
1

VerifyML: Obliviously Checking Model Fairness
Resilient to Malicious Model Holder

Guowen Xu, Xingshuo Han, Gelei Deng, Tianwei Zhang, Shengmin Xu, Jianting Ning, Anjia Yang,
Hongwei Li

Abstract—In this paper, we present VerifyML, the first secure inference framework to check the fairness degree of a given Machine
learning (ML) model. VerifyML is generic and is immune to any obstruction by the malicious model holder during the verification process.
We rely on secure two-party computation (2PC) technology to implement VerifyML, and carefully customize a series of optimization
methods to boost its performance for both linear and nonlinear layer execution. Specifically, (1) VerifyML allows the vast majority of the
overhead to be performed offline, thus meeting the low latency requirements for online inference. (2) To speed up offline preparation,
we first design novel homomorphic parallel computing techniques to accelerate the authenticated Beaver’s triple (including matrix-vector
and convolution triples) generation procedure. It achieves up to 1.7× computation speedup and gains at least 10.7× less communication
overhead compared to state-of-the-art work. (3) We also present a new cryptographic protocol to evaluate the activation functions of
non-linear layers, which is 4×–42× faster and has > 48× lesser communication than existing 2PC protocol against malicious parties.
In fact, VerifyML even beats the state-of-the-art semi-honest ML secure inference system! We provide formal theoretical analysis for
VerifyML security and demonstrate its performance superiority on mainstream ML models including ResNet-18 and LeNet.

Keywords—Privacy Protection, Deep Learning, Cryptography.

F

1 INTRODUCTION

Machine learning (ML) systems are increasingly being
used to inform and influence people’s decisions, leading
to algorithmic outcomes that have powerful implications
for individuals and society. For example, most personal
loan default risks are calculated by automated ML tools.
This approach greatly speeds up the decision-making
process, but as with any decision-making algorithm,
there is a tendency to provide accurate results for the
majority, leaving certain individuals and minority groups
disadvantaged [1], [41]. This problem is widely defined
as the unfairness of the ML model. It often stems from
the underlying inherent human bias in the training sam-
ples, and a trained ML model amplifies this bias to the
point of causing discriminatory decisions about certain
groups and individuals.

Actually, the unfairness of ML model entangles in ev-
ery corner of society, not only being spied on in financial
risk control. A prime example comes from COMPAS [18],
an automated software used in US courts to assess the

• Guowen Xu,Xingshuo Han,Gelei Deng and Tianwei Zhang are with the
School of Computer Science and Engineering, Nanyang Technological
University. (e-mail: guowen.xu@ntu.edu.sg; xingshuo001@e.ntu.edu.sg;
GDENG003@e.ntu.edu.sg; tianwei.zhang@ntu.edu.sg)

• Shengmin Xu and Jianting Ning are with the College of Computer
and Cyber Security, Fujian Normal University, Fuzhou, China (e-mail:
smxu1989@gmail.com; jtning88@gmail.com)

• Anjia Yang is with the College of Cyber Security, Jinan University,
Guangzhou 510632, China. (e-mail:anjiayang@gmail.com)

• Hongwei Li is with the school of Computer Science and Engineering,
University of Electronic Science and Technology of China, Chengdu
611731, China.(e-mail: hongweili@uestc.edu.cn)

probability of criminals reoffending. A investigation of
the software reveals a bias against African-Americans,
i.e., COMPAS having a higher false positive rate for
African-American offenders than white criminals, owing
to incorrectly estimating their risk of reoffending. Simi-
lar model decision biases pervade other real-world ap-
plications including childcare systems [7], employment
matching [33], AI chatbots, and ad serving algorithms
[16]. As mentioned earlier, these resulting unfair de-
cisions stem from neglected biases and discrimination
hidden in data and algorithms.

To alleviate the above problems, a series of recent
works [4], [24], [31], [32], [34] have proposed for for-
malizing measures of fairness for classification models,
as well as their variants, in aim to provide instructions
for verifying the fairness of a given model. Several
evaluation tools have also been released that facilitate
automated checks for discriminatory decisions in a given
model. For example, Aequitas [36] as a toolkit provides
testing of models against several bias and fairness met-
rics corresponding to different population subgroups. It
feeds back test reports to developers, researchers and
governments to assist them in making conscious de-
cisions to avoid tending to harm specific population
groups. IBM also offers a toolkit AI Fairness 360 [3],
which aims to bringing fairness research algorithms to
the industrial setting, creating a benchmark where all
fairness algorithms can be evaluated, and providing an
environment for researchers to share their ideas.

Existing efforts in theory and tools have led the entire
research community to work towards unbiased verifica-
tion of the ML model fairness. However, existing verifi-

ar
X

iv
:2

21
0.

08
41

8v
1

 [
cs

.C
R

]
 1

6
O

ct
 2

02
2

2

cation mechanisms either require to white-box access the
target model or require clients to send queries in plain-
text to the model holder, which is impractical as it incurs
a range of privacy concerns. Specifically, model holders
are often reluctant to disclose model details because
training a commercial model requires a lot of human
cost, resources, and experience. Therefore, ML models, as
precious intellectual property rights, need to be properly
protected to ensure the company’s competitiveness in
the market. On the other hand, the queries that clients
used to test model fairness naturally contain sensitive
information, including loan records, disease history, and
even criminal information. These highly private data
should clearly be guaranteed confidentiality throughout
the verification process. Hence, these requirements for
privacy raises a challenging but meaningful question:

Can we design a verification framework that only returns
the fairness of the model to the client and the parties cannot
gain any private information?

We materialize the above question to a scenario where
a client interacts with the model holder to verify the
fairness of the model. Specifically, before using the target
model’s inference service, the client sends a set of queries
for testing fairness to the model holder, which returns
inference results to the client enabling it to locally eval-
uate how fair the model is. In such a scenario, the client
is generally considered to be semi-honest since it needs
to evaluate the model correctly for subsequent service.
The model holder may be malicious, it may trick the
client into believing that the model is of high fairness by
arbitrarily violating the verification process. A natural
solution to tackle such concerns is to leverage state-of-
the-art generic 2PC tools [6], [20], [22] that provide ma-
licious security. It guarantees that if either entity behaves
maliciously, they will be caught and the protocol aborted,
protecting privacy. However, direct grafting of standard
tools incurs enormous redundant overhead, including
heavy reliance on zero-knowledge proofs [11], tedious
computational authentication and interaction [15] (see
Section 3 for more details).

To reduce the overhead, we propose VerifyML, a 2PC-
based secure verification framework implemented on the
model holder-malicious threat model. In this model, the
client is considered semi-honest but the model holder
is malicious and can arbitrarily violate the specification
of the protocol. We adaptively customize a series of
optimization methods for VerifyML, which show much
better performance than the fully malicious baseline. Our
key insight is to move the vast majority of operations to
the client to bypass cumbersome data integrity verifica-
tion and reduce the frequency of interactions between
entities. Further, we design highly optimized methods
to perform linear and nonlinear layer functions for ML,
which brings at least 4−40× speedup compared to state-
of-the-art techniques. Overall, our contributions are as
follows:

• We leverage the hybrid combination of HE-GC to

design VerifyML. In VerifyML, the execution of ML’s
linear layer is implemented by homomorphic encryp-
tion (HE) while the non-linear layer is performed
by the garbled circuit (GC). VerifyML allows more
than 95% of operations to be completed in the offline
phase, thus providing very low latency in the online
inference phase. Actually, VerifyML’s online phase
even beats DELPHI [29], the state-of-the-art scheme
for secure ML inference against only semi-honest
adversaries.

• We design a series of optimization methods to re-
duce the overhead of the offline stage. Specifically,
we design new homomorphic parallel computation
methods, which are used to generate authenticated
Beaver’s triples, including matrix-vector and convo-
lution triples, in a Single Instruction Multiple Data
(SIMD) manner. Compared to existing techniques,
we generate triples of matrix-vector multiplication
without any homomorphic rotation operation, which
is very computationally expensive compared to other
homomorphic operations including addition and mul-
tiplication. Besides, we reduce the communication
complexity of generating convolution triples (aka ma-
trix multiplication triples) from cubic to quadratic
with faster computing performance.

• We design computationally-friendly GC to perform
activation functions of nonlinear layers (mainly
ReLU). Our key idea is to minimize the number of ex-
pensive multiplication operations in the GC. Then, we
use the GC as a one-time pad to simplify verifying the
integrity of the input from the server. Compared to the
state-of-the-art works, our non-linear layer protocol
achieves at least an order of magnitude performance
improvement.

• We provide formal theoretical analysis for VerifyML
security and demonstrate its performance superior-
ity on various datasets and mainstream ML models
including ResNet-18 and LeNet. Compared to state-
of-the-art work, our experiments show that VerifyML
achieves up to 1.7× computation speedup and gains
at least 10.7× less communication overhead for linear
layer computation. For non-linear layers, VerifyML is
also 4×–42× faster and has > 48× lesser communica-
tion than existing 2PC protocol against malicious par-
ties. Meanwhile, VerifyML demonstrates an encourag-
ing online runtime boost by 32.6× and 32.2× over
existing works on LeNet and ResNet-18, respectively,
and at least an order of magnitude communication
cost reduction.

2 PRELIMINARIES
2.1 Threat Model
We consider a secure ML inference scenario, where a
model holder P0 and a client P1 interact with each other
to evaluate the fairness of the target model. In such a
model holder-malicious threat model, P0 holds the model
M while the client owns the private test set used to verify

3

the fairness of the model. The client is generally consid-
ered to be semi-honest, that is, it follows the protocol’s
specifications in the interaction process for evaluating the
fairness of the model unbiased. However, it is possible
to infer model parameters by passively analyzing data
streams captured during interactions. The model holder
is malicious. It may arbitrarily violate the specification
of the protocol to trick clients into believing that they
hold a high-fairness model. The network architecture
is assumed to be known to both P0 and P1. VerifyML
aims to construct such a secure inference framework that
enables P1 to correctly evaluate the fairness of model
without knowing any details of the model parameters,
meanwhile, P0 knows nothing about the client’s input.
We provide a formal definition of the threat model in
Appendix A.

2.2 Notations
We use λ and σ to denote the computational security
parameter and the statistical security parameter, respec-
tively. [k] represents the set {1, 2, · · · k} for k > 0. In
our VerifyML, all the arithmetic operations are calculated
in the field Fp, where p is a a prime and we define
κ = dlog pe. This means that there is a natural mapping
for elements in Fp to {0, 1}κ. For example, a[i] indicates
the i-th bit of a on this mapping, i.e, a =

∑
i∈[κ] a[i] ·2i−1.

Given two vectors a and b, and an element α ∈ Fp, a+b
indicates the element-wise addition, α+ a and αa mean
that each component of a performs addition and multi-
plication with α, respectively. a ∗ b represents the inner
production between vectors a and b. Similarly, given any
function f : Fp → Fp, f(a) denotes evaluation of f on
each component on a. a||b represents the concatenation of
a and b. Un is used to represent the uniform distribution
on the set {0, 1}n for any n > 0.

For ease of exposition, we consider an ML model,
usually a neural network model M, consisting of alter-
nating linear and nonlinear layers. We assume that the
specification of the linear layer is L1, · · ·Lm and the non-
linear layer is f1, · · · , fm−1. Given an initial input (i.e.
query) x0, the model holder will sequentially execute
vi = Lixi−1 and xi = fi(vi). Finally, M outputs the
inference result vm = Lmxm−1 = M(x0).

2.3 ML Fairness Measurement
Let X be the set of possible inputs and Y be the set
of all possible labels. In addition, let O be a finite set
related to fairness (e.g., ethnic group). We assume that
X × Y × O is drawn from a probability space Ω with
an unknown distribution D, and use M(x) to denote the
model inference result given an input x. Based on these,
we review the term of the empirical fairness gap (EFG)
[38], which is widely used to measure the fairness of
ML models against a specific group. To formalize the
formulation of EFG, we first describe the definition of
conditional risk as follows:

zo(M) = E
(x,y,o′)∼D

[I{M(x) 6= y}|o′ = o] (1)

Given a set of samples (x, y, o′) satisfying distribution
D, zo(M) is the expectation of the number of mis-
classified entries in the test set that belong to group
o, where I{Φ} represents the indicator function with
a predicate Φ. Given an independent sample set Ψ =
{(x(1), y(1), o(1)), · · · , (x(t), y(t), o(t))}∼ Dt, the empirical
conditional risk is defined as follows:

z̃o(M,Ψ) =
1

to

t∑
i=1

[I{M(x(i)) 6= y(i)}|o(i) = o] (2)

where to indicates the number of samples in Ψ from
group o. Then, we describe the term fairness gap (FG),
which is used to measure the maximum margin of any
two groups, specifically,

FG = max
oo,o1∈O

|zoo(M)−zo1(M)| (3)

Likewise, the empirical fairness gap (EFG) is defined as

EFG = max
oo,o1∈O

|z̃oo(M,Ψ)− z̃o1(M,Ψ)| (4)

Lastly, we say a ML model M is ε-fair on (O,D), if
its fairness gap is smaller than ε with confidence 1 − δ.
Formally, a ε-fair M is defined as satisfying the following
conditions:

Pr

[
max

oo,o1∈O
|zoo(M)−zo1(M)| > ε

]
≤ δ (5)

In practice, we usually replace FG in Eqn.5 with EFG
to facilitate the measurement of fairness. Note that once
the client gets enough predictions in the target model, it
can locally evaluate the fairness of the model according
to Eqn.5.

