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Image Interpolation by Two-Dimensional
Parametric Cubic Convolution

Jiazheng Shi and Stephen E. Reichenbach

Abstract—Cubic convolution is a popular method for image in-
terpolation. Traditionally, the piecewise-cubic kernel has been de-
rived in one dimension with one parameter and applied to two-di-
mensional (2-D) images in a separable fashion. However, images
typically are statistically nonseparable, which motivates this inves-
tigation of nonseparable cubic convolution. This paper derives two
new nonseparable, 2-D cubic-convolution kernels. The first kernel,
with three parameters (designated 2D-3PCC), is the most general
2-D, piecewise-cubic interpolator defined on [ 2 2] [ 2 2]
with constraints for biaxial symmetry, diagonal (or 90 rotational)
symmetry, continuity, and smoothness. The second kernel, with
five parameters (designated 2D-5PCC), relaxes the constraint of
diagonal symmetry, based on the observation that many images
have rotationally asymmetric statistical properties. This paper also
develops a closed-form solution for determining the optimal pa-
rameter values for parametric cubic-convolution kernels with re-
spect to ensembles of scenes characterized by autocorrelation (or
power spectrum). This solution establishes a practical foundation
for adaptive interpolation based on local autocorrelation estimates.
Quantitative fidelity analyses and visual experiments indicate that
these new methods can outperform several popular interpolation
methods. An analysis of the error budgets for reconstruction error
associated with blurring and aliasing illustrates that the methods
improve interpolation fidelity for images with aliased components.
For images with little or no aliasing, the methods yield results sim-
ilar to other popular methods. Both 2D-3PCC and 2D-5PCC are
low-order polynomials with small spatial support and so are easy
to implement and efficient to apply.

Index Terms—Cubic convolution, image processing, interpola-
tion, reconstruction, resampling.

I. INTRODUCTION

IMAGE interpolation is the process of defining a spatially
continuous image from a set of discrete samples. Inter-

polation is fundamental to many digital image processing
applications, particularly in operations requiring image resam-
pling, such as scaling, registration, warping, and correction for
geometric distortions. Interpolation commonly is implemented
by convolving an image with a small kernel for the weighting
function. Popular methods of interpolation by convolution
include nearest neighbor interpolation, bi-linear interpolation,
cubic B-spline interpolation, and piecewise-cubic convolution
[1], [2].
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Cubic convolution has been used for image interpolation
since the 1970s and provides a good compromise between com-
putational complexity and interpolation accuracy [3]. Cubic
convolution can be parameterized and then optimized either for
general performance characteristics or for optimal fidelity over
an image ensemble with specific characteristics [4], [5].

Traditionally, the cubic kernel has been derived in one dimen-
sion with one parameter and applied to two-dimensional (2-D)
images in a separable fashion. However, images typically are
statistically nonseparable. Reichenbach and Geng [6] derived a
nonseparable, 2-D cubic kernel with two parameters (designated
2D-2PCC) and showed that it yielded better image interpolation
accuracy than separable cubic convolution.

This paper relaxes constraints imposed on 2D-2PCC to de-
velop two more-general, 2-D cubic-convolution kernels. The
first kernel, with three parameters (designated 2D-3PCC), re-
laxes constraints on the kernel value at joints between pieces of
the 2D-2PCC kernel [7]. The 2D-3PCC is the most general 2-D,
piecewise-cubic interpolator defined on with
constraints for biaxial symmetry, diagonal symmetry (which,
with biaxial symmetry, provides 90 rotational symmetry), con-
tinuity, and smoothness. The second kernel, with five parame-
ters (designated 2D-5PCC), relaxes the constraint of diagonal
symmetry, based on the observation that many images have ro-
tationally asymmetric statistical properties.

This paper also develops a closed-form solution for de-
termining the optimal parameter values for 2D-3PCC and
2D-5PCC as a function of the scene autocorrelation (or power
spectrum). The method for this closed-form solution also can
be applied to variants of 2-D cubic convolution derived for
other constraints. Experimental results, presented in the paper,
illustrate two approaches for estimating the scene autocorrela-
tion. The first approach uses parametric mathematical models
to approximate the scene autocorrelation function. The second
approach uses the observed autocorrelation function from a
high-resolution image of a similar scene. For the first approach,
the paper formulates a computationally efficient method based
on a flexible, nonseparable scene model. This method can be
implemented locally and when utilized with the closed-form
solution for determining the optimal parameters supports fast,
adaptive processing.

