xl—i—y Z z(n)xz)
Step 1. Without the constraidt;_,  , z; > o the maximum - \ S \1

is easily computed. Indeed, the proportion of edges intiden | qf he | b
to the vertices inS out of the N' edges ofG is o, so the Oncey is eliminated from the last two equations, we obtain

fraction of vertices withS-degree should be close to} (o) = the’cond|t|0n[Z}5.) fore. Finally, _subst|tut|ng the _found values of
(Mo'(1 — )"~ Thus, the coordinates of the maX|m|Z|n ,i=1,...,ninto g(z), we find that the maximum evaluates
p6|ntz = 2z*(0) arez},i=1 nizo=1-3 2% and o the expressmlﬁn +(o) given in [4) (and therefore; = oy).
ot T et = Since we seek to obtain a vallie< 0, the boundary condition
9(z") = nh(o). for the proportion of correctable errors is obtained byisett

Slightly more formally, note that* is the unique stationary = = 0- This concludes the proof. u

point of the functiong(z), and that this function is stnctly Example 1: Using Theoreni 412 together witfil (4) we can

concave inz. Thereforez* is a unique maximum of(z) o compute the proportion of errors corrected by codes in the
Z,, and the functiory(z) grows in the direction=" — = for ensemble? (A, m), m — oo for several choices of the local
anyz € Z,. code A. For instance, takingl to be the binary Golay code

Step 2. Suppose th@t < o < &. Observe thap(c) £ of lengthn = 23 we find oy ~ 0.0048586 and therefore, the
Siii1 7 =P(X >t+1), whereX is a(o,1—0) binomial proportion of correctable errors &% ~ 0.00063. Similarly,



for the 2-error-correcting» = 31, k = 21] BCH code we find V. NUMBER OF CORRECTABLE ERRORS FOR THE
oo ~ 0.000035 and 22t ~ 0.0000023. ENSEMBLE J#(A,1,m)

To underscore similarities with the results obtained for In this section we first state a sufficient condition for the
product codes and their later variations including graptieso €xistence of at least one subprocedure within each step of

with codes from the ensembié(A4, m) in the case of large Perform the analysis of random hypergraphs to show that with
n. high probability this condition is satisfied. Overall thigliw

Proposition 4.3: Let t = 7n. Then the ensembl@(A4,m) Show that the number of errors in at least one of the candidate

contains codes that correet N errors for anyo S 00, where in the list generated after a few iterations is reduced to a

oo is given by desired level.
Denote byE(v) the set of edges incident to a vertexc

09 = sup {0’ >0 Voczeo (1 — a:)h(M) V. Let C € s(A,l,m) be a code and let/(V, E) be its
-2 associated graph. L&t C E be the set of errors at the start
+zh(T) + € < h(:c)} of some iteration of the algorithm. The next set of arguments
will refer to this iteration. LelG; = {v e V; : |[E(v)NE| < t}
wheree,, = (1 +logn)/n. _ _ be the set of vertices such that each of them is incident to no
Proof: Referring to the notation of the previous proof, lef,qre thant edges frome (such errors will be corrected upon
us evaluate the asymptotic behavior of the expordenf the .o decoding). LeB; = {v € V; : |E(v) N &| > do — t} be

probability in (7). Sinceh(z) < logn, we have the set of vertices that can introduce errors after one degod

n iteration. Note that each of such vertices introduces att mos
nilpnyt(cr) < —h(o)+n"' max Z z; log <n> errors.
zeM () 15 ! The main condition for successful decoding is given in the
+n"(1 +logn). next lemma.