2.4 Fully Homomorphic Encryption
Let the plaintext space be Fp, informally, a Fully ho-
momorphic encryption (FHE) under the public key en-
cryption system usually contains the following algo-
rithms:
• KeyGen(1λ)→ (pk, sk). Taking the security parameter
λ as input, KeyGen is a random algorithm used to
output the public key pk and the corresponding secret
key sk required for homomorphic encryption.
• Enc(pk, x) → c. Given pk and a plaintext x ∈ Fp, the

algorithm Enc outputs a ciphertext c encrypting x.
• Dec(sk, c) → x. Taking sk and a ciphertext c as

input, Dec decrypts c and outputs the corresponding
plaintext x.

• Eval(pk, c1, c2, F) → c′. Given pk, two ciphertexts c1
and c2, and a function F , the algorithm Eval outputs
a ciphertext c′ encrypting F (c1, c2).

4

We require FHE to satisfy correctness, semantic security,
and functional privacy1. In VerifyML, we use the SEAL
library [37] to implement the fully homomorphic encryp-
tion. In addition, we utilize ciphertext packing technol-
ogy (CPT) [39] to encrypt multiple plaintexts into a single
ciphertext, thus enabling homomorphic computation in
a SIMD manner. Specifically, given two plaintext vectors
x = (x1, · · · , xn) and x′ = (x′1, · · · , x′n), we can pack x
and x′ into ciphertexts c and c′ each of them containing n
plaintext slots. Homomorphic operations between c and
c′ including addition and multiplication are equivalent
to performing the same element-wise operations on the
corresponding plaintext slots.

FHE also provides algorithm Rotation to handle op-
erations between data located in different plaintext slots.
Informally, given a plaintext vector x = (x0, · · · , xn) is
encrypted into a single ciphertext c, Rotation(pk, c, j)
transforms c into another ciphertext c′ whose encrypted
plaintext vector is x′ = (xj+1, xj+2, · · · , x1, · · · , xj). In
this way, data on different plaintext slots can be moved
to the same position to achieve element-wise operations
under ciphertext. In FHE, rotation operations are compu-
tational expensive compared to homomorphic addition
and multiplication operations. Therefore, the optimiza-
tion criterion for homomorphic SIMD operations is to
minimize the number of rotation operations.

2.5 Parallel Matrix Homomorphic Multiplication
We review the parallel homomorphic multiplication
method between arbitrary matrices proposed by Jiang
et al. [17], which will be used to accelerate the genera-
tion of authenticated triples for convolution in VerifyML.
We take the homomorphic multiplication of two d × d
dimensional matrices as an example. Specifically, given
a d × d dimensional matrix X = (xi,j)0≤i,j<d, we first
define four useful permutations, σ, τ , φ, and ϕ, over
the field Fd×dp . Let σ(X)i,j = Xi,i+j , τ(X)i,j = Xi+j,j ,
φ(X)i,j = Xi,j+1 and ϕ(X)i,j = Xi+1,j . Then for two
square matrices X and Y of order d, we can calculate the
matrix multiplication between the two by the following
formula:

X ∗Y =

d−1∑
k=0

(φk ◦ σ(X))� (ϕk ◦ τ(Y)) (6)

where � denotes the element-wise multiplication. We
provide a toy example of the multiplication of two 3× 3
matrices in Figure 1 for ease of understanding.

We can convert a d × d-dimensional matrix to a
vector of length d2 by encoding map Fd2p → Fd×dp :
x = (x0, · · · , xd2−1) 7→ X = (xd·i+j)0≤i,j<d. A ciphertext
is said to encrypt a matrix X if it encrypts the corre-
sponding plaintext vector x. Therefore, given two square

1. Functional privacy ensures that given a ciphertext c, which is an
encrypted share of F (x1, x2) obtained by homomorphically evaluating
L, c is indistinguishable from ciphertext c′ encrypting a share of
F ′(x1, x2) for any F ′.

matrices X and X, the multiplication of the two under
the ciphertext is calculated as follows:

cX ~ cY =

d−1∑
k=0

(φk(Encpk(σ(X))))� (ϕk(Encpk(τ(Y)))) (7)

In the following sections, we will use cX ~ cY to
represents multiplication between any matrixes X and Y
in ciphertext. � denotes the elewent-wise homomorphic
multiplication between two ciphertexts. In Section 4.1.2,
we describe how to utilize the parallel homomorphic
multiplication described above to boost the generation
of authenticated convolution triples.

2.6 Secret Sharing
• Additive Secret Sharing. Given any x ∈ Fp, a 2-out-

of-2 additive secret sharing of x is a pair (〈x〉0 , 〈x〉1) =
(x − r, r) ∈ F2

p, where r is a random value uniformly
selected from Fp, and x = 〈x〉0 + 〈x〉1. Additive secret
sharing is perfectly hiding, that is, given a share 〈x〉0
or 〈x〉1, x is perfectly hidden.

• Authenticated Shares. Given a random value α
(known as the MAC key) uniformly chosen from
Fp, for any x ∈ Fp, the authenticated shares of
x on α denote that each party Pb holds [[x]]b =
{〈α〉b, 〈x〉b, 〈αx〉b}b∈{0,1}2, where we have (〈α〉0 +
〈α〉1) × (〈x〉0 + 〈x〉1) = (〈αx〉0 + 〈αx〉1). While in the
general malicious 2PC setting, α should be generated
randomly through interactions between all parties, in
our model holder-malicious model, α can be picked
up by P1 and secretly shared with P0. Authenticated
sharing provides blog pc bits of statistical security.
Informally, if a malicious P0 tries to forge the shared x
to be x+β, by tampering with its shares (〈x〉0, 〈αx〉0)
to (〈x〉0 + β, 〈αx〉0 + β′), for non-zero {β, β′}, the
probability of parties being authenticated to hold the
share of x + β (i.e., αx + β′ = α(x + β)) is at most
2−blog pc.

2.7 Authenticated Beaver’s Triples
In VerifyML, we require the technique of authenticated
Beaver’s triples to detect possible breaches of the pro-
tocol from the malicious model holder. In more detail,
authenticated Beaver’s multiplication triple is denoted
that each Pb holds a tuple {[[x]]b, [[y]]b, [[z]]b}b∈{0,1}, where
x, y, z ∈ Fp, and satisfy xy = z. Giving P0 and P1 holding
authenticated shares of c and d, i.e., ([[c]]0, [[d]]0), ([[c]]1,
[[d]]1), respectively, to compute the authenticated share
of the product of c and d, the parties first reveal c − x
and d − y, and then each party Pb locally computes the
authenticated share of [[e = c · d]]b as follows:

〈e〉b = (c− x) · (d− y) + 〈x〉b · (d− y) + (c− x) · 〈y〉b + 〈z〉b
〈αe〉b = 〈α〉b(c− x) · (d− y) + 〈αx〉b · (d− y) + (c− x) · 〈αy〉b + 〈αz〉b

(8)

2. Sometimes in [[x]]b we omit 〈α〉b for brevity.

5

𝑥00 𝑥01 𝑥02

𝑥10 𝑥11 𝑥12

𝑥20 𝑥21 𝑥22

𝑿
step (a)

𝑦00 𝑦01 𝑦02

𝑦10 𝑦11 𝑦12

𝑦20 𝑦21 𝑦22

𝒀

=

𝑥00 𝑥01 𝑥02

𝑥11 𝑥12 𝑥10

𝑥22 𝑥20 𝑥21

𝑦00 𝑦11 𝑦22

𝑦10 𝑦21 𝑦02

𝑦20 𝑦01 𝑦12

+

𝑥01 𝑥02 𝑥00

𝑥12 𝑥10 𝑥11

𝑥20 𝑥21 𝑥22

𝑦10 𝑦21 𝑦02

𝑦20 𝑦01 𝑦12

𝑦00 𝑦11 𝑦22

 +

𝑥02 𝑥00 𝑥01

𝑥10 𝑥11 𝑥12

𝑥21 𝑥22 𝑥20

𝑦20 𝑦01 𝑦12

𝑦00 𝑦11 𝑦22

𝑦10 𝑦21 𝑦02

∅𝟎 ∘ 𝝈(𝑿) 𝝍𝟎 ∘ 𝝉(𝑿)
step (b)

∅𝟏 ∘ 𝝈(𝑿) 𝝍𝟏 ∘ 𝝉(𝑿)
step (c)

∅𝟐 ∘ 𝝈(𝑿) 𝝍𝟐 ∘ 𝝉(𝑿)
step (d)

Fig. 1: Parallel matrix multiplication

Authenticated Beaver’s multiplication triple is inde-
pendent of the user’s input in the actual execution of the
secure computing protocol, thus can be generated offline
(see Section 4) to speed up the performance of online
secure multiplication computations. Inspired by existing
work to construct custom triples for specific mathe-
matical operations [30] for improving performance, we
generalize traditional Beaver’s triples to matrix-vector
multiplication and convolution domains. We provide
the definitions of matrix-vector and convolution triples
below and leave the description of generating them to
Section 4.
• Authenticated Matrix-Vector triples: is denoted that

each Pb holds a tuple {[[X]]b, [[y]]b, [[z]]b}b∈{0,1}, where
X is a matrix uniformly chosen from Fd1×d2p , y repre-
sents a vector selected from Fd2p , and z ∈ Fd1p satisfying
X∗y = z, where d1 and d2 are determined depending
on the ML model architecture.

• Authenticated Convolution triples (aka matrix mul-
tiplication triples3): is denoted that each Pb holds
a tuple {[[X]]b, [[Y]]b, [[Z]]b}b∈{0,1}, where X and Y
are tensors uniformly chosen from Fuw×uh×cip and
F(2l+1)×(2l+1)×ci×co
p , respectively. Z ∈ Fu

′
w×u

′
h×co

p sat-
isfying convolution Conv(X,Y) = Z, where uw, uw,
u′w, u′h, l, ci and co are determined depending on the
model architecture.

2.8 Oblivious Transfer
We take OTn to denote the 1-out-of-2 Oblivious Transfer
(OT) [10], [13]. In OTn, the inputs of the sender (assum-
ing P0 for convenience) are two strings s0, s1 ∈ {0, 1}n,
and the input of the receiver (P1) is a bit b ∈ {0, 1} for
selection. At the end of the OT-execution, P1 learns sb
while P0 learns nothing. In this paper, we require that the
instance of OTn is secure against a semi-honest sender
and a malicious receiver. We use OTκn to represent κ
instances of OTn. We exploit [21] to implement OTκn with
the communication complexity of κλ+ 2n bits.

2.9 Garbled Circuits
The garbling scheme [8], [35] for boolean circuits pars-
ing arbitrary functions consists of a pair of algorithms

3. We can reduce the convolution operation to matrix multiplication
by transforming the inputs of convolution appropriately. We provide
a detailed description in Section 4.

(Garble, GCEval) defined as follows:
• Garble(1λ, C) → (GC, {{labini,j}i∈[n], {laboutj }}j∈{0,1}).

Giving the security parameter λ and an arbitrary
Boolean circuit C : {0, 1}n → {0, 1}, the algorithm
Garble outputs a garbled circuit GC, a set of input la-
bels {labini,j}i∈[n],j∈{0,1} of this GC, and a set of output
labels {laboutj }j∈{0,1}, where the size of each label is
λ bits. For any x ∈ {0, 1}n, we refer to {labini,x[i]}i∈[n]

as the garbled input of x, and laboutC(x) as the garbled
output of C(x).

• GCEval(GC, {labi}i∈[n]) → lab′. Giving the garbled
circuit GC and a set of input labels {labi}i∈[n], the
algorithm GCEval outputs a label lab′.