Quantitative fidelity analyses and visual experiments indi-
cate that 2D-3PCC outperforms several popular interpolation
methods for real scenes whose autocorrelation is relatively
symmetric with 90 rotation and that 2D-5PCC is a superior
interpolator for scenes whose autocorrelation is rotationally
asymmetric. In theoretical and experimental analyses, both
2D-3PCC and 2D-5PCC better balance error budget tradeoffs
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involving scene signal and aliasing and more closely resemble
the unconstrained least-squares interpolator. In these analyses,
2D-5PCC is especially effective compared to separable methods
for interpolating off-axes spatial frequencies. Both 2D-3PCC
and 2D-5PCC are low-order polynomials with small spatial
support and so are easy to implement and efficient to apply in
the spatial domain.

The rest of this paper is organized as follows. Section II
formulates the 2D-3PCC and 2D-5PCC interpolators subject to
their constraints. Section III develops the closed-form solutions
for determining the optimal parameters and illustrates parame-
terization based on Markov random field (MRF) scene models.
Section IV analyzes quantitative performance and computa-
tional complexity. Section V demonstrates the visual quality,
as well as the quantitative fidelity, for interpolation of example
scenes. Section VI draws conclusions and describes ongoing
and potential research on nonseparable cubic convolution.

II. FORMULATIONS OF PARAMETRIC CUBIC CONVOLUTION

This section outlines the derivation of equations that define
2D-3PCC and 2D-5PCC for image interpolation. Image inter-
polation attempts to recreate a continuous scene from discrete
samples. Let , , be a continuous 2-D scene and

, , be an image consisting of uni-
formly spaced discrete samples from the scene (for notational
convenience, the spatial coordinates are normalized in units of
the sampling intervals without loss of generality). Interpolation
of the original scene typically is implemented by convolving the
image with a continuous 2-D kernel ,

(1)

(in practice, the spatial extent of the image is finite, but that issue
is not significant for the following derivations). In the Fourier
frequency domain

(2)

where , , and are the Fourier transforms of
the interpolated result , interpolation kernel , and

the scene respectively. Many popular image interpola-
tion methods are defined in this way, including nearest-neighbor
interpolation, bi-linear interpolation, cubic-spline interpolation,
and cubic convolution [1], [2], [8].

The piecewise cubic-polynomial kernel over the region
has 16 unit-sized pieces, each piece with 16

parameters, e.g.,

(3)

which allows degrees of freedom or parameters
(the parameter subscripts indicate the powers for each spatial
variable). The large number of parameters can be reduced by
constraining the kernel. In Section II-A, 2D-3PCC is formu-
lated subject to traditional constraints for image interpolation:
symmetry, continuity, and smoothness [5], [9], [10]. Sec-
tion II-B relaxes the constraint of 90 rotational symmetry to
generate 2D-5PCC. The traditional interpolation constraints
for continuity, smoothness, and symmetry yield 2D-3PCC
and 2D-5PCC, but cubic convolution could be formulated in
a similar manner for other constraints, e.g., for special scene
characteristics, for variable constraints for adaptive filtering
[11], or for different numbers of parameters.

A. Formulation of 2D-3PCC

2D-3PCC is the most general 2-D piecewise-cubic kernel
over the region with constraints for flat-field
interpolation, biaxial and diagonal symmetry, continuity,
and smoothness. This formulation eliminates constraints on
2D-2PCC [6]

(4)

which is not required for interpolation. With these constraints,
the 2-D cubic-convolution kernel can be reduced to a function
of only three coefficients [7]. The four pieces in
the first quadrant (solved using symbolic mathematics software,
e.g., Maple or Mathematica) are shown in (5), at the bottom
of the page, with the pieces in other quadrants defined by bi-
axial symmetry: and .
2D-3PCC also can be formulated in terms of the one parameter

(5)
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Fig. 1. The 2D-3PCC component f in (8).

of the traditional separable filter [4], [5], the second param-
eter derived in [6], and an additional parameter with the
following substitutions:

(6)

With these parameters, 2D-3PCC can be rewritten as

(7)

where and are the two component functions of 2D-2PCC
[6] and is an additional nonseparable function parameterized
by , shown in the equation at the bottom of the page. The
term, pictured in Fig. 1, is well suited to interpolate nonsepa-
rable, diagonal features.

B. Formulation of 2D-5PCC

The 2D-5PCC is derived with constraints for biaxial sym-
metry, continuity, smoothness, and flat-field interpolation. It is,
however, not subject to the constraint of diagonal (or 90 rota-
tional) symmetry. By removing the constraint of diagonal sym-
metry, cubic convolution can be tailored for images that have
more detail along one axis than the other. With these constraints,
the nonseparable, biaxial symmetric, 2D-5PCC kernel can be re-
duced to

(8)

where are the five parameters and the
functions are defined in Fig. 2.
The component functions and are the same as their
counterparts in 2D-3PCC [defined in (5)]; and are
split from the component for parameter in 2D-3PCC; and

and are split from the component for parameter
in 2D-3PCC. Fig. 3 shows the spatial-domain point spread
functions of 2D-5PCC components. Components and

are well suited to enhance details along the axis and
and are well suited to enhance details along

the axis.