Lemma 5.1: Assume that for ever§ C E, |€] < yN there
& n ; existsi = i(€),1 < ¢ <[ such that|£(G;)| > t|B;| + €N,
- Zzl log ( ) < Z zih(—) where&(G;) is the set of edges & incident to the vertices
"o ! : " of G; ande > 0. Then for any0 < 3 < ~, Algorithm Il will
reduce anyyN errors in the received vector to at mgosiv
errors inc(f, v, €), iterations where is a constant independent

ST ST RS -1 C) N

Next,

= . i:i“ ' Proof: We need to prove that at least one of the sub-
<(1- O_)h(zi:l Zzz) i Gh(Zi:t—H ”z‘) procedures will find a vector with no more thgiV errors
- (I-0o)n on ' after a constant number of iterations. In any given iterabg

the assumption of the lemma there exists a compohgfar
which theith subprocedure will decrease the count of errors
1 & n o—y y by |£(G;)| —tB; > eN. Thus, in each iteration there exists a
n Z % log i) s aBx, {(1 - "')h(l _ 0) + "'h(;) } subprocedure that reduces the number of errors by a positive

=0 _ . _ o ~ fraction. [ ]
The function on the right-hand side of this inequality is Next we show that the assumption of Lemima 5.1 holds with
concave. Its global maximum equdlgéo) and is attained for high probability over the ensemble. Consider the function
y = o2. Thus, assuming that < 7, we conclude that the
constrained maximum occurs for = 7o, which gives the - i

o TO g I (h(z) + Zzi log (n)),
=0 v

Lety =n~'Y ", iz, thenforanyz € .#(rn,o) we have

following bound onn~'F,, 4(o) : ne() = zen,}ﬁ)ﬁw)
o(l—71)

1—0

n" (o) < —h(o) + (1 — a)h( ) + oh(T) +¢&,. where in this section the regio# (¢,~) will be as follows:

n

As long as the right-hand side of the this inequality is niegat LI ‘L
the previous proof implies that the code corrects all eradrs M (t,7) = {z €2Zn: Z’Zi = 7”’2“71' = Z t'zi}'
multiplicity up to o7 N. N =t =t i=do—t ©)
From the expression of this proposition we observe that (as
n — oo) the value ofsy approaches, so the ensembl&
contains codes that correct up tora proportion of errors,
where Tn = dy/2 is the error-correcting capability of the o = sup{z > 0 : Yocy<s (I/n)Epi(v) < (I = 1)h(7)}.
code A. This result parallels the product bound on the error- (10)
correcting radius of direct product codes. As in the cagehypergraph from the ensemble lepartite uniformn-regular
of product and expander codes (e.@l, [2]), the proportion bfpergraphs with probability —2—2(") has the property that
correctable errors can be improved frath= (do/(2n))? by for all £ C E,|€| < vN, and somee > 0, the inequality
using a more powerful decoding algorithm. |E(G;)| > t|B;| + eN holds for at least oné < {1,...,1}.

Lemma 5.2: Let m — oo and let



Proof: Let £ C E,|| = YN. Let m; = |{v € V; :
|E()NE| =i},i=1,...,n. Clearly |E(G1)| = YF_, im;
and|B;| = Z?:do—tmi' We have

On the other handy(z*(8)) = nh(3). This implies thaty <
B, and so for ally < 7, the pointz*(v) & .#'(t,~). Thus
the region.#’ in the maximization can be replaced with#

(and¥y = vp). ]

This lemma establishes that the number of errors in at least
one of the candidates in the list generated after a few itersit
is reduced to a desired level. After that the residual ercars
be removed by another procedure as described above. In this
situation we say that the errors are correctable by Algorith
I, without explicitly mentioning the second stage.

In the next theorem, which is the main result of this section,
o0 refers to the lower estimate of the average relative distanc
of the hypergraph code ensemb#é from Theoreni 515 below.

p = P(I€(Gi)| < t|Bi] +eN)

7,2, W)

) nEM,(t,y)

wherep = {mq,...,mu,},

Mc(t,y) ={pe (ZyU0)": Zmz <m,
i=1
t

K3
n
Zimi = VN,Zimi <
i=1 i=1 Theorem 5.3: Lett > 2 be the number of errors correctable