Let Garble(1λ, C)→ (GC, {{labini,j}i∈[n], {laboutj }}j∈{0,1}),
the above garbled scheme (Garble, GCEval) is required
to satisfy the following properties:
• Correctness. GCEval is faithfully performed on the GC

and correctly outputs garbled results when given the
garbled input of x. Formally, for any Boolean circuit
C and input x ∈ {0, 1}n, GCEval holds that

GCEval(GC, {labini,x[i]}i∈[n])→ laboutC(x)

• Security. Given C, the garbled circuit GC of C and
garbled inputs of any x ∈ {0, 1}n can be simulated
by a polynomial probability-time simulator Sim. For-
mally, for any circuit C and input x ∈ {0, 1}n, we have
(GC, {labini,x[i]}i∈[n]) ≈ Sim(1λ, C), where ≈ indicates
computational indistinguishability.

• Authenticity. This implies that given the garbled
input of x and GC, it is infeasible to guess the output
label of 1−C(x). Formally, for any circuit C and x ∈
{0, 1}n, we have

(
labout1−C(x)|GC, {lab

in
i,x[i]}i∈[n]

)
≈ Uλ.

Without loss of generality, the garbled scheme described
above can be naturally extended to securely implement
Boolean circuits with multi-bit outputs. In VerifyML, we
utilize state-of-the-art optimization strategies, including
point-and-permute [12], free-XOR [23] and half-gates [42]
to construct the garbling scheme.

3 TECHNICAL INTUITION
VerifyML is essentially a 2PC protocol over the model
holder-malicious threat model, where the client unbiasedly
learns the inference results on a given test set, thereby
faithfully evaluating the fairness of the target model

6

locally. For boosting the performance of the 2PC pro-
tocol execution, we customize a series of optimization
methods by fully exploring the advantages of crypto-
graphic primitives and their natural ties in inference pro-
cess. Below we present a high-level technically intuitive
overview of VerifyML’s design.

3.1 Offline-Online Paradigm

Consistent with state-of-the-art work on the setting of
semi-honest models [29], VerifyML is deconstructed into
an offline stage and an online stage, where the prepro-
cessing process of the offline stage is independent of
the input of model holders and clients. In this way, the
majority (> 95%) of the computation can be performed
offline to minimize the overhead of the online process.
Figure 2 provides an overview of VerifyML, where we
describe the computational parts required for the offline
and online phase, respectively.

3.2 Linear Layer Optimization

As described in Figure 2, we move almost all lin-
ear operations into the offline phase, where we con-
struct customized triples for matrix-vector multiplication
and convolution to accelerate linear execution. Specifi-
cally, 1) we design an efficient construction of matrix-
multiplication triples instead of generating Beaver’s mul-
tiplication triples for individual multiplications (see Sec-
tion 4.1.1). Our core insight is a new packed homomor-
phic multiplication method for matrices and vectors. We
explore the inherent connection between secret sharing
and homomorphic encryption to remove all the rota-
tion operation in parallel homomorphic computation. 2)
We extend the idea of generating matrix multiplicative
triples over semi-honest models [30] into convolution
domain over the model holder-malicious threat model (see
Section 4). The core of our construction is derived from
E2DM [17], which proposes a state-of-the-art method for
parallel homomorphic multiplication between arbitrary
matrices. We further optimize E2DM to achieve at least
2× computational speedup compared to naive use.

Our optimization technique for linear layer compu-
tation exhibits superior advantages compared to state-
of-the-art existing methods [20], [22]4. In more detail,
we reduce the communication overhead from cubic to
quadratic (both for offline and online phases) compared
to Overdrive [22], which is the mainstream tool for gen-
erating authenticated multiplicative triples on malicious
adversary models(see Section 4 for detailed analysis).

4. Note that several efficient parallel homomorphic computation
methods [19], [43] with packed ciphertext have been proposed and
run on semi-honest or client-malicious models [5], [26], [29] for secure
inference. It may be possible to transfer these techniques to our method
to speed up triple’s generation, but this is certainly non-trivial and we
leave it for future work.

Offline Phase. This phase the client and model holder
pre-compute data in preparation for subsequent online
execution, which is independent of input from all parties.
That is, VerifyML can run this phase without knowing the
client’s input x0 and the model holder’s input M.
• Preprocessing for the linear layer. The Client interacts

with the model holder to generate authenticated
triples for matrix-vector multiplication and convolu-
tion.

• Preprocessing for the nonlinear layer. The client con-
structs a garbled circuit GC for circuit C parsing ReLU.
The client sends GC and a set of ciphertexts to the
model holder for generating the authenticated shares
of ReLU’s results.

Online Phase. This phase is divided into following
parts.
• Preamble. The client secretly shares its input x0 with

the model holder, and similarly, the model holder
shares the model parameter M with the client. Thus
both the model holder and the client hold an authen-
ticated share of x0 and M. Note that the sharing of
M can be done offline, if the model to be verified is
knowed in advance.

• Layer evaluation. Let xi be the result of evaluating the
first i layers of model M on x0. At the beginning
of the i + 1-th layer, both the client and the model
holder hold an authenticated share about xi and the
i+1-th layer parameter Li+1, i.e., parties Pb∈{0,1} hold
([[xi]]b, [[Li+1]]b).
1. Linear layer . The client interacts with the model

holder to perform the authenticated shares of
vi+1 = Li+1xi+1, where both parties securely
compute matrix-vector multiplication and convo-
lution operations with the aid of triples generated
in the precomputing process.

2. Nonlinear layer. After the linear layer, the two
parties hold the authenticated shares of vi+1. The
client and the model holder invoke the OT to send
the garbled input of GC to the model holder. The
model holder evaluates the GC, and eventually the
two parties get authenticated shares of the ReLU
result.

• Consistency check. The client interacts with the model
holder to check any malicious behavior of the model
holder during the entire inference process. The client
uses the properties of the authenticated sharing to
construct the consistency check protocol. If consis-
tency passes, the client locally computes the fairness
of the target model, otherwise the client outputs
abort.

Figure 2: Overview of the VerifyML

3.3 Non-linear Layer Optimization

We use the garbled circuit to achieve secure computation
of nonlinear functions (mainly ReLU) in ML models.
Specifically, assumed that P0 and P1 learn the authen-

7

ticated sharing about vi = Lixi−1 after executing the
i-th linear layer, that is, each party Pb holds [[vi]]b =
{〈α〉b, 〈vi〉b, 〈αvi〉b}b∈{0,1}. Then, {〈vi〉b}b∈{0,1} will be
used as the input of ReLU (dented as fi for brevity) in the
i-th nonlinear layer for both parties learning the authen-
tication sharing about xi = fi(vi), i.e., [[xi]]b. However,
constructing such a satisfactory garbling scheme has the
following intractable problems.
• How to validate input from the malicious model holder.

Since the model holder is malicious, it must be en-
sured that the input from the model holder in the GC
(i.e. 〈vi〉0) is consistent with the share obtained by
the previous linear layer. In the traditional malicious
adversary model [6], [20], [22], a standard approach
is to verify the correctness of the authenticated shar-
ing of all inputs from malicious entities in the GC.
However, this is very expensive and takes tens of
seconds or even minutes to process a ReLU function.
It obviously does not meet the practicality of ML
model inference because a modern ML model usually
contains thousands of ReLU functions.

• How to minimize the number of multiplication encapsu-
lated into GC. For the i-th nonlinear layer, we need
to compute the authenticated shares of the ReLU
output, i.e. [[xi]]b = {〈α〉b, 〈xi〉b, 〈αxi〉b}b∈{0,1}. This
requires at least two multiplications on the field, if
all computations are encapsulated into the GC. Note
that performing arithmetic multiplication operations
in the GC is expensive and requires at least O(κ2λ)
communication overhead.

We design novel protocols to remedy the above prob-
lems through the following insights: (1) garbled circuits
already achieve malicious security against garbled circuit
evaluators (i.e., the model holder in our setting) [26].
This means that we only need to construct a lightweight
method to check the consistency between the input of
the malicious adversary in the nonlinear layer and the
results obtained by the previous linear layer. Then, this
method can be integrated with GC to achieve end-to-
end nonlinear secure computing (see Section 4). (2) It
is enough to calculate the output label for each bit of
fi(vi)’s share (i.e., fi(vi)[j], for 1 ≤ j ≤ κ) in the
GC, rather than obtaining the exact arithmetic share
of fi(vi) [5]. Moreover, we can parse ReLU function
as ReLU(vi) = vi · sign(vi), where the sign function
sign(vi) equals 1 if t ≥ 0 and 0 otherwise. Hence, we
only encapsulate the non-linear part of ReLU(vi) (i.e.,
sign(vi)) into the GC, thereby substantially minimizing
the number of multiplication operations.

Compared with works [6], [20], [22] with malicious
adversary, VerifyML reduces the communication over-
head of each ReLU function from 2cλ+ 190κλ+ 232κ2 to
2dλ+4κλ+6κ2, where d� c. Our experiments show that
VerifyML achieves 4×-42× computation speedup and
gains 48× less communication overhead for nonlinear
layer computation.

Remark 3.1 . Beyond the above optimization strategies,

we also do a series of strategies to reduce the overhead
in the implementation process, including removing the
reliance on distributed decryption primitives in previous
works [6], [20], [22] and minimizing the number of calls
to zero-knowledge proofs of ciphertexts. In the following
section, we provide a comprehensive technical descrip-
tion of the proposed method.

4 THE VERIFYML FRAMEWORK
4.1 Offline Phase
In this section, we describe the technical details of Veri-
fyML. As described above, VerifyML is divided intooffline
and online phases. We first describe the operations that
need to be precomputed in the offline phase, including
generating matrix-vector multiplications and triples for
convolution, and garbled circuits for constructing the ob-
jective function. Then, we introduce the technical details
of the online phase.

4.1.1 Generating matrix-vector multiplication triple
Figure 3 depicts the interaction between the model
holder P0 and the client P1 to generate triples of matrix-
vector multiplications. Succinctly, P0 first uniformly se-
lects 〈X〉0 and 〈y〉0 and sends their encryption to P1,
along with zero-knowledge proofs about these cipher-
texts, where 〈y〉0 need to be transformed into ma-
trix 〈Y〉0 before encryption (step 2 in Figure 3). P1

recovers X and Y in ciphertext and then computes
(〈αX〉0, 〈αY〉0, 〈αZ〉0, 〈Z〉0) (step 3 in Figure 3). Then it
returns the corresponding ciphertexts to P0. P0 decrypts
them and computes 〈αy〉1, 〈αz〉1 and 〈z〉1 (step 4 in
Figure 3).

Figure 4 provides an example of the multiplication of a
3 × 4-dimensional matrix X and a 4-dimensional vector
y to facilitate understanding. To compute the additive
sharing of z = X ∗ y (step(a) in Figure 4), y is first
transformed into a matrix X by copying, where each row
of Y contains a copy of y. P1 then performs element-
wise multiplications (step(b) in Figure 4) for X and Y
under the ciphertext. To construct the additive sharing
of z = X ∗ y, P1 uniformly chooses a random matrix
R ∈ F3×4

p and computes 〈Z〉0 = X � Y − R (step(c)
in Figure 4). P1 sends the ciphertext result to P0. P0

decrypts it and sums each row in plaintext to obtain
vector 〈z〉0 (step(d) in Figure 4), similarly, P1 performs
the same operation on matrix R to obtain 〈z〉1.

Remark 4.1: Compared to generating multiplication
triples for single multiplication [20], [22], our constructed
matrix-multiplication triples enable the communication
overhead to be independent of the number of multipli-
cations, only related to the size of the input. This reduces

4. A ZK proof of knowledge for ciphertexts is used to state that c1
and c2 are valid ciphertexts generated from the given FHE cryptosys-
tem. Readers can refer to [6], [22] for more details.

5. Note that for 〈αY〉0, we only take the all elements in the first row
as 〈αy〉0 by default.The operation for 〈αY〉1 is the same as above.

8

Input: {Pb}b∈{0,1} holds 〈X〉b uniformly chosen from
Fd1×d2p , and 〈y〉b uniformly chosen from Fd2p . In addition,
P1 hold a MAC key α uniformly chosen from Fp.
Output: Pb obtains {[[X]]b, [[y]]b, [[z]]b}b∈{0,1} where X ∗
y = z.
Procedure:
1. P0 and P1 participate in a secure two-party compu-

tation such that P0 obtains an FHE public secret key
pair (pk, sk) while P1 obtains the public key pk. This
process is performed only once.