III. PARAMETERIZATION

A. Closed-Form Solutions for Optimal Parameter Values

This section develops closed-form solutions for the optimal
parameters of 2D-3PCC and 2D-5PCC, based on an analysis of
the mean square error (MSE). By Rayleigh’s theorem [12], the
MSE for interpolation can be analyzed in either the spatial or
frequency domain

(9)

The optimal parameters minimize expected MSE
for an ensemble of scenes, given the autocorrelation (or power
spectrum). If co-aliased components of the sampled scene are
uncorrelated [13], the expected MSE can be expressed in terms
of the scene power spectrum and the interpolation transfer func-
tion

(10)

where is the scene power spectrum
and

(11)

is the image power spectrum (with aliasing of the scene compo-
nents). For convenience and without loss of generality, scenes
are normalized so that the mean and variance are zero and one
respectively.

For 2D-5PCC, the expected MSE is a quadratic function of
the parameters, , so the optimal parameter
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Fig. 2. Component equations for 2D-5PCC in (8).

values can be derived by substituting the Fourier transform of
the kernel from (8) into (10), computing the partial derivatives of
the expected MSE with respect to the parameters, and solving
for simultaneous equality with zero

(12)

This yields five equations for the optimal parameter values

(13)

for , , , , and .
With matrix notation, (13) can be written as

(14)

where

(15)

(16)

where “ ” denotes convolution and is the image autocorre-
lation

(17)

where is the impulse function. The equivalences of both
(15) and (16) are guaranteed by the Plancherel-Parseval iden-
tity [14]. Then, the optimal parameter values can be solved ef-
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Fig. 3. The 2D-5PCC components in the spatial domain. (a) f (x; y); (b) f (x; y); (c) f (x; y); (d) f (x; y); (e) f (x; y); and (f) f (x; y).

ficiently in either the spatial domain or the Fourier frequency
domain as

(18)

if the symmetric matrix is well-conditioned ( is well-con-
ditioned except as the power spectrum approaches an impulse
function, in which case any unitary, flat-field interpolator works
equally well).

Computing the optimal parameter values requires the scene
autocorrelation only in the region (because
the cubic convolution kernel is zero outside that support) and the
spatial support of the image autocorrelation only on the grid
points in the region [because
and are zero outside that support]. This
dependency on local autocorrelation facilitates the development
of adaptive processing.

Using the same approach, the closed-form solution for the
optimal parameters for 2D-3PCC is

(19)

where

(20)

for

(21)

If desired, the optimal values of parameters , , and can
be derived by substitution. From (6)

(22)

The approach described in this section yields a closed-form
solution for the optimal parameters for 2-D cubic convolution
subject to two different sets of constraints—one set of con-
straints for 2D-3PCC and one set of constraints for 2D-5PCC.
The same approach can be used to derive the optimal parame-
ters for 2-D cubic convolution formulated for other constraints.

B. Parameterization Examples for Markov Random
Field Models

As described in Section III-A, the optimal parameter values
depend upon the scene autocorrelation function. One approach
for approximating the scene autocorrelation function is to use a
mathematical model. Another approach is to use the actual au-
tocorrelation function from one or more high-resolution images
of a similar scene(s). The MRF scene model is used widely in
image and vision computing [15] and has a nonseparable au-
tocorrelation function (and power spectrum). Appendix A de-
scribes two autocorrelation models based on MRF scenes. One
model, for an isotropic MRF, is a radially symmetric autocorre-
lation function with one parameter: mean spatial detail (MSD)

, which can be interpreted as the average distance between de-
tails in the scene (not the image) along a line in any direction,
measured in pixel units (the interval between samples in the
image). A scene with larger spatial features has a larger MSD.
The second autocorrelation model, based an isotropic MRF sub-
ject to affine transformation (without translation), is not radi-
ally symmetric and so allows directionally dependent levels of
detail. The analyses of this section consider MRF scenes in a
512 512 array down-sampled to 128 128 pixels which are
to be interpolated back to 512 512. The optimal parameters
are computed from power spectra (or autocorrelation functions)
in 512 512 arrays with frequencies to 2 cycles/pixel.
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(a) (b)

Fig. 4. Optimal parameter values for: (a) 2D-3PCC for an isotropic MRF as a function of MSD d and (b) 2D-5PCC for a rotationally asymmetric MRF as a
function of MSD along-y d (with MSD along-x d = 4 pixels and no rotation d = 0).