Denote by.Z(£) the event that for a given subsét C by the local coded. Algorithm 11 corrects any combination of
E,|€| = YN no partV; of H satisfies the assumption ofuP t0 N (min(3o,6/2)) errors for any cod&' € #'(A,1,m)
Lemmal5.l. Ther?(Z(£)) = p' and e>_<cept for a proportion of codes that declines exponentiall
with the code lengthV = nm,m — oc.
P{3E: (€] <AN)A(LE))) < N< N )pl. Proof: With high probability over the ensemble of hyper-
YN graphs considered, for a given hypergrdptV, E) a constant

Letting L to be the logarithm of the left-hand side of thigiumbers of iterations of the algorithm will decrease the
inequality divided byN and omittingoy (1) terms, we obtain Weight of error from~,/N' to any given positive proportion
g for at least one of thé® candidates in the IisYl(S“). Take
B = oo, where oy is the quantity given by Theorei 4.2.
Next consider the bipartite gragh(Ve = V1 UVa, E) where
V1, V; are the parts off and wherdv,,v3) € Eg if v1,v3 € €
for some edgee € E. By the previous section, with high
probability theserg N errors can be corrected with(log m)
iterations of Algorithm I. Finally, the correct codevectwill
be selected from the list of candidates because the proporti
andz; = m;/m (as in the previous section, we have omittegf errors is assumed not to exced /2. m

e which can be made arbitrarily small).  The complexity of this decoding i® (N log N) where the
The proof will be complete if we show that the OPtmplicit constant depends on the code

T . ¥
mization region.#" can be replaced by#. For that we |, yhe following theorem we extend the results of this

follow the logic of the second part of the proof of Theoremg ion 1 the case of being a perfect single-error correcting
[Q. As before,nthe maximum (y‘(z) without the constraint Hamming code of length = 2" — 1 for somer = 3,4, . ...
2i=1 0% < Xig, 1% 1S attained at the point™(y) = | this case the maximum om in the above proof can be
(25,215 23) € 2, Where computed in a closed form. As remarked above, in this case

in the last part of the error correction procedure we use the
decoding algorithm of [14] to remove residual errors frora th
candidate vectors.

i tm; + eN}.

i=do—t

L<—(1-1)h(y)+ L max

11
n zed'(t,y) ( )

9(2),

whereg(z) is defined in[(8),

n

Z tZi}

i=do—t

n t
M (t,y)={z€ Z,: ZZ«% = yn, Zizi <
i=1 i=1

n

== (- it

We need to show that as long @s< v < =, the point

« , . P . Theorem 5.4: Suppose that the local codelsare taken to
z* & .'(t,7). By concavity of the objective function andbe one-error-correcting Hamming codes andlet 6(.#°) be
the optimization region, this will imply that the maximum is

on the boundary. As before, it is possible to show that in tht‘lgf‘?e;elsltrl:]/i S?V:ﬂagsddeft?: ﬁ 6(2()3 r? Sf ;rmeb%rae%%(’:g:%e

neighborhood ofy =0, decoded to correc min(vg,d/2) errors, wherey, is given
¢ n by (20) and
Zzz;‘ > Z tz}.
i=1 i=do—t 3 n_o
and thus fory < 3, where3 is the smallest positive root of £n.1(7) = —ynlogz + 1og<1 +2 ”Z (i)le) (12)
Soiyizf =304y ta), the pointz*(y) & .4'(t,7). Let =2
¥ =sup{v: V0 <z <, rhs of [11)< 0}.
We note that for ally < 7,
9(z) < (I = 1)nh(y).

wherez is the only positive root of the equation
S (i + 1) () ! _

2n i, (P)att +yn i, (et

max
zeM'(t,0)



Proof: It is obtained by maximizing the function(z)
over the region

codes and their generalizations based on the “flipping”-algo
rithm of [15].

n

1=2

The case of large n. As in the previous section, it is
interesting to examine the case of long local codesecause
it reveals some parallels with the analysis of the decoding
algorithm in the case of nonrandom hypergraphs [1]. We begin
with the observation that the proportion of correctable
errors for the ensemble?’(A, ¢, m) computed above is a
function of the number of errorsthat each local code corrects

n
M= {ze 20 iz =n,m =

=1

The Lagrangian takes the form

z)—i-gzi(logn—i-log(?)) (Z: (i+1)z )

wherez = (21, 22,...,2n,1 — Y, 2;) andz; = >, z; and in each iteration.