2. P0 first converts 〈y〉0 into a d1 × d2-dimensional ma-
trix 〈Y〉0 where each row constitutes a copy of 〈y〉0.
Then, P0 send the encryptions c1 ← Enc(pk, 〈X〉0)
and c2 ← Enc(pk, 〈Y〉0) to P1 along with zero-
knowledge (ZK) proofs of plaintext knowledge of the
two ciphertexts 4.

3. P1 also converts 〈y〉1 into a d1 × d2-dimensional
matrix 〈Y〉1 where each row constitutes a copy
of 〈y〉1. Then it samples (〈αX〉1, 〈αY〉1, 〈αZ〉1, 〈Z〉1)

from F4×(d1×d2)
p . P1 sends c3 = Encpk(α(〈X〉1 +

〈X〉0)−〈αX〉1), c4 = Encpk(α(〈Y〉1 +〈Y〉0)−〈αY〉1),
c5 = Encpk(α(X�Y)−〈αZ〉1), and c6 = Encpk((X�
Y)− 〈Z〉1) to P0.

4. P0 decrypts c3, c4, c5 and c6 to obtain
(〈αX〉0, 〈αY〉0, 〈αZ〉0, 〈Z〉0), respectively. Then,
it sums the elements of each row of the matrices
〈αY〉05, 〈αZ〉0 and 〈Z〉0 to form the vectors
〈αy〉0, 〈αz〉0 and 〈z〉0. P1 does the same for
(〈αY〉1, 〈αZ〉1, 〈Z〉1) to obtain 〈αy〉1, 〈αz〉1 and 〈z〉1.

5. Pb outputs {[[X]]b, [[y]]b, [[z]]b}b∈{0,1}, where X ∗y = z.

Figure 3: Algorithm πMtriple for generating
authenticated matrix-vector multiplication triple

the amount of data that needs to be exchanged between
P0 and P1. In addition, we move the majority of the
computation to be executed by the semi-honest party,
which avoids the need for distributed decryption and
frequent zero-knowledge proofs in malicious adversary
settings. Compared to existing parallel homomorphic
computation methods [14], [17], our matrix-vector multi-
plication does not involve any rotation operation, which
is very computationally expensive compared to other ho-
momorphic operations. This stems from our observation
of the inner tie between HE and secret sharing. Since the
final ciphertext result needs to be secretly shared to P0

and P1, we can first perform the secret sharing under the
ciphertext (see step(c) and step(d) in Figure 4), and then
perform all rotation and summation operations under the
plaintext.
Security. Our protocol for generating matrix-vector mul-
tiplication triples, πMtriple, is secure against the malicious
model holder P0 and the semi-honest client P1. We pro-
vide the following theorem and prove it in Appendix B.

Theorem 4.1. Let the fully homomorphic encryption used in
πMtriple have the properties defined in Section 2.4. πMtriple

𝑥00 𝑥01 𝑥02 𝑥03

𝑥10 𝑥11 𝑥12 𝑥13

𝑥20 𝑥21 𝑥22 𝑥23

𝑿

step (a)

𝑦0

𝑦1

𝑦2

𝑦3

𝒚

𝑥00 𝑥01 𝑥02 𝑥03

𝑥10 𝑥11 𝑥12 𝑥13

𝑥20 𝑥21 𝑥22 𝑥23

𝑦0 𝑦1 𝑦2 𝑦3

𝑦0 𝑦1 𝑦2 𝑦3

𝑦0 𝑦1 𝑦2 𝑦3

𝑿 𝒀

𝑥00𝑦0
− 𝑟00

𝑥01𝑦1
− 𝑟01

𝑥02𝑦2
− 𝑟02

𝑥03𝑦3
− 𝑟03

𝑥10𝑦0
− 𝑟10

𝑥11𝑦1
− 𝑟11

𝑥12𝑦2
− 𝑟12

𝑥13𝑦3
− 𝑟13

𝑥20𝑦0
− 𝑟20

𝑥21𝑦1
− 𝑟21

𝑥22𝑦2
− 𝑟22

𝑥23𝑦3
− 𝑟23

step (b)

-
𝑟00 𝑟01 𝑟02 𝑟03

𝑟10 𝑟11 𝑟12 𝑟13

𝑟20 𝑟21 𝑟22 𝑟23

𝑹

𝑥00𝑦0 𝑥01𝑦1 𝑥02𝑦2 𝑥03𝑦3

𝑥10𝑦0 𝑥11𝑦1 𝑥12𝑦2 𝑥13𝑦3

𝑥20𝑦0 𝑥21𝑦1 𝑥22𝑦2 𝑥23𝑦3

< 𝒁 >𝟎

𝑿𝒀
step (c)

𝑥00𝑦0
− 𝑟00

𝑥01𝑦1
− 𝑟01

𝑥02𝑦2
− 𝑟02

𝑥03𝑦3
− 𝑟03

𝑥10𝑦0
− 𝑟10

𝑥11𝑦1
− 𝑟11

𝑥12𝑦2
− 𝑟12

𝑥13𝑦3
− 𝑟13

𝑥20𝑦0
− 𝑟20

𝑥21𝑦1
− 𝑟21

𝑥22𝑦2
− 𝑟22

𝑥23𝑦3
− 𝑟23

< 𝒁 >𝟎

(𝑥00𝑦0 + 𝑥01𝑦1 +
𝑥02𝑦2 + 𝑥03𝑦3) −
(𝑟00+𝑟01+𝑟02+𝑟03)

(𝑥10𝑦0 + 𝑥11𝑦1 +
𝑥12𝑦2 + 𝑥13𝑦3) −
(𝑟10+𝑟11+𝑟12+𝑟13)

(𝑥20𝑦0 + 𝑥21𝑦1 +
𝑥22𝑦2 + 𝑥23𝑦3)
− (𝑟20+𝑟21+𝑟22+𝑟23)

step (d): Row-wise summation for < 𝒁 >𝟎 in plaintext

< 𝒛 >𝟎

Fig. 4: Matrix-vector multiplication

is secure against the malicious model holder P0 and the semi-
honest client P1.

4.1.2 Generating convolution triple
We describe the technical details of generating authenti-
cated triples for convolution. Briefly, for a given convo-
lution operation, we first convert it to equivalent matrix
multiplications, and then generate triples for the matrix
multiplications. We start by reviewing the definition of
convolution and how to translate it into the equivalent
matrix multiplication. Then, we explain how to generate
authenticated triples.
1© Convolution. Assuming an input tensor of size uw ×
uh with ci channels, denoted as Xijk, where 1 ≤ i ≤ uw
and 1 ≤ j ≤ uh are spatial coordinates, and 1 ≤ k ≤ ci is
the channel. Let co kernels with a size of (2l+1)×(2l+1)×
ci denote as tensor Y∆i,∆j ,k,k′ , where −l ≤ ∆i,∆j ≤ l
are shifts of the spatial coordinates, 1 ≤ k ≤ ci and 1 ≤
k′ ≤ co are the channels and kernels, respectively. The
convolution between X and Y (i.e., Z = Conv(X,Y)) is
defined as below:

Zijk′ =
∑

∆i,∆j ,k

Xi+∆i,j+∆j ,k ·Y∆i,∆j ,k′ (9)

The resulting tensor Zijk′ has u′w×u′h spatial coordinates
and c0 channels. We have u′w = (uw− (2l+ 1) + 2p)/s+ 1
and u′h = (uh−(2l+1)+2p)/s+1, where p represents the
number of turns to zero-pad the input, and s represents
the stride size of the kernel movement [25]. Note that the
entries of X to be zero if i+ ∆i or j + ∆j are outside of
the ranges [1;u′w] and [1;u′h], respectively.
2© Conversion between convolution and matrix mul-
tiplication. Based on Eqn.(9), we can easily convert

9

convolution into an equivalent matrix multiplication.
Specifically, we construct a matrix X′ with dimension
u′wu

′
h×(2l+1)2 ·ci, where X′(i,j)(∆i,∆j ,k) = Xi+∆i,j+∆j ,k.

Similarly, we construct a matrix Y′ of dimension (2l +
1)2 · ci × co such that Y′(∆i,∆j , k)k′ = Y∆i,∆j ,k′ . Then,
the original convolution operation is transformed into
Z′ = X′ ∗ Y′, where Z′(ij)k′ = Zijk′ . In Appendix C,
we provide a detailed example to implement the above
transformation.

Input: {Pb}b∈{0,1} holds 〈X〉b uniformly chosen
from Fpuw×uh×ci , and 〈Y〉b uniformly chosen from
Fp(2l+1)×(2l+1)×ci×co . In addition, p1 holds a MAC key
α uniformly chosen from Fp
Output: Pb obtains {[[X]]b, [[Y]]b, [[Z]]b}b∈{0,1}, where Z =
Conv(X,Y).
Procedure:
1. P0 and P1 participate in a secure two-party compu-

tation such that P0 obtains an FHE public-secret key
pair (pk, sk) while P1 obtains the public key pk. This
process is performed only once.

2. P0 first converts 〈X〉0 and 〈Y〉0 into equivalent
matrixes 〈X′〉0 and and 〈Y′〉0, where 〈X′〉0 ∈
Fpu

′
wu
′
h×(2l+1)2·ci while 〈Y′〉0 ∈ Fp(2l+1)2·ci×co . Then,

P0 sends the encryptions c1 ← Enc(pk, 〈X′〉0) and
c2 ← Enc(pk, 〈Y′〉0) to P1 along with zero-knowledge
(ZK) proofs of plaintext knowledge of the two cipher-
texts.

3. P1 also converts 〈X〉1 and 〈Y〉1 into equiva-
lent matrixes 〈X′〉1 and and 〈Y′〉1. Then it sam-
ples (〈αX′〉1, 〈αY′〉1, 〈αZ′〉1, 〈Z′〉1), and computes
c3 = Encpk(α(〈X′〉1 + 〈X′〉0) − 〈αX′〉1), c4 =
Encpk(α(〈Y′〉1 + 〈Y′〉0) − 〈αY〉1), c5 = α � (cX′ ~
cY′) − Encpk(〈αZ′〉1), and c6 = (cX′ ~ cY′) −
Encpk(〈Z〉1). P1 sends c3, c4, c5 and c6 to P0.

4. P0 decrypts c3, c4, c5 and c6 to obtain
(〈αX′〉0, 〈αY′〉0, 〈αZ′〉0, 〈Z′〉0), respectively. Then,
Both P0 and P1 converts these matrices back
into tensors to get (〈αX〉b, 〈αY〉b, 〈αZ〉b, 〈Z〉b) for
b = {0, 1}.

5. Pb outputs {[[X]]b, [[Y]]b, [[Z]]b}b∈{0,1}, where Z =
Conv(X,Y).

Figure 4: Algorithm πCtriple for generating
authenticated convolution triple

3©Generating convolution triple. Figure 4 depicts the
interaction between the model holder P0 and the client
P1 to generate triples of convolution. Succinctly, P0

first uniformly selects 〈X′〉0 and 〈Y′〉0 and sends their
encryption to P1, along with zero-knowledge proofs
about these ciphertexts (step 2 in Figure 4). P1 recovers
X′ and Y′ under the ciphertext and then computes
(〈αX′〉0, 〈αY′〉0, 〈αZ′〉0, 〈Z′〉0) (step 3 in Figure 4). Then
it returns the corresponding ciphertexts to P0. P0 de-
crypts these ciphertexts and computes 〈αX〉0, 〈αY〉0,
〈αZ〉0 and 〈Z〉0 (step 4 in Figure 4). Finally, Pb obtains

{[[X]]b, [[Y]]b, [[Z]]b}b∈{0,1}, where Z = Conv(X,Y).
Remark 4.2: We utilize the method in [17] to perform

the homomorphic multiplication operations involved in
generating convolution triples in parallel. Given the
multiplication of two d × d-dimensional matrices, it
reduces the computational complexity from O(d2) to
O(d), compared with the existing method [14]. Besides,
[17] requires only one ciphertext to represent a single
matrix whereas existing work [14] requires d ciphertexts
(assuming the number of plaintext slots n in FHE is
greater than d2). In addition, compared to generating
multiplication triples for single multiplication [20], [22],
the communication overhead of our method is indepen-
dent of the number of multiplications, only related to
the size of the input, i.e., reduce the communication cost
from cubic to quadratic (both offline and online phases).