Based on the isotropic MRF scene model with the autocorre-
lation formulated by (27), Fig. 4(a) graphs the optimal param-
eter values for 2D-3PCC as a function of the MSD (because
the autocorrelation model is rotationally symmetric 2D-5PCC
is identical to 2D-3PCC). For pixel, the optimal , ,
and are 5.83, 8.06, and 2.04, respectively. As the MSD
increases, both and decrease slightly and increases
slightly. For MSD pixels, the optimal values are 5.35,

7.48, and 1.92. For the isotropic MRF scene model, the values
of the 2D-3PCC parameters are relatively independent of the
MSD of the scene, especially for pixels. This means
that 2D-3PCC is robust for a mismatch between the MSD pre-
sumed in parameterizing the kernel and the MSD of the actual
scene.

Fig. 4(b) graphs the optimal parameter values for 2D-5PCC,
based on the rotationally asymmetric autocorrelation model in
(28), with (i.e., MSD along- is four pixels),
(i.e., no rotation), and the optimal parameter values shown as
functions of the MSD along- . For at four pixels,
2D-5PCC is identical to 2D-3PCC, so the pairs of parameters are
equal, and . Also, parameter reaches
its minimum value where . For ,
and . In this range, as the MSD along- increases,
the differences between the two pairs of parameters narrow. For

, and . In this range, as the MSD
along- increases, the differences between the two pairs of pa-
rameters increase. This result can be understood by observing
that and (as well as and ) emphasize details
along different directions. Because the parameter values change
relatively slowly with directional MSD, 2D-5PCC is relatively
robust for a small mismatch between the directional MSD pre-
sumed in parameterizing the kernel and the directional MSD of
the actual scene.

IV. PERFORMANCE ANALYSES

A. MSE Performance

This section analyzes interpolation quality measured by the
fidelity [16] of the interpolated image [in (1)] to the

scene . Fidelity is a normalized measure based on the
MSE

(23)

The greatest fidelity possible is 1.0, when the MSE is 0. In this
section, the expected MSE is computed from (10) based on MRF
scenes in a 512 512 array, down-sampled to 128 128 pixel
images which are interpolated back to 512 512 and compared
to the original scene.

Fig. 5(a) graphs fidelity as a function of the MSD for
the isotropic MRF scene model [with the autocorrelation for-
mulated in (27)] (for this scene model, 2D-5PCC is identical
to 2D-3PCC). Fidelity is shown for interpolation by the un-
constrained least-squares interpolator, 2D-3PCC, 2D-2PCC,
separable bicubic convolution with , cubic B-spline
interpolation [1], [17], and cubic (o-Moms) interpolation [10],
[18]. As expected, the unconstrained least-squares interpolator
(a Wiener or kriging filter without constraints on support or
resolution) has the best fidelity, but this filter has unconstrained
spatial support and unconstrained frequency resolution and so
requires computationally expensive Fourier-domain processing.
Of the constrained interpolation methods, 2D-3PCC has the
best fidelity across the wide range of scales for the isotropic
MRF scene model. For images with aliasing, 2D-3PCC per-
forms especially well compared to the other constrained
interpolation methods. For example, with MSD equal to four
pixels, 2D-3PCC has fidelity of 0.902, compared to 0.890 for
cubic o-Moms interpolation and 0.895 for cubic B-spline in-
terpolation. For images with little high-frequency content, and
so with little aliasing, all of the interpolation methods perform
well and yield similar fidelity. For example, with MSD equal
to 31 pixels [nearly one-quarter of the image size and beyond
the range of Fig. 5(a)], all of the interpolation methods have
fidelity of 0.993.

Fig. 5(b) graphs the fidelity as a function of the MSD along-
for the rotationally asymmetric MRF scene model with the

autocorrelation formulated in (28), (i.e., MSD along
is four pixels), and . Fidelity is shown only for interpola-
tion by the unconstrained least-squares interpolator, 2D-5PCC,
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(a) (b)

Fig. 5. Interpolation fidelity for: (a) 2D-3PCC for an isotropic MRF as a function of MSD d and (b) 2D-5PCC for a rotationally asymmetric MRF as a function
of MSD along-y d (with MSD along-x d = 4 pixels and no rotation d = 0).

Fig. 6. Two-dimensional slices of the error budget components e (u; v) and e (u; v) and the total error budget for the isotropic MRF scene model with MSD d =
4 pixels. The top row is for horizontal slices with v = 0 and the bottom row is for diagonal slices with u = v. (a) e (u; 0); (b) e (u;0); (c) e (u;0)+ e (u;0);
(d) e (u;u); (e) e (u; u); and (f) e (u;u) + e (u;u).

and 2D-3PCC, to illustrate the value of the additional parame-
ters for scenes with rotationally asymmetric autocorrelation (or
power spectrum). As the MSD along- diverges from the
MSD along- , the superiority of 2D-5PCC over 2D-3PCC be-
comes more significant.