A is an arbitrary multiplier. Setting the partial derivativio =~ Lemma 5.6: Let t = 7n, do don. The ensemble
zero, we find the value to satisfy2” = )\, wherez is given 7 (A,t,m) contains codes that correctN errors for any
above. The calculations are tedious but straightforwam am < vo(7) = min(7, zo(7)) where

will be omitted. [ | " o .

The last theorem enables us to find the proportion ofto(7) =sup{x > 0: (1 - —)h(—) + —h(do— 1)
50 50 — X 50

(1 =1/Dh(z)}

A (1,

correctable errors for the case whdnis the Hamming code
of lengthn = 2" — 1,¢ = 1. Since the examples below rely
on the value of the ensemble -average distance, we quote th%
corresponding result frond [1].

Theorem 5.5: [1l Thm.5] Leté(5¢°) be the asymptotic av-
erage relative distance of codes in thkeypergraph ensemble
constructed from the local codé of lengthn and distance

+en <

en = logn/n.

Proof: Referring to the proof of Lemmia 5.2, we aim at
establishing conditions for the expondhbf the eventZ (&)

to be negative as approaches infinity. We assume that 7
(otherwise our estimates do not imply that the convergence

do. Then condition of Lemma 5]1 holds with high probability over the
/ I 14 Z?:do (’;)% graph ensemble).
o(A) = ili% {w S log T ar < (l_l)h(w)} From [11), [B) we have

wherez, = zo(w) is the positive solution of the equation

wn—l—Z()wn—zz =0.

For instance, for the case= 31,/ = 5 this theorem gives
the value of the relative distan@€.#) > 0.01618 (the rate
of codesR > 6/31). Performing the calculation if(12), we
find that the average code from the ensemi#fé A, 5, m) the
proportion of errors correctable by codes in the ensemlitgjuswhere we have denotegjl 0% = A, ZZ 192 = pan. In
Algorithm 1l to be at leastyy = 1.2 x 1075. addition let us puty_;_ do— _4%2; = pgn, then the values of

We include some more examples. In the following tablthe sums}", z; and )", iz; over each of the three intervals

llogn

n n
=0

where.Z (t,~) is defined in[(D). Next, write

> e(5) = m(ZRE) < (). 6y

1=0

—(l=Dh(y)+1

max
zEM(t,Y) p

n=2"—1. I = [0,t], Iy = [t+1,dg —t — 1], I3 = [dy — t,n] can be
Example 2: found from the following table:
l 17 23 28 34 I I I3
Rate 0.7006 0.5949 0.5069 0.4012 . A 1—2\
Y0 | 0.000235 | 0.000401 | 0.000521 | 0.000644 Z?Z A= m/T w7
5(7) | 0.00415 | 0.00504 | 0.00558 | 0.00608 Siyom Y- —pr e
R;te 039%5 5 30574 5 f()lls The variables introduced above depend on the peirEnd
% 0000747 T 0.00082T 1 0.00030% satisfy the following natural constraints: for amye .# (¢, ),
0(s#) | 0.00648 | 0.00676 | 0.00704 <
. B T
It is also of interest to compute the valuesf for code - "
rate R(C) ~ 0.5. (1—/\ T) <v—p1 —p2 < (50—7)(1—A—7)
n 127 255 511 1023 50— ﬂ <py < ML 14
1 9 16 %3 51 o —7)" Swe s T (14)
Rate 0.5039 0.4980 0.5068 0.5015 . . . .
P 0.0002012 | 0.0004873 | 0.0005207 | 0.0004227 Proceeding as if_(13), we can estimate the sum;an L as
5(7) | 0.01157 | 0.008658 | 0.005581 | 0.003394 | follows:

These estimates are at least an order of magnitude better
than the corresponding results in [6], [14] obtained for DP

n

Zzzh(n) < A s pi2)

=0

(15)



where Let us substitute these values into the expressionffoand
e — rewrite [1%) as follows: for any < v < 7,
FOwmz) =2 (51) + (1=A = 2 (52

T 1—=X— (/1) " i v T ~y
+&h(£) zGIil/laE)t(,'y) e Zlh(n) = (1 50)h(6o—’7)+50h(50 T)'
T H1 (18)
Our plan is to prove that some of the inequalities (]_41)—hUS if the condition in the statement is fulfilled thén< 0.
can be replaced by equalities, thereby expressing theblesia This concludes the proof. L]

A, p1, o as functions ofy, 7. We will rely on the fact that the
function f is concave in its domain, proved in the end of thigo
section.
n .
Note that for allz € Z,, the sum maszih(i)
* i=1 n

Remark. The main part of the proof is estimating the
lution of the following linear program

;Zzh(%) < h(v) z = (zo,zl,.._.,zn) e M(t,7)

where the variables define a probability distribution on
{0,1,...,n}. It is clear from concavity that the maximum
is attained at the point where among all the indices1; at
most one value; is nonzero, and the same applies/toand

and that it equalgi(vy) at the pointz such thatz; = 1 for
i = [yn] andz; = 0 elsewhere. Also note that singe< 7, the
point z is outside the regionZ (t,~) and thus, by concavity,

n ; I3. We have shown that the value of the program is bounded
a:= max zih(—) < h(¥). above by the right-hand side ¢f(18). The following pointesiv
=eA () =5 " this value and is therefore a maximizing point:

Let z; be the point at which this maximum is attained, and let Zo=1— A 2, = A 2i = 0 otherwise
@1 = (\, p1, u2) be the corresponding point for the arguments ' do’ 7 b0’

of f. By construction, the point; satisfies the inequalities of wherei, = ny7 /(8o — 7),i2 = n(do — 7). Since
(14). At the same time, consider the functift) on the line N7

A = u1 = ps. As the variables approach 0 along this line, the Go— =

value f(\, ju1, p12) approached(y). | | |
To summarize, we have found two points, and z, — this shows that the worst-case allocation of errors to eesti

(0,0,0) that are located on different sides of the hyperplang1 a 9“(9” part of the graph as_signs no edges to verFiceg_that
are neither good nor bad. This also confirms the intuition

7(1 o ﬂ) — v — 1 — g suggested by Lemnia 5.1 that bad.vertices (vertices assumed
T to add errors) should each be assigned the smallest possible

such thatf(z1) > a, f(z2) > a. Invoking concavity of the Number of error edged, —¢. _
function f, we now conclude that there is a feasible paint | h€ next proposition is now immediate.

3

on this hyperplane such thgtz’) > a. Proposition 5.7: The ensemble#’(A, [, m) with long local
Therefore, puus = 7 — 7(1 — /\)_and write codes contains codes that can be decoded using Algorithm 1
to correct all error patterns whose weight is less thaiv,
A =2(E) + (1=2 = B )ner) where
A T Y = max (7). (19)
n &h(T(’}/ —7(1 - /\))) 0<7<60/2
T M1 Estimating the number of correctable errors for the ensem-
where the variables are constrained as follows: for any ble 7#(A,[,m) from Propositiorl 5J7 analytically is difficult
M (t,7) because it involves optimization on (generally, the local
e codes should be used to correct a smaller thd@ proportion
i < TA of errors). We note that in the particular caserof §,/2 the
=) —m >0 (16) proof of Lemmd5.6 can be considerably simplified, although
1 b= 1 the resulting value ofy is not always optimal.
(00 — T)? <y-7(1-X) < — (17) Example 3. Let = 3. Using local codes witli, = 0.05 we