Remark 4.3: We further exploit the properties of semi-
honest clients to improve the performance of generating
convolution triples. Specifically, for the multiplication of
matrices X and Y, the permutations σ(X) and ϕ(Y)
can be done in plaintext beforehand, which reduces the
rotation in half compared to the original method (see
Section 3.2 in [17] for comparison). Moreover, we move
the majority of the computation to be executed by the
semi-honest party, which avoids the need for distributed
decryption and frequent zero-knowledge proofs in mali-
cious adversary settings.
Security. Our protocol for generating authenticated con-
volution triples, πCtriple, is secure against the malicious
model holder P0 and the semi-honest client P1. We
provide the following theorem.

Theorem 4.2. Let the fully homomorphic encryption used in
πCtriple have the properties defined in Section 2.4. πCtriple is
secure against the malicious model holder P0 and the semi-
honest client P1.

Proof: The proof logic of this theorem is very similar
to Theorem 4.1, we omit it for brevity.

4.1.3 Preprocessing for the nonlinear layer

This process is performed by the client to generate
garbled circuits of nonlinear functions for the model
holder. Note that we do not generate GC for ReLu but
for the nonlinear part of ReLU, i.e. sign(v) given an
arbitrary input v. We first define a truncation function
Trunh : {0, 1}λ → {0, 1}h, which outputs the last h bits
of the input, where λ satisfies λ ≥ 2κ. Then, the client is
required to generate random ciphertexts and send them
to the model holder as follows.
• Given the security parameter λ, and the boolean

circuit boolnC denoted the nonlinear part of ReLU, P1

computes Garble(1λ, boolnC) → (GC, {{labini,j}i∈[2κ],
{labouti,j }i∈[2κ]}j∈{0,1}), where GC is the garbled circuit
of boolnC , {{labini,j}i∈[2κ], {labouti,j }i∈[2κ]}j∈{0,1} rep-
resent all possible garbled input and output labels,
respectively. P1 sends GC to the model holder P0.

10

• P1 uniformly selects ηi,1, γi,1 and ιi,1 from Fp for every
i ∈ [κ]. Then, P1 sets (ηi,0, γi,0, ιi,0) = (1 + ηi,1, α +
γi,1, α+ ιi,1).

• P1 parses {labouti,j } as ςi,j ||ϑi,j for every i ∈ [2κ] and
j ∈ {0, 1}, where ςi,j ∈ {0, 1} and ϑi,j ∈ {0, 1}λ−1.

• For every i ∈ [κ] and j ∈ {0, 1}, P1 sends cti,ςi,j and
ĉti,ςi+κ,j to P0, where cti,ςi,j = ιi,j ⊕ Trunκ(ϑi,j) and
ĉti,ςi+κ,j = (ηi,j ||γi,j)⊕Trun2κ(ϑi+κ,j).

Security. We leave the explanation of above ciphertexts
sent by P1 to P0 to the following sections. Here we briefly
describe the security of preprocessing for nonlinear lay-
ers. It is easy to infer that the above preprocessing for the
nonlinear layer is secure against the semi-honest client
P1 and the malicious model holder P0. Specifically, for
the client P1, since the entire preprocessing process does
not require the participation of the model holder, the
client cannot obtain any private information about the
model holder. Similarly, for the malicious model holder
P0, since the preprocessing is non-interactive and the
generated ciphertext satisfies the GC security defined in
Section 2.9, P0 cannot obtain the plaintext corresponding
to the ciphertext sent by the client.

4.2 Online Phase

In this section, we describe the online phase of Veri-
fyML. We first explain how VerifyML utilizes the triples
generated in the offline phase to generate authenticated
shares for matrix-vector multiplication and convolution.
Then, we describe the technical details of the nonlinear
operation.

4.2.1 Perform linear layers in the online phase

Figure 5 depicts the interaction of the model holder
and the client to perform linear layer operations in the
online phase. Specifically, given the model holder’s input
{Li}i∈[m] and the client’s input v0, both parties first
generate authenticated shares of their respective inputs
(steps 1-4 in Figure 5). Since the client is considered
semi-honest, its input is shared more efficiently than the
model holder, i.e. only local computations are required
on randomly selected masks, while the sharing process
of model holder’s input is consistent with the previous
malicious settings [6], [20], [22]. After that, the model
holder and the client use the triples generated in the of-
fline phase (i.e., matrix-vector multiplication triples and
convolution triples) to generate authenticated sharing of
linear layer computation results (step 5 in Figure 5).
Security. Our protocol for performing linear layer op-
erations in the online phase, πOLin, is secure against the
malicious model holder P0 and the semi-honest client P1.
We provide the following theorem.

Theorem 4.3. Let triples used in πOLin are generated from
πMtriple and πCtriple. πOLin is secure against the malicious
model holder P0 and the semi-honest client P1.

Preamble: Consider a neural network (NN) consists of
m linear layers and m − 1 nonlinear layers. Let the
specification of the linear layer is L1,L1, · · ·Lm and the
non-linear layer is f1, · · · , fm−1.
Input:P0 holds {Li}i∈[m], i.e., weights for the m linear
layers. P1 holds x0 as the input of NN, a random
MAC key α from Fp to be used throughout the protocol
execution.
Output: Pb obtains [[vi = Lixi−1]]b for i ∈ [m] and b =
{0, 1}.
Procedure:
Input Sharing:
1. To share P0’s input {Li}i∈[m], all parties pick up a

fresh authenticated element [[Ri]] of the same dimen-
sion as Li.

2. [[Ri]] is opened to P0, and then it sends $i = Li−Ri

to P1.
3. Pb locally computes [[Li]]b = [[Ri]]b+$i for b = {0, 1}.
4. To share P1’s input v0, P1 randomly selects two

masks ξ and ζ of the same dimension as v0. Then,
it sends [[v0]]0 = (v0 − ξ, αv0 − ζ) to P0. P1 sets
[[v0]]1 = (ξ, ζ).

5. For each i ∈ [m],
• Matrix-vector Multiplication: To generate an au-

thenticated triple of multiplications between ma-
trix A and vector b, where A and b are vari-
ables generated in the inference process. P0 and
P1 take a fresh authenticated matrix-vector triple
{[[X]]b, [[y]]b, [[z]]b}b∈{0,1} of dimensions consistent
with A and b. Then, both party open A−X and
b−y. Finally, Pb locally computes [[A ∗b]]b based
on Eqn.(8).

• Convolution: To generate an authenticated triple
of Convolution between tensors A and B, where
A and B are variables generated in the inference
process. P0 and P1 take a fresh authenticated
Convolution triple {[[X]]b, [[Y]]b, [[Z]]b}b∈{0,1} of di-
mensions consistent with A and B. Then, both
party open A −X and b −Y. Finally, Pb locally
computes [[Conv(A,B)]]b based on Eqn.(8).

6. Pb obtains [[vi = Lixi−1]]b for i ∈ [m] and b = {0, 1}.

Figure 5: Online linear layers protocol πOLin

Proof: The proof logic of this theorem is identical to
that of [9]. Interested readers can refer to [9] for more
details.

4.2.2 Perform non-linear layers in the online phase
In this section, we present the technical details of the
execution of nonlinear functions in the online phase. We
mainly focus on how to securely compute the activation
function ReLU, which is the most representative non-
linear function in deep neural networks. As shown in
Figure 5, the result vi obtained from each linear layer
Li is held by both parties in the format of authenticated
sharing. Similarly, for the function fi in the i-th nonlinear
layer, the goal of VerifyML is to securely compute fi(vi)

11

Input:P0 holds [[vi]]0 and P1 holds [[vi]]1 for i ∈ [m] and
b = {0, 1}. In addition, P1 holds the MAC key α.
Output: Pb obtains [[xi = ReLU(vi)]]b and 〈αvi〉b for
i ∈ [m] and b = {0, 1}.
Procedure(take single vi as an example):
1. Garbled Circuit Phase:
• P0 and P1 invoke the OTκλ (see Section 2.8),

where P1’s inputs are {labinj,0, labinj,1}j∈{κ+1,··· ,2κ}
while P0’s input is 〈vi〉0. Hence, P0 learns
{ ~lab

in
j }j∈{κ+1,··· ,2κ}. Also, P1 sends its garbled

inputs {{ ~lab
in
j = labj,〈vi〉1[j]}j∈[κ] to P0.

• With GC and { ~lab
in
j }j∈[2κ], P0 evaluates

GCEval(GC, { ~lab
in
j }j∈[2κ])→ { ~lab

out
j }j∈[2κ].

2. Authentication Phase 1:
• P0 parses ~lab

out
j as ς̃j ||ϑ̃j where ς̃j ∈ {0, 1} and

ϑ̃j ∈ {0, 1}λ−1 for every j ∈ [2κ].
• P0 computes cj = ctj,ς̃j ⊕ Trunκ(ϑ̃j) and

(dj ||ej) = ĉtj,ς̃i+κ ⊕ Trun2κ(ϑ̃j+κ) for every j ∈
[κ].

3. Local Computation Phase:
• P1 outputs 〈g1〉1 = (−

∑
j∈[κ] ιj,12j−1),

〈g2〉1 = (−
∑
j∈[κ] ηj,12j−1) and 〈g3〉1 =

(−
∑
j∈[κ] γj,12j−1).

• P0 outputs 〈g1〉0 = (
∑
j∈[κ] cj2

j−1), 〈g2〉0 =

(
∑
j∈[κ] dj2

j−1) and 〈g3〉0 = (
∑
j∈[κ] ej2

j−1).

4. Authentication Phase 2:
• For every vi where i ∈ [m], Pb randomly select a

fresh authenticated triple {[[x]]b, [[y]]b, [[z]]b}b∈{0,1}.
• All parties reveal vi − x and g2 − y to each other,

and then locally compute 〈z2〉b = 〈vi · sign(vi)〉b
and 〈z3〉b = 〈αvi · sign(vi)〉b based on Eqn.(8).

• Pb obtains [[xi = ReLU(vi)]]b = (〈z2〉b, 〈z3〉b) and
〈αvi〉b = 〈g1〉b.

Figure 6: Online non-linear layers protocol πONlin

and share it to the model holder and client in the authen-
ticated sharing manner. We describe details in Figure 6.

Garbled Circuit Phase. As described in Section 4.1.3,
in the offline phase, P1 constructs a GC for the nonlinear
part of ReLU (i.e., sign(vi) for arbitrary input vi ∈ Fp)
and sent it to P0. In the online phase, P0 and P1 invoke
the OTκλ, where P1 as the sender whose inputs are
{labinj,0, labinj,1}j∈{κ+1,··· ,2κ} while P0’s (as the receiver)
input is 〈vi〉0. As a result, P0 gets set of garbled inputs
of vi in GC. Then, P0 evaluates GC with garbled inputs of
vi and learns the set of output labels for the bits of vi
and sign(vi).

Authentication Phase 1. This phase aims to calculate
the share of the authentication of each bit of vi, i.e.,
sign(vi)[j], αsign(vi)[j], and αvi[j] for j ∈ [κ], based
on the previous phase. We take an example of how to
calculate αvi. It is clear that the share of αvi[j] is either
0 or α depending on whether vi[j] is 0 or 1. Recall that

the output of the GC is two output labels corresponding
to each vi[j] (each one for vi[j] = 0 and 1). We use
the symbol laboutj,0 and laboutj,1 to denote vi[j] = 0 and
vi[j] = 1, respectively. To calculate the shares of αvi[j],
P1 randomly selects ιj ∈ Fp in the offline phase and
encrypts it as laboutj,1 and encrypts ιj + α as laboutj,0 . P1

sends the two ciphertexts to P0 and sets its own share
of αvi[j] to −ιj . Since P0 has obtained laboutj,vi[j]

in the
previous phase, it can definitely decrypt it and obtain
its own share of αvi[j]. Computation of sign(vi)[j] and
αsign(vi)[j] follows a similar logic, utilizing the random
values ηj,1, γj,1 sent by P1 to P0 in the offline phase,
respectively.

Local Computation Phase. This process is used to
calculate the share of sign(vi), αsign(vi), and αvi based
on the results learned by all parties in the previous stage.
For example, to compute the share of αvi, each party
locally multiplies the share of αvi[j] with 2j−1 and sums
all the resultant values. Each party computes the share
of sign(vi) and αsign(vi) in a similar manner.

Authentication Phase 2. We compute the shares of
ReLU(vi) = visign(vi), and αReLU(vi). Since each
party holds the authenticated shares of vi and sign(vi),
we can achieve this based on Eqn.(8).