The superior performance of 2D-3PCC and 2D-5PCC can be
analyzed by evaluating the expected mean square error (MSE)
in (10) as an error budget equation [19]

(24)

where

(25)

accounts for the error caused by alteration of the scene signal
components at frequencies where is not equal to 1 and

(26)

accounts for the error caused by interpolation of the aliased
components. The expected mean square error (MSE) of in-
terpolation is determined by not only the interpolator ,
but also the scene power spectrum .

Fig. 6 plots slices of the error budget components
and as well as the total error budget for the isotropic
MRF scene model with MSD pixels. In the baseband
( , , the Nyquist limit), cubic B-spline and cubic
o-Moms interpolation have flatter frequency responses than
cubic convolution, and so have smaller signal error but
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larger aliasing error . The sinc function causes no blur-
ring in the baseband and so has no signal error, but does nothing
to attenuate aliased components and so has large aliasing error.
At frequencies beyond the Nyquist limit, cubic convolution has
smaller signal error , but larger aliasing error .
Beyond the Nyquist limit, the sinc function has zero aliasing
error, but removes all signal. The total error budget beyond the
Nyquist frequency is nearly the same for all methods except
the sinc, but in the baseband cubic convolution has the smallest
total error of all of the constrained methods and performs nearly
as well as the unconstrained least-squares interpolator across
the spectrum. The error budget for 2D-3PCC is nearly the same
as for separable bicubic convolution at along-axes frequencies
[Fig. 6(a)–(c)], but 2D-3PCC outperforms separable bicubic
convolution at off-axes frequencies [Fig. 6(d)–(f)].

The optimal parameters for 2D-3PCC balance the error
budget tradeoff between signal error and aliasing error. In
this example, cubic convolution performs better than cubic
B-spline and cubic o-Moms interpolation because cubic con-
volution deals better with aliasing. Most images have aliased
components (including all images with edges), so accounting
for aliasing in interpolation is important. Thevenaz et al. [10,
pp. 748–749] noted: “[T]he class of band-limited functions
represents but a tiny fraction of all possible functions; more-
over, they often give a distorted view of the physical reality in
an imaging context Further, there exist obviously no way at
all to perform any kind of antialiasing filter on physical matter
(before sampling).” For example, it would be undesirable to
prefilter elevation data obtained on a 2-D grid before interpola-
tion, even if aliasing is present. As MSD increases, aliasing of
frequency components beyond the Nyquist limit becomes less
significant, and, as illustrated in Fig. 5(a), interpolation can be
performed with greater fidelity and all of the interpolators have
similar performance.

B. Computational Complexity

The computational cost of parametric cubic convolution con-
sists of parameter optimization and nonseparable convolution.
Parameter optimization is required only once for an ensemble
or statistical class of images (or subimages for adaptive pro-
cessing) and so typically can be performed off-line in time-sen-
sitive applications. Furthermore, as seen in Fig. 4, 2-D cubic
convolution is robust with respect to the autocorrelation func-
tion, so the same parameters can be used over a range of fairly
similar images. Computing an autocorrelation function typically
is performed using Fourier methods with computational com-
plexity , where is the number of pixels. The
approach described in Appendix B for fitting a mathematical
model to the image autocorrelation function requires evaluation
of the three 7 7 matrices in (31). Given the scene autocorrela-
tion function, computing the optimal parameters in (18) requires
the computation and inversion of a 3 3 array for 2D-3PCC or
a 5 5 array for 2D-5PCC.

Cubic convolution requires determination of the weights for
each pixel and application of the weights to the pixel values.
For some interpolation tasks, such as zooming by an integer
factor, the kernel weights can be precomputed. The nonsepa-
rable 2-D cubic kernel can be computed for 16 pixel locations

in the support with 204 floating-point multi-
plies and adds (MADDs). For 2 2 zoom, three such sets of
kernel values are required (the fourth set, at the sample points,
is the identity kernel). Then, for each output value, applying
the kernel to the 16 pixels in the support requires 16 MADDs,
which is the minimum computation required for any kernel with
support that encompasses 16 pixels. For some other interpola-
tion tasks, it may be necessary to compute the kernel weights
for each output value. In such cases, evaluating and applying
a nonseparable cubic (220 MADDs) is more costly than evalu-
ating and applying a separable bicubic convolution (which re-
quires 44 MADDs) or cubic B-spline interpolation (which also
requires 44 MADDs if the computation for prefiltering is dis-
counted [20]). It is possible to precompute the kernel on a dense
grid and use table lookup to obtain the weights [21], but there is
a loss in interpolation fidelity. Two-dimensional cubic convolu-
tion is amenable to parallelization, using either data partitioning
or pipelining.