can construct hypergraph codes of rd&e> 0.19. From [1,
Since f1 is a restriction off to a hyperplane, it is still concave.cor. 6], the ensemble-average relative distance is at feast
Now notice thatf1(1,7) = h(v) and that the poinl, 7) does (.0112 and the proportion of errors correctable by Algorithm
not satisfy inequalityl(16) and the left of the inequalit@s)). || is found from [I9) to bey, ~ 0.0035.
Repeating the above argument, we claim that the fungtion  Example 4. Let §, = 0.01 and’ = 10. In this case, we find
(I3) can be further restricted to the intersection of the@a from [1, Cor. 6] the value of the relative distange= 0.00599.
T(1=X) = p1 @and(do —7)(u1/7) = v—7(1—A). Altogether The code rate satisfigs > 0.14. Performing the computations
this gives: in (I9) and LemmaX’l6 we find the estimate of the proportion

A=1—7/bp, p1 =~7/d. of correctable errors to bgy ~ 0.002198.
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Proof that f (A, 11, u2) is concave. First we prove that the [8] M. Lentmaier and K. Sh. Zigangiro®n generalized low-density parity-

function check codes based on Hamming component codes, IEEE Communications
Y=y Letters3 (1999), no. 8, 248-250.
¢($a y) = (1 - f)h( 1— x) [9] A. Nilli, “On the second eigenvalue of a grapiDiscrete Math., vol. 91,

no. 2, 207-210, 1991.
is concave (not necessar”y in the strict sense)Of@I z,y < [10] M. Sipser and D. A. Spielman, “Expander codd&EE Trans. Inform.

10 1 For that. let te its H . Theory, vol. 42, no. 6, 1710-1722, 1996.
U<y —y < l—w Fortnat let us compute its ess"aqll] X. Tang and R. Koetter, “Performance of iterative algat decoding

matrix: of codes defined on graphs: An initial investigation,” Pr@e07 IEEE
I 1 Information Theory Workshop, Lake Tahoe, CA, Sept. 2-6,72Q8p.
1 (T20—yF=D  5=p+a1 254-259. , _
= ﬁ 1 1—g [12] M. Tanner, “A recursive approach to low-complexity esd | EEE Trans.
n Ty — =9 —ytz—1) Inform. Theory, vol. 27, no. 5, pp. 1710-1722, 1981.
) [13] G. Zémor, “On expander codedEEE Trans. Inform. Theory, vol. 47,
The eigenvalues off are no. 2, 835-837, 2001.
[14] V. V. Zyablov, R. Johannesson, and M. Lon€ar, “Low-qaexity error
(v —y)?+ (1 —x)? <0 correction of Hamming-code-based LDPC codé&bl. Inform. Trans,,
— — 1 ) vol. 45, no. 2, pp. 95-109, 2009.
(1 I) (7 y) (7 Y (1 x)) [15] V. V. Zyablov and M. S. Pinsker, “Estimation of the erwmorrecting

soH <0, and S0¢ is concave. Next observe that the function complexity of Gallager low-density code®tobl. Inform. Trans., vol. 11,

no. 1, pp. 18-28, 1975.
K1 Y M1 — M2
(-2 =5 (ul/T))
can be obtained from by a linear change of variables

0,

T=A+ /T, Y=+ p2

and therefore is also concave. Finally, the functiah$u, /\)
and (u1/7)h(u2t/p1) are also concave, and thus so is the
function f(\, 1, 12).

VI. CONCLUSION

We have estimated the proportion of errors correctable by
codes from ensembles defined by randbipartite graphs,
[ > 2. In contrast to the case of expander codes [10]] [13],
[2], [4], [1] our calculations cover the case of local codes
of arbitrary given length and distance, including smallues
of the distance. The behavior of code ensembles considered
here was examined from a different perspective_in [1] where
we computed estimates of the expected distance and weight
distribution of these codes. The pager [1] and the preserk wo
together provide answers to the set of basic questionsdiegar
random networks of short linear binary codes and extend our
perspective of concatenated code constructions to theafase
sparse regular graphs.
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