Remark 4.4. We adopt two methods to minimize the
number of multiplication operations involved in the
GC. One is to compute the garbled output of per-bit
of sign(vi) in GC. Another is to encapsulate only the
nonlinear part of ReLU into GC. In this way, we avoid
computing αReLU(vi) and ReLU(vi) in GC, which is
multiply operation intensive. Compared with works [6],
[20], [22] with malicious adversary, VerifyML reduces the
communication overhead of each ReLU function from
2cλ+ 190κλ+ 232κ2 to 2dλ+ 4κλ+ 6κ2, where d� c.

Remark 4.5. We devise a lightweight method to check
whether the model holder’s input at the non-linear layer
is consistent with what it has learned at the previous
layer. Specifically, at the end of evaluating the i − 1-
th linear layer, both parties learns the share of αvi.
Then, vi is used as the input of the i-th nonlinear.
To check that P0 is fed the correct input, We require
αvi to be recomputed in GC and share again to both
parties. Therefore, after evaluating each nonlinear layer,
both parties hold two independent shares of αvi. This
provides a way to determine if P0 provided the correct
input by verifying that the two independent shares are
consistent (See Section 4.3 for more details).

Correctness. We analyze the correctness of our protocol
πONlin as follows. Based on the correctness of OTκλ, the
model holder P0 holds { ~lab

in
j = labj,〈vi〉0[j]}j∈{κ+1,···2κ}.

Using { ~lab
in
j = labj,〈vi〉1[j]}j∈[κ] for j ∈ [κ], and the cor-

rectness of (Garble, GCEval) for circuit boolnf , we learn
~lab
out
j = laboutj,vi[j]

and ~lab
out
j+κ = laboutj+κ,sign(vi)[j]

, for j ∈
[κ]. Therefore, for i ∈ [k], we have ς̃j ||ϑ̃j = ςj,vi[j]||ϑj,vi[j]
and ς̃j+κ||ϑ̃j+κ = ςj+κ,sign(v)i[j]||ϑj+κ,sign(vi)[j]. Hence,
cj = ctj,ςj,vi[j] ⊕Trunκ(ϑj,vi[j]) = ιj,vi[j] and

12

(dj ||ej) = ĉtj,ςj+κ,sign(vi)[j]
⊕ Trun2κ(ϑj+κ,sign(vi)[j]) =

ηj,sign(vi)[j]||γj,sign(vi)[j]. Based on these, we have
• g1 =

∑
j∈[κ](cj − ιj,0)2j−1 =

∑
j∈[κ] α(vi[j])2

j−1 = αvi.
• g2 =

∑
j∈[κ](dj − ηj,0)2j−1 =

∑
j∈[κ](sign(vi)[j])2

j−1 =
sign(vi).

• g3 =
∑
j∈[κ](ej − γj,0)2j−1 =

∑
j∈[κ] α(sign(vi)[j])2

j−1 =
αsign(vi).

Since each party holds the authenticated shares of vi and
sign(vi), we can easily compute the shares of f(vi) =
visign(vi), and αf(vi). This concludes the correctness
proof.
Security. Our protocol for performing nonlinear layer
operations in the online phase, πONlin, is secure against
the malicious model holder P0 and the semi-honest client
P1. We provide the following theorem and prove it in
Appendix D.

Theorem 4.4. Let (Garble, GCEval) be a garbling scheme
with the properties defined in Section 2.9. Authenticated shares
have the properties defined in Section 2.6. Then our protocol
πONlin is secure against the malicious model holder P0 and
the semi-honest client P1.

4.3 Consistency Check

VerifyML performs πOLin and πONlin alternately in the
online phase to output the inference result M(x0) for
a given input x0, where all intermediate results output
by the nonlinear layer and the linear layer are held
on P0 and P1 in an authenticated sharing manner. To
verify the correctness of M(x0), the client needs to
perform a consistency check on all computed results. If
the verification passes, P1 locally evaluates the fairness
of the ML model based on Eqn.(2). Otherwise, abort. In
more detail, for sharing P0’s input and executing each
linear layer {Li}i∈[m], VerifyML needs to pick up a large
number of fresh authenticated single elements or triples
(see Figure 5) and open them for computation. Assume
that the set of all opened elements is (a1, a2 · · · , at), and
Pb holds 〈ρi〉b = 〈αai〉b as well as 〈τi〉b = 〈ai〉b, we need to
perform a consistency check to verify ρi−ατi = 0. Beside,
For executing each nonlinear layer {fi}i∈[m−1], the inputs
of πONlin are shares of vi and τi = αvi. To check that P0

is fed the correct input, We require αvi to be recomputed
in the GC and share it again to both parties, denoting the
new αvi as ξi. We also need to perform a consistency
check to verify

∑i=m
i=1 τi − ξi = 0.

Figure 7 presents the details of consistency check,
where we combine all the above checks into a single
check by using random scalars picked by P1. The cor-
rectness of πOcheck can be easily deduced by inspecting
the implementation of the protocol. Specifically, By cor-
rectness of πOLin, we have ρj − ατj = (〈ρj〉0 − α0aj +
〈ρj〉1 − α1aj) = 0 for every linear layer {Lj}j∈[m]. By
correctness of πONlin, we have τi − ξi = (〈τi〉0 − 〈ξi〉0) +
(〈τi〉1−〈ξi〉1) = 0 for all nonlinear layers. Hence, we have
〈q〉0 +〈q〉1 =

∑
j∈[t] rj(ρj−ατj)+

∑
i∈[m−1] ri(τi−ξi) = 0.

Input:Pb b ∈ {0, 1} holds 〈τi〉b, 〈ξi〉b and [[aj]]b for i ∈
[m− 1] and j ∈ [t].
Output: P1 obtains M(x0) if verification passes. Other-
wise, abort.
Procedure
• For i ∈ [m] and j ∈ [t], P1 uniformly samples ri and

rj and sends them to P0.
• P0 computes 〈q〉0 =

∑
j∈[t] rj(〈ρj〉0 − α0aj) +∑

i∈[m−1] ri(〈τi〉0 − 〈ξi〉0), and sends 〈q〉0 to P1.
• P1 computes 〈q〉1 =

∑
j∈[t] rj(〈ρj〉1 − α1aj) +∑

i∈[m−1] ri(〈τi〉1 − 〈ξi〉1).
• P1 aborts if 〈q〉0 + 〈q〉1 6= 0 mod p. Else, P1 locally

evaluates the fairness of the ML model based on
Eqn.(2) by reconstructing M(x0).

Figure 7: Consistency check protocol πOcheck

Security. We demonstrate that the consistency check
protocol πOcheck have an overwhelming probability to
abort if P0 tampered with the input during execution.
We provide the following theorem and prove it in Ap-
pendix E.

Theorem 4.5. In real execution, if P0 tampers with its input,
then P1 aborts with probability at least 1− 1/p.

5 PERFORMANCE EVALUATION

In this section, we conduct experiments to demonstrate
the performance of VerifyML. Since there is no secure
inference protocol specifically designed for the mali-
cious model holder threat model, we choose the state-
of-the-art generic MPC framework Overdrive [22]5 as
the baseline. Note that we also consider the client as
a semi-honest entity when implementing Overdrive, so
that Overdrive can also utilize the properties of semi-
honest client to avoid redundant verification and zero-
knowledge proof. In this way, we can “purely” discuss
the technical advantages of VerifyML over Overdrive,
while excluding the inherent advantages of VerifyML
due to the weaker threat model. Specifically, we analyze
the performance of VerifyML from offline and online
phases, respectively, where we discuss the superiority of
VerifyML over Overdrive in terms of computation and
communication cost in performing linear and non-linear
layers. In the end, We demonstrate the cost superiority of
VerifyML compared to Overdrive on mainstream models
including ResNet-18 and LeNet.

5. Although work [6] shows better performance compared to Over-
drive, it is difficult to compare with [6] because of the unavailability of
its code. However, we clearly outperform [6] by constructing a more
efficient method to generate triples. In addition, [6] requires fitting
nonlinear functions such as ReLU to a quadratic polynomial to facilitate
computation, which is also contrary to the motivation of this paper.

13

5.1 Implementation details

VerifyML is implemented through the C++ language
and provides 128 bits of computational security and 40
bits of statistical security. The entire system operates
on the 44-bit prime field. We utilize the SEAL homo-
morphic encryption library [37] to perform nonlinear
layers including generative matrix-vector multiplication
and convolution triples, where we set the maximum
number of slots allowed for a single ciphertext as 4096.
The garbled circuit for the nonlinear layer is constructed
on the EMP toolkit [40] (with the OT protocol that resists
active adversaries). Zero-knowledge proofs of plaintext
knowledge are implemented based on MUSE [26]. Our
experiments are carried out in both the LAN and WAN
settings. LAN is implemented with two workstations in
our lab. The client workstation has AMD EPYC 7282
1.4GHz CPUs with 32 threads on 16 cores and 32GB
RAM. The server workstation has Intel(R) Xeon(R) E5-
2697 v3 2.6GHz CPUs with 28 threads on 14 cores and
64GB RAM. The WAN setting is based on a connection
between a local PC and an Amazon AWS server with
an average bandwidth of 963Mbps and running time of
around 14ms.

5.2 Performance of offline phase

5.2.1 Cost of generating matrix-vector multiplication triple

TABLE I: Cost of generating the matrix-vector
multiplication triple

Dimension
Comm.cost (MB) Running time (s)

Overdrive VerifyML(Reduction) Overdrive VerifyML (speedup)
LAN WAN LAN WAN

1× 4096 27.1 2.1
(12.9×) 2.3 17.7 0.9

(2.6×)
12.4

(1.5×)

16× 2048 216.4 17.6
(12.3×) 15.3 26.2 7.6

(2.0×)
14.1

(1.6×)

16× 4096 432.8 34.5
(12.5×) 30.6 43.4 15.1

(2.0×)
26.9

(1.6×)

64× 2048 865.6 68.3
(12.7×) 60.9 72.4 29.2

(2.1×)
40.7

(1.7×)

64× 4096 1326.2 135.7
(9.8×) 103.0 114.8 57.8

(1.8×)
68.2

(1.6×)

128× 4096 2247.4 271.9
(8.3×) 187.1 199.1 117.3

(1.6×)
128.4
(1.5×)

TABLE I describes the comparison of the overhead
of VerifyML and Overdrive in generating matrix-vector
multiplication triples in different dimensions. It is clear
that VerifyML is superior in performance to Overdrive,
both in terms of communication overhead and compu-
tational overhead. We observe that VerifyML achieves
more than 8× reduction in communication overhead
and at least 1.5× speedup in computation compared
to Overdrive. This stems from Overdrive’s disadvan-
tage in constructing triples, i.e. constructing triples for
only a single multiplication operation (or multiplica-
tion between a single row of a matrix and a vector).
In addition, the generation process requires frequent
interaction between the client and the model holder
(for zero-knowledge proofs and preventing breaches by

either party). This inevitably incurs substantial compu-
tational and communication overhead. Our constructed
matrix-multiplication triples enable the communication
overhead to be independent of the number of multi-
plications, only related to the size of the input. This
substantially reduces the amount of data that needs to
be exchanged between P0 and P1. In addition, we move
the majority of the computation to be executed by P1,
which avoids the need for distributed decryption and
frequent zero-knowledge proofs in malicious adversary
settings. Moreover, our matrix-vector multiplication does
not involve any rotation operation. As a result, these
optimization methods motivate VerifyML to exhibit a
satisfactory performance overhead in generating triples.

5.2.2 Cost of generating convolution triple

TABLE II: Cost of generating the convolution triple

Input Kernel
Comm.cost (GB) Running time (s)

Overdrive VerifyML Overdrive VerifyML (Speedup)
LAN WAN LAN WAN

16× 16
@128

1× 1
@128

17.1 2.1 1476.1 1494.6 924.7
(1.6×)

938.4
(1.6×)

16× 16
@256

1× 1
@256

67.8 8.2 6059.3 6059.31 3568.8
(1.7×)

3580.8
(1.7×)

16× 16
@512

3× 3
@128

467.5 56.8 40753.4 40767.1 25387.2
(1.6×)

25401.5
(1.6×)

32× 32
@2048

5× 5
@512

83127.8 7324.3 7245056.2 7245068.8 4521023.3
(1.6×)

4521165.6
(1.6×)

TABLE II shows the comparison of the performance
of VerifyML and Overdrive in generating convolution
triples in different dimensions, where input tensor of
size uw × uh with ci channels is denoted as uw × uh@ci,
and the size of corresponding kernel is denoted as
kw×kh@co. We observe that VerifyML is much lower than
Overdrive in terms of computational and communication
overhead. For instance, VerifyML gains a reduction of up
to 9× in communication cost and a speedup of at least
1.6× in computation. This is due to the optimization
method customized by VerifyML for generating convo-
lution triples. Compared to Overdrive, which focuses on
constructing authenticated triples for a single multiplica-
tion operation, VerifyML uses the homomorphic parallel
matrix multiplication method constructed in [17] as the
underlying structure to construct matrix multiplication
triples equivalent to convolution triples. Since a single
matrix is regarded as a computational entity, the above
method makes the communication overhead between the
client and the model holder only related to the size of
the matrix, and independent of the number of oper-
ations of the multiplication between the two matrices
(that is, the communication complexity is reduced from
O(d3) to O(d)2 given the multiplication between the
two d × d matrices). In addition, the optimized parallel
matrix multiplication reduces the homomorphic rotation
operation from O(d2) to O(d). This enables VerifyML to
show significant superiority in computing convolution
triples.