V. EXPERIMENTAL RESULTS

The MRF scene model facilitates quantitative performance
assessment of interpolation methods. For many image ap-
plications, another important performance measure is the
visual quality produced by interpolation. Using examples of
real images, this section considers visual quality, as well as
quantitative fidelity. Several digital images are used as scenes,
down-sampled at varying densities, interpolated back to the
original size, and compared to the original scenes. The ex-
periments compare 2D-3PCC and 2D-5PCC with 2D-2PCC,
the unconstrained least-squares interpolator, separable bicubic
convolution, cubic B-spline interpolation, and edge-directed
interpolation [22]. The actual scene power spectra are used to
derive the unconstrained least-squares interpolators (which are
applied in the frequency domain) in order to benchmark the
optimal fidelity. The autocorrelations for optimizing the cubic
convolution kernels are estimated (as typically is required in
practice) based on either the MRF scene model (fit to the image
autocorrelation as described in Appendix B) or on similar
“training” images. Separable bicubic convolution and cubic
B-spline interpolation are implemented by MATLAB’s “IN-
TERP2” function. The program for edge-directed interpolation
was downloaded from Prof. Li’s website [23].

A. Scene Autocorrelation From MRF Model

Fig. 7(a) shows an image of the moon from the USC-SIPI
database [24]. This 256 256 scene is down-sampled by factor
3 3 to 85 85 pixels and then interpolated to 255 255 by the
various algorithms. The autocorrelation of this scene is mod-
eled by the asymmetric MRF with , , and

(by fitting the model to the autocorrelation func-
tion of the down-sampled image, as described in Appendix B).
Fig. 8 illustrates: (a) the autocorrelation function of the original
moon scene, (b) the MRF autocorrelation function that is fit to
the autocorrelation function of the down-sampled image, and
(c) the model error. As can be seen, the error from both mod-
eling and fitting is relatively small (less than 5% of the peak).
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Fig. 7. Scenes used in the visual experiments. (a) Moon. (b) Fence1. (c) Fence2.

Fig. 8. Observed autocorrelation function of the moon scene, the MRF model approximation, and their difference. Only the relevant spatial support ([�3; 3]�
[�3; 3] pixels) is graphed. (a) Actual � and (b) MRF � ; (c) MRF � � � .

With this model for the scene autocorrelation, the optimal pa-
rameter values for 2D-3PCC are , ,
and and the optimal parameter values for 2D-5PCC
are , , , ,
and .

The interpolated images are shown in Fig. 9 (the results are
not shown for edge-directed interpolation, because the zoom
factor is not a power-of-two). To limit the boundary effects, the
borders of all the processed images are cleared for visualization
and are not included in the quantitative comparisons. The visual
differences for most of the interpolated results are small, but ar-
tifacts related to aliasing are less evident with the unconstrained
least-squares interpolator, 2D-3PCC, and 2D-5PCC interpola-
tions. Table I lists the fidelity of the various algorithms and
various down-sampling factors (2 2, 3 3, and 4 4) for the
moon scene. As expected, the unconstrained least-squares in-
terpolator has the optimal fidelity. Of the constrained methods,
2D-5PCC has the highest fidelity. If the moon surface scene is
down-sampled and interpolated by a factor of 2 2, there is less
aliasing and the interpolation methods perform more similarly.
However, if the down-sampling factor is 4 4, there is more
aliasing and the benefit of parametric cubic convolution is more
significant.

Table I also lists results for the same experimental procedure
applied to six other scenes from the USC-SIPI database [24]:
peppers, stream+bridge, tank, house+car, Lena, and man. All of
these scenes are 512 512, except man, which is 1024 1024.
In these also, the MRF model fits well and 2D-3PCC and

2D-5PCC perform well compared to other constrained fil-
ters. Cubic B-spline and separable bicubic convolution have
slightly higher fidelity only for two images at 2 2 resampling
(house+car and Lena) and for one image at 3 3 resampling
(Lena). Edge-directed interpolation has slightly higher fidelity
only for two images at 4 4 resampling (stream+bridge
and tank). The slightly better performance of the separable
cubic spline in the two images at 2 2 resampling evidences
that the fitted autocorrelation model was suboptimal. Cubic
B-spline interpolation performs relatively well only for lower
resampling factors for which there is less aliasing and fidelity
for all methods is very high (fidelity greater than 0.975). Con-
versely, edge-directed interpolation performs relatively well
only for higher resampling factors where there is more aliasing
associated with edges. Edge-directed interpolation is a more
time-consuming adaptive filter and supports only power-of-two
resampling factors. Two-dimensional cubic convolution per-
forms relatively well across the various images and resampling
factors—achieving the best fidelity in 15 of the 27 cases and
identical fidelity (to three digits) in seven of the 27 cases. These
results recommend 2-D cubic convolution for interpolating a
wide range of images, if the autocorrelation function can be ap-
proximated and extra computation can be used (e.g., compared
to separable bicubic convolution). The advantage of 2-D cubic
convolution is greater for images with relatively finer details.

Parametric 2-D cubic convolution is an adaptive method and,
in these experiments, is adapted on an image-by-image basis.
Parametric 2-D cubic convolution could be used for adaptive
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Fig. 9. The 256� 256 moon surface scene is down-sampled to 85� 85 and interpolated back to 255� 255 by various algorithms. (a) 2D-2PCC; (b) 2D-3PCC;
(c) 2D-5PCC; (d) separable bicubic; (e) cubic B-spline; and (f) optimal least-squares.

processing within an image by varying parameters based on
local characterizations of the autocorrelation function.

B. Scene Autocorrelation From Similar Images

Fig. 7(b) and (c) presents two fence scenes acquired locally
[the rectangle in Fig. 7(c) highlights a region to be expanded for
visualization of the results]. Each 640 480 scene is down-sam-
pled by factor 2 2 to 320 240 pixels and then interpolated to
640 480 by the various algorithms. In this experiment, the au-
tocorrelation function of the 640 480 fence1 scene is used as
the estimate of the autocorrelation of fence2 (and vice versa).
Then, the optimal parameter values for 2D-3PCC are

, , and and the optimal pa-
rameter values for 2D-5PCC are , ,

, , and .
The interpolated images for fence2 are shown in Fig. 10.

Again, the borders of all the processed images are cleared and
excluded from the quantitative comparisons. Smaller regions
of several of the images are presented in Fig. 11 to more clearly
show differences. Visually, 2D-5PCC outperforms the other
constrained methods. Table I lists the fidelity of the various
algorithms and various down-sampling factors. Again, the un-
constrained least-squares interpolator is optimal, but 2D-5PCC
has the highest fidelity of the constrained interpolators. Table I

also lists results for the same experimental procedure applied
to fence1, using the scene autocorrelation from fence2, and
for various down-sampling and interpolation factors. Again,
2D-5PCC outperforms the other constrained interpolation
methods, except for edge-directed interpolation applied to the
fence2 image resampled at 4 4. This example illustrates that
the scene autocorrelation can be estimated by methods other
than the MRF model described in the Appendices.

Table II lists the p-values of paired Student’s t-tests for the
fidelity in Table I. Each p-value is the probability that two
interpolation methods have the same statistical mean fidelity
for the same resampling density. The confidence level for
performance differences between the optimal unconstrained
least-squares interpolator and all other methods is high for each
of the resampling factors. The confidence level for performance
differences between 2D-5PCC and bicubic convolution is
relatively good for 2 2 resampling (p-value 0.139), better for
3 3 resampling (p-value 0.059), and high for 4 4 resampling
(p-value 0.030). The confidence levels for the differences be-
tween 2D-5PCC and cubic B-spline interpolation are uniformly
higher than for bicubic convolution. The confidence levels for
differences between 2D-5PCC and edge-directed interpolation
are high for 2 2 resampling (where 2D-5PCC performs rela-
tively well and edge-directed interpolation performs relatively
poorly) and low for 4 4 resampling (where both methods
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TABLE I
FIDELITY OF VARIOUS ALGORITHMS AND DOWN-SAMPLING FACTORS FOR REAL SCENES. THE MRF SCENE PARAMETERS d , d , AND d ARE ESTIMATED FROM

THE DOWN-SAMPLED IMAGES. A: RESAMPLING DENSITY 2 � 2. B: RESAMPLING DENSITY 3 � 3. C: RESAMPLING DENSITY 4 � 4

perform relatively well). These results support the conclusion
that there are performance differences for 2D-5PCC, especially
for interpolation of finer details.

VI. CONCLUSION

Separable bicubic convolution is one of the most popular
methods for image interpolation, but it is based on the assump-
tion of separability, which typically is not true. This paper ex-
amines the theoretical and practical issues of nonseparable, 2-D
cubic convolution.

This paper develops two nonseparable, 2-D cubic-convolu-
tion kernels. The first kernel, 2D-3PCC, has three parameters
and is the most general 2-D, piecewise-cubic interpolator de-
fined on with constraints for biaxial symmetry,

diagonal (or 90 rotational) symmetry, continuity, and smooth-
ness. The second kernel, 2D-5PCC, relaxes the diagonal-sym-
metry constraint on 2D-3PCC and thus is more general. The
roadmap of relaxing constraints could be used to develop other
formulations of cubic convolution.

This paper also develops a closed-form solution for the op-
timal parameters that minimize the expected MSE over an en-
semble of scenes characterized by autocorrelation. The spatial-
domain formulation for optimal parameterization is computa-
tionally efficient and establishes the basis for locally adaptive
filters. The closed-form solution supports any approximation of
scene autocorrelation and experimental results show that param-
eterization is robust with respect to approximation errors. In par-
ticular, this paper presents a MRF model with affine transforma-
tion to model scene autocorrelation and derives a closed-form
solution to fit the model. Experimental results show that, for a
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Fig. 10. The 640 � 480 fence2 scene is down-sampled to 320 � 240 and interpolated back to 640 � 480 by various algorithms. (a) Separable bicubic;
(b) 2D-3PCC; (c) 2D-5PCC; (d) cubic B-spline; (e) edge-directed; (f) optimal least-squares.