14

5.3 Performance of online phase
In the online phase, VerifyML is required to perform
operations at the linear and nonlinear layers alternately.
Here we discuss the overhead performance of VerifyML
compared to Overdrive separately.

5.3.1 Performance of executing linear layers

TABLE III: Comparison of the communication overhead
for executing convolution in the online phase

Input Kernel Comm.cost (MB)
Overdrive VerifyML (Reduction)

16× 16
@128

1× 1
@128

46.1 0.5
(85.3×)

16× 16
@256

1× 1
@256

184.5 1.4
(128.0×)

16× 16
@512

3× 3
@128

1271.7 15.7
(81.2×)

32× 32
@2048

5× 5
@512

226073.0 1459.8
(154.9×)

Since both VerifyML and Overdrive follow the same
computational logic to perform the linear layer in the on-
line phase, i.e. use pre-generated authenticated triples to
compute matrix-vector multiplication and convolution,
both exhibit similar compu- tational overhe. Therefore,
we focus on analyzing the difference in communica-
tion overhead between the two of executing convolu-
tion. TABLE III depicts the communication overhead of
VerifyML and Overdriveffor computing convolution in
different dimensions. It is obvious that VerifyML shows
superior performance in communication overhead com-
pared to Overdrive. This is mainly due to the fact that
Overdrive needs to open a fresh authenticated Beaver’s
multiplication triple for each multiplication operation,
which makes the communication overhead of executing
the entire linear layer positively related to the total
multiplication operations involved. In contrast, VerifyML
customizes matrix-vector multiplication and convolution
triples, which makes the cost independent of the number
of multiplication operations in the linear layer. This
substantially reduces the amount of data that needs to
be exchanged during the execution.

5.3.2 Performance of executing nonlinear layers
Figure 6 provides the comparison of the cost between
Overdrive and VerifyML. We observe that VerifyML out-
performs Overdrive by 4 − 42× in runtime on LAN
Setting and 3−16× in WAN Setting. For example, Over-
drive takes 165.4s and 1283.5s to compute 215 ReLUs on
LAN and WAN setting, respectively. Whereas, VerifyML
took just 5.1s and 110.2s in the respective network
settings. For communication overhead, we observed that
Overdrive required 401KB of traffic to perform a single
ReLU while we only need 8.33KB, which is at least a
48× improvement. This is mainly due to the fact that
our optimized GC substantially reduces the multiplication

20 22 24 26 28 210 212 214 216

Number of ReLU

0

10

20

30

40

Im
p

ro
ve

m
en

t
o

ve
r

O
ve

rd
ri

ve

LAN setting
WAN setting

(a)

210 211 212 213 214 215 216 217 218

Number of ReLU

1

2

3

4

5

6

7

 C
o

m
m

u
n

ic
at

io
n

 c
o

st
 (

M
B

) 104

DIKE
Overdrive

(b)

Fig. 6: Comparison of the overhead for executing
nonlinear layers. ((a) Running time improvement of

VerifyML over Overdrive. The y-axis shows Overdrive time
VerifyML time

(b) Comparison of the communication overhead.

operations involved in evaluating in the GC. Moreover,
Overdrive needs to verify the correctness of the input
from the model holder in the GC, which is very expensive.
Conversely, VerifyML designs lightweight consistency
verification methods to achieve this.

5.4 Performance of end-to-end secure inference

TABLE IV: Cost of end-to-end secure inference

LeNet

Phases
Comm.cost (MB) Running time (s)

Overdrive VerifyML Overdrive VerifyML (Speedup)
LAN WAN LAN WAN

Offline 3427.8 209.6 235.5 246.8 92.9
(2.5×)

104.6
(2.4×)

Online 2543.1 54.0 32.8 254.9 1.0
(32.6×)

21.9
(11.6×)

Total 5970.9 263.6 268.3 501.7 93.9
(2.9×)

126.5
(4.0×)

ResNet18

Phases
Comm.cost (MB) Running time (s)

Overdrive VerifyML Overdrive VerifyML (Speedup)
LAN WAN LAN WAN

Offline 2116018.6 257257.7 238774.2 238957.4 114003.1
(2.1×)

114978.8
(2.1×)

Online 19359.5 459.4 177.0 1373.7 5.5
(32.2×)

117.9
(11.7×)

Total 2135378.1 257717.1 238951.2 240331.1 114008.6
(2.1×)

115096.7
(2.1×)

We compare the performance of VerifyML and Over-
drive on real-world ML models. In our experiments, we
choose ResNet-18 and LeNet, which are trained on the
CelebA [28] and C-MNIST datasets [2] respectively. Note
that CelebA and C-MNIST are widely used to check
how fair a given trained model is. TABLE IV shows
the performance of VerifyML and Overdrive in terms of
computation and communication overhead. Compared
to Overdrive, VerifyML demonstrates an encouraging
online runtime boost by 32.6× and 32.2× over existing
works on LeNet and ResNet-18, respectively, and at least
an order of magnitude communication cost reduction. In
online phase, Overdrive takes 32.8s and 177s to com-
pute single query on LeNet and ReNet-18, respectively.
Whereas, VerifyML took just 1s and 5.5s in the respective
network settings. Consistent with the previous analysis,

15

this stems from the customized optimization mechanism
we designed for VerifyML.

5.5 Comparison with other works
Compared with DELPHI. We demonstrate that for the
execution of non-linear layers, the communication over-
head of VerifyML is even lower than the state-of-the-
art scheme DELPHI [29] under hte semi-honest threat
model. Specifically, for the i-th nonlinear layer, DELPHI
needs to calculate shares of fi(vi) in GC and share it
with two parties. DELPHI requires at least 3κ additional
AND gates, which incurs at least 6κλ bits of communi-
cation, compared to only computing each bit of fi(vi)
in VerifyML. In our experiment, For κ = 44, λ = 28,
our method gives roughly 9× less communication for
generating shares of fi(vi), i.e., DELPHI required 32KB
of traffic to perform a single ReLU while we only need
8.33KB.
Compared with MUSE and SIMC. We note that several
works such as MUSE [26] and SIMC [5] have been
proposed to address ML secure inference on the client
malicious threat model. Such a threat model considers
that the server (i.e., the model holder) is semi-honest but
the malicious client may arbitrarily violate the protocol to
obtain private information. These works intuitively seem
to translate to our application scenarios with appropri-
ate modification. However, we argue that this is non-
trivial. In more detail, in the client malicious model, the
client’s inputs are encrypted and sent to the semi-honest
model holder, which performs all linear operations for
speeding up the computation. Since the model holder
holds the model parameter in the plaintext, executing
the linear layer only involves homomorphic operations
between the plaintext and the ciphertext. Such type of
computation is compatible with mainstream homomor-
phic optimization methods including GALA [43] and
GAZELLE [19]. However, in VerifyML, the linear layer
operation cannot be done in the model holder because
it is considered malicious. One possible approach is
to encrypt the model data and perform linear layer
operations with two-party interaction. This is essentially
performing homomorphic operations between ciphertext
and ciphertext, which is not compatible with previous
optimization strategies. Therefore, instead of simply fine-
tuning MUSE [26] and SIMC [5], we must redesign new
parallel homomorphic computation methods to fit this
new threat model. On the other hand, we observe that
the techniques for nonlinear operations in MUSE [26] and
SIMC [5] can clearly be transferred to VerifyML. How-
ever, our method still outperforms SIMC (an upgraded
version of MUSE). This mainly stems from the fact that
we only encapsulate the nonlinear part of ReLU into GC
to further reduce the number of multiplication opera-
tions. Experiments show that our method is about one
third of SIMC in terms of computing and communication
overhead.

6 CONCLUSION
In this paper, we proposed VerifyML, the first secure
inference framework to check the fairness degree of a
given ML model. We designed a series of optimization
methods to reduce the overhead of the offline stage. We
also presented optimized GC to substantially speed up
operations in the non-linear layers. In the future, we will
focus on designing more efficient optimization strategies
to further reduce the computation overhead of VerifyML,
to make secure ML inference more suitable for a wider
range of practical applications.

REFERENCES
[1] Finastra Adam Lieberman. How data scientists can create a more

inclusive financial services landscape, 2022.
[2] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David

Lopez-Paz. Invariant risk minimization. arXiv preprint
arXiv:1907.02893, 2019.

[3] Rachel KE Bellamy, Kuntal Dey, Michael Hind, Samuel C Hoff-
man, Stephanie Houde, Kalapriya Kannan, Pranay Lohia, Jacque-
lyn Martino, Sameep Mehta, Aleksandra Mojsilovic, et al. Ai
fairness 360: An extensible toolkit for detecting, understand-
ing, and mitigating unwanted algorithmic bias. arXiv preprint
arXiv:1810.01943, 2018.

[4] Sumon Biswas and Hridesh Rajan. Do the machine learning
models on a crowd sourced platform exhibit bias? an empirical
study on model fairness. In Proceedings of ACM joint meeting
on European software engineering conference and symposium on the
foundations of software engineering (ESEC/FSE), pages 642–653,
2020.

[5] Nishanth Chandran, Divya Gupta, Sai Lakshmi Bhavana Ob-
battu, and Akash Shah. Simc: Ml inference secure against
malicious clients at semi-honest cost. Cryptology ePrint Archive,
2021.

[6] Hao Chen, Miran Kim, Ilya Razenshteyn, Dragos Rotaru, Yong-
soo Song, and Sameer Wagh. Maliciously secure matrix multipli-
cation with applications to private deep learning. In International
Conference on the Theory and Application of Cryptology and Informa-
tion Security (ASIACRYPT), pages 31–59. Springer, 2020.

[7] Alexandra Chouldechova, Diana Benavides-Prado, Oleksandr
Fialko, and Rhema Vaithianathan. A case study of algorithm-
assisted decision making in child maltreatment hotline screening
decisions. In Conference on Fairness, Accountability and Trans-
parency, pages 134–148. PMLR, 2018.

[8] Michele Ciampi, Vipul Goyal, and Rafail Ostrovsky. Threshold
garbled circuits and ad hoc secure computation. In Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT), pages 64–93. Springer, 2021.

[9] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias.
Multiparty computation from somewhat homomorphic encryp-
tion. In Annual Cryptology Conference (CRYPTO), pages 643–662.
Springer, 2012.

[10] Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, Daniel
Masny, and Daniel Wichs. Two-round oblivious transfer from
cdh or lpn. Annual International Conference on the Theory and
Applications of Cryptographic Techniques(EUROCRYPT), 12106:768,
2020.

[11] Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs
of identity. Journal of cryptology, 1(2):77–94, 1988.

16

[12] Tore Kasper Frederiksen, Thomas Pelle Jakobsen, Jesper Buus
Nielsen, Peter Sebastian Nordholt, and Claudio Orlandi. Mini-
lego: Efficient secure two-party computation from general as-
sumptions. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques (EUROCRYPT), pages
537–556. Springer, 2013.

[13] Alex B Grilo, Huijia Lin, Fang Song, and Vinod Vaikuntanathan.
Oblivious transfer is in miniqcrypt. In Annual International
Conference on the Theory and Applications of Cryptographic Tech-
niques(EUROCRYPT), pages 531–561. Springer, 2021.

[14] Shai Halevi and Victor Shoup. Algorithms in helib. In Annual
Cryptology Conference, pages 554–571. Springer, 2014.

[15] Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo
Soria-Vazquez. Concretely efficient large-scale mpc with active
security (or, tinykeys for tinyot). In International Conference on
the Theory and Application of Cryptology and Information Security
(ASIACRYPT), pages 86–117. Springer, 2018.

[16] Ayanna Howard and Jason Borenstein. The ugly truth about
ourselves and our robot creations: the problem of bias and social
inequity. Science and engineering ethics, 24(5):1521–1536, 2018.