Fig. 11. Images (a)–(d) are cropped, respectively, from Figs 7(c) and 10(c)–(e). (a) Portion of fence2; (b) 2D-5PCC; (c) cubic B-spline; and (d) edge-directed.

range of scenes, the model can be fit to closely estimate the scene
autocorrelation using only the autocorrelation of a down-sam-
pled image. The closed-form solution for the model fit estab-
lishes the basis for locally adaptive characterization of the scene
autocorrelation.

Quantitative fidelity analyses and visual experiments indi-
cate that 2D-3PCC and 2D-5PCC outperform several popular
interpolation methods (including a spatially adaptive interpo-
lator) for real scenes. In theoretical and experimental analyses,
both 2D-3PCC and 2D-5PCC better balance error budget
tradeoffs involving scene signal and aliasing and more closely
resemble the unconstrained least-squares interpolator over a
range of scenes with different spatial content. In these analyses,
2D-5PCC is especially effective compared to separable methods
for interpolating off-axes spatial frequencies. Both 2D-3PCC
and 2D-5PCC are low-order polynomials with small spatial
support and so are easy to implement and efficient to apply in

the spatial domain, but have higher computational cost than
separable kernels.

Our ongoing research is extending nonseparable cubic con-
volution to image restoration and exploiting other random field
models. The 2D-3PCC and 2D-5PCC kernels are derived sub-
ject to several constraints related to interpolation: the kernel
value at (0,0) is constrained to one and the values at the other
knots are constrained to zero. Relaxing these constraints allows
the kernels to correct for acquisition artifacts and perform image
restoration [25], [26]. Parametric cubic convolution can be op-
timized for any random field model. The geostatistical commu-
nity uses random fields widely. It is recognized that properties
of optimal interpolation kernels are determined mainly by the
local behavior of the semivariogram of a presumed random field
[27]. Both 2D-3PCC and 2D-5PCC are designed to exploit local
autocorrelation and so are candidates for efficient interpolation
with respect to random fields.
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TABLE II
P-VALUES OF PAIRED STUDENT’S T-TESTS FOR THE FIDELITY IN TABLE I.

A: ESAMPLING DENSITY 2 � 2. B: RESAMPLING DENSITY 3 � 3.
C: RESAMPLING DENSITY 4 � 4

APPENDIX

A. Markov Random Field

The autocorrelation function of an isotropic Markov
random field (MRF) is an appropriate model for many ensem-
bles of both images and geo-statistical quantities [28]

(27)

where and is the mean spatial detail (MSD).
The MSD can be interpreted as the average size of details in the
scene along a line in any direction. Scenes with larger objects
(relative to the sampling interval) have larger MSD. 2D-3PCC
is appropriate for this model because the model is nonseparable
and has biaxial and diagonal symmetry.

A more general autocorrelation model without rotational
symmetry can be generated by affine transformation (without
translation) of the isotropic MRF, which introduces three
parameters

(28)
For , and can be understood as the mean spatial de-
tails along the axis and axis, respectively. The parameter
allows rotational orientation. 2D-5PCC is appropriate for this

model because the model is rotationally asymmetric. Transla-
tional parameters could be added to create a nonhomogeneous
(or nonstationary) model for adaptive processing.

B. Autocorrelation Estimation Based on MRF

As detailed in Section III-A, the optimal parameters for cubic
convolution can be determined for any given scene autocorrela-
tion function . However, the scene autocorrelation function
typically is unknown and must be estimated. One approach for
estimating the scene autocorrelation function is to compute the
autocorrelation function from one or more high-resolution im-
ages of a similar scene(s). Another approach is to fit a mathe-
matical scene model to the autocorrelation function observed in
the image. This section describes fitting the MRF scene model
presented in Appendix A. A similar approach could be used for
any scene model.

The scene autocorrelation function is a continuous function
that can be observed in the image only at discrete intervals on
the sampling grid. The MRF autocorrelation function in (28) can
be fit to the observed image autocorrelation function by iterative
numerical methods, but a closed-form fit is possible if the model
is linearized in terms of its three parameters. First, (28) can be
rewritten as

(29)

where , , and . Given the observed
autocorrelation function of the image , the expected mean
square error (MSE) of the linearized fit at the pixel intervals is

(30)

Computing the partial derivatives of with respect to , , and
, and solving for the simultaneous equality with zero yields a

model fit

(31)

The equations in (31) can be computed globally for a global
filter or locally for an adaptive filter.
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