[17] Xiaoqian Jiang, Miran Kim, Kristin Lauter, and Yongsoo Song.
Secure outsourced matrix computation and application to neural
networks. In Proceedings of the ACM SIGSAC conference on com-
puter and communications security (CCS), pages 1209–1222, 2018.

[18] Surya Mattu Julia Angwin, Jeff Larson and ProPublica Lau-
ren Kirchner. Machine bias, 2016.

[19] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chan-
drakasan. {GAZELLE}: A low latency framework for secure neu-
ral network inference. In USENIX Security Symposium (USENIX
Security 18), pages 1651–1669, 2018.

[20] Marcel Keller. Mp-spdz: A versatile framework for multi-party
computation. In Proceedings of ACM SIGSAC conference on com-
puter and communications security (CCS), pages 1575–1590, 2020.

[21] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively
secure ot extension with optimal overhead. In Annual Cryptology
Conference (CRYPTO), pages 724–741. Springer, 2015.

[22] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive:
making spdz great again. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques (EUROCRYPT),
pages 158–189. Springer, 2018.

[23] Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek.
Flexor: Flexible garbling for xor gates that beats free-xor. In
Annual Cryptology Conference (CRYPTO), pages 440–457. Springer,
2014.

[24] Preethi Lahoti, Alex Beutel, Jilin Chen, Kang Lee, Flavien Prost,
Nithum Thain, Xuezhi Wang, and Ed Chi. Fairness without
demographics through adversarially reweighted learning. Ad-
vances in neural information processing systems (NeurIPS), 33:728–
740, 2020.

[25] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learn-
ing. nature, 521(7553):436–444, 2015.

[26] Ryan Lehmkuhl, Pratyush Mishra, Akshayaram Srinivasan, and
Raluca Ada Popa. Muse: Secure inference resilient to malicious
clients. In USENIX Security Symposium (USENIX Security 21),
pages 2201–2218, 2021.

[27] Yehuda Lindell. How to simulate it–a tutorial on the simulation
proof technique. Tutorials on the Foundations of Cryptography,
pages 277–346, 2017.

[28] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep
learning face attributes in the wild. In Proceedings of the IEEE
international conference on computer vision, pages 3730–3738, 2015.

[29] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan,
Wenting Zheng, and Raluca Ada Popa. Delphi: A cryptographic
inference service for neural networks. In USENIX Security
Symposium, pages 2505–2522, 2020.

[30] Payman Mohassel and Yupeng Zhang. Secureml: A system for
scalable privacy-preserving machine learning. In IEEE symposium
on security and privacy (S&P), pages 19–38. IEEE, 2017.

[31] Debarghya Mukherjee, Mikhail Yurochkin, Moulinath Banerjee,
and Yuekai Sun. Two simple ways to learn individual fairness
metrics from data. In International Conference on Machine Learning
(ICML), pages 7097–7107. PMLR, 2020.

[32] Luca Oneto and Silvia Chiappa. Fairness in machine learning.
In Recent Trends in Learning From Data, pages 155–196. Springer,
2020.

[33] Osonde A Osoba and William Welser IV. An intelligence in our
image: The risks of bias and errors in artificial intelligence. Rand
Corporation, 2017.

[34] Flavien Prost, Pranjal Awasthi, Nick Blumm, Aditee Kumthekar,
Trevor Potter, Li Wei, Xuezhi Wang, Ed H Chi, Jilin Chen, and
Alex Beutel. Measuring model fairness under noisy covariates:
A theoretical perspective. In Proceedings of AAAI/ACM Conference
on AI, Ethics, and Society (AIES), pages 873–883, 2021.

[35] Mike Rosulek and Lawrence Roy. Three halves make a whole?
beating the half-gates lower bound for garbled circuits. In
Annual International Cryptology Conference (CRYPTO), pages 94–
124. Springer, 2021.

[36] Pedro Saleiro, Benedict Kuester, Loren Hinkson, Jesse London,
Abby Stevens, Ari Anisfeld, Kit T Rodolfa, and Rayid Ghani.
Aequitas: A bias and fairness audit toolkit. arXiv preprint
arXiv:1811.05577, 2018.

[37] Microsoft SEAL (release 4.0). https://github.com/Microsoft/
SEAL, March 2022. Microsoft Research, Redmond, WA.

[38] Shahar Segal, Yossi Adi, Benny Pinkas, Carsten Baum, Chaya
Ganesh, and Joseph Keshet. Fairness in the eyes of the data: Cer-
tifying machine-learning models. In Proceedings of the AAAI/ACM
Conference on AI, Ethics, and Society (AIES), pages 926–935, 2021.

[39] Nigel P Smart and Frederik Vercauteren. Fully homomorphic
simd operations. Designs, codes and cryptography, 71(1):57–81,
2014.

[40] Xiao Wang, Alex J Malozemoff, and Jonathan Katz. Emp-toolkit:
Efficient multiparty computation toolkit. https://github.com/
emp-toolkit, 2016.

[41] Paul Weiss, Rifkind, Wharton, and Garrison LLP. Breaking new
ground, cfpb will pursue discrimination as an ¡°unfair¡± practice
across the range of consumer financial services, 2022.

[42] Samee Zahur, Mike Rosulek, and David Evans. Two halves
make a whole. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques (EUROCRYPT), pages
220–250. Springer, 2015.

[43] Qiao Zhang, Chunsheng Xin, and Hongyi Wu. Gala: Greedy
computation for linear algebra in privacy-preserved neural net-
works. In Proceedings of the Network and Distributed System Security
(NDSS), 2021.

https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://github.com/emp-toolkit
https://github.com/emp-toolkit

17

Input: P0 holds 〈X〉0 uniformly chosen from Fd1×d2p and 〈y〉0 uni-
formly chosen from Fd2p . P1 holds 〈X〉1 uniformly chosen from Fd1×d2p ,
and 〈y〉1 uniformly chosen from Fd2p and a MAC key α uniformly
chosen from Fp
Output: Pb obtains {[[X]]b, [[y]]b, [[z]]b}b∈{0,1}, where X ∗ y = z.

Figure 8: Functionality of FMtriple

APPENDIX

APPENDIX A
THREAT MODEL
We formalize the threat model involved in VerifyML with
the simulated paradigm [27]. We define two interactions
to capture security: a real interaction by P0 and P1 in
the presence of adversary A and an environment Z, and
an ideal interaction where parties send their respective
inputs to a trusted entity that computes functionally
faithfully. Security requires that for any adversary A
in real interaction, there exists a simulator S in ideal
interaction, such that no environment Z can distinguish
real interaction from ideal interaction. Specifically, let
f = (f0, f1) be the two-party functionality such that P0

and P1 invoke f on inputs a and b to obtain f0(a, b)
and f1(a, b), respectively. We say a protocol π securely
implements f if it holds the following properties.
• Correctness: If P0 and P1 are both honest, then P0

gets f0(a, b) and P1 gets f1(a, b) from the execution
of π on the inputs a and b, respectively.

• Semi-honest Client Security: For a semi-honest
adversary A that compromises P1, there exists a
simulator S such that for any input (a, b), we have

V iewπA(a, b) ≈ S(b, f1(a, b))

where V iewπA(a, b) represents the view of A during
the execution of π, and a and b are the inputs of
P0 and P1, respectively. S(b, f1(a, b)) represents the
view simulated by S when it is given access to
b and f1(a, b). ≈ indicates computational indistin-
guishability of two distributions V iewπA(a, b) and
S(b, f1(a, b)).

• Malicious Model Holder Security: For the ma-
licious adversary A that compromises P0, there
exists a simulator S, such that for any input b from
P1, we have

OutP1 , V iew
π
A(b, ·) ≈ Ôut,Sf(b,·)

where V iewπA(b, ·) denotes A’s view during the execution
of π with S1’s input b. OutP1 indicates the output of P1

in the real protocol execution. Similarly, Ôut and Sf(b,·)

represents the output of P1 and the simulated view in
the ideal interaction.

APPENDIX B
PROOF OF THEOREM 1

Proof: Let FMtriple shown in Figure 8 be the function-

ality of generating matrix-vector multiplication triple.
We first prove security for semi-honest clients and then
demonstrate security against malicious model holders.
Semi-honest client security. The simulator Simc samples
(pk, sk) ← KeyGen(1λ). The simulator and the semi-
honest client run a secure two-party protocol to generate
the public and secret keys for homomorphic encryp-
tion. When the simulator accesses the ideal functionality,
it provides pk as output. In addition, the Simc sends
Encpk(0) to the client along with the simulated zero-
knowledge proof of well-formedness of ciphertexts. We
now show the indistinguishability between real and
simulated views by the following hybrid arguments.
• Hyb1: This corresponds to the real execution of the

protocol.
• Hyb2: The simulator Simc runs the two-party com-

putation protocol with the semi-honest client to
generate the public and secret keys for homo-
morphic encryption. When the simulator accesses
the ideal functionality, we sample (pk, sk) ←
KeyGen(1λ) and send pk to the semi-honest client.
This hybrid is computationally indistinguishable to
hyb1.

• Hyb3: In this hybrid, instead of sending the encryp-
tions c1 ← Enc(pk, 〈X〉0) and c2 ← Enc(pk, 〈Y〉0) to
P1, Simc sends ciphertexts with all 0s (i.e., Encpk(0))
to the client. Simc also provides a zero-knowledge
(ZK) proof of plaintext knowledge of the cipher-
texts. For any two plaintexts, FHE ensures that an
adversary cannot distinguish them from their ci-
phertexts. In addition, zero-knowledge proofs also
guarantee the indistinguishability of two cipher-
texts. Therefore, this hybrid is indistinguishable
from the previous one.

Malicious model holder security. The simulator Simm
samples (pk, sk) ← KeyGen(1λ). The simulator and the
semi-honest client run a secure two-party protocol to
generate the public and secret keys for homomorphic
encryption. When the simulator accesses the ideal func-
tionality, it provides (pk, sk) as outputs. Once P0 sends
c1 ← Enc(pk, 〈X〉0) and c2 ← Enc(pk, 〈Y〉0), Simm verifies
the validity of the ciphertext from the client. If the
verification is passed, Simm extracts 〈X〉0 and 〈Y〉0 and
the randomness used for generating these ciphertexts,
since it has access to the client’s input. Then, Simm
samples 〈X〉1 and 〈Y〉1, and queries the ideal func-
tionalities on the input 〈X〉0, 〈X〉1, 〈Y〉0 and 〈Y〉1 to
obtain (〈αX〉0, 〈αy〉0, 〈αz〉0, 〈z〉0). Then, Simm uses these
outputs and the randomness used to generate the initial
ciphertexts to construct the four simulated ciphertexts. It
sends the simulated ciphertexts to the client.
• Hyb1: This corresponds to the real execution of the

protocol.
• Hyb2: The simulator Simm runs the two-party com-

putation protocol with the malicious model holder
to generate the public and secret keys for ho-
momorphic encryption. When the simulator ac-
cesses the ideal functionality, we sample (pk, sk)←

18

Step (b)

Step (a)

Fig. 9: Conversion between convolution and matrix
multiplication

KeyGen(1λ) and send them to the malicious model
holder. This hybrid is computationally indistin-
guishable to hyb1.

• Hyb3: In this hybrid, Simm checks the validity of the
ciphertext from the client. If the zero-knowledge
proofs are valid, Simm extracts 〈X〉0 and 〈Y〉0 and
the randomness used for generating these cipher-
texts, since it has access to the client’s input. The
properties of zero-knowledge proofs ensure that
this hybrid is indistinguishable from the previous
one.

• Hyb4: Simm exploits the functional privacy of FHE to
generate c3 = Encpk(α(〈X〉1 + 〈X〉0)− 〈αX〉1), c4 =
Encpk(α(〈Y〉1 + 〈Y〉0)− 〈αY〉1), c5 = Encpk(α(X�
Y)− 〈αZ〉1), and c6 = Encpk((X�Y)− 〈Z〉1). This
hybrid is computationally indistinguishable to the
previous hybrid from the function privacy of the
FHE scheme. Note that view of the model holder
in Hyb4 is identical to the view generated by Simm.

APPENDIX C
CONVERSION BETWEEN CONVOLUTION AND
MATRIX MULTIPLICATION
Figure 9 provides an example to convert a given convo-
lution into the corresponding matrix multiplication. As
shown in Figure 9, given input tensor of size 5×5 with 3
channels, denoted as X, 3 kernels with a size of (2+1)×
(2+1)×3 denote as tensor Y, the convolution between X
and Y are converted an equivalent matrix multiplication
X′ and Y′, where the number of turns to zero-pad is
0, and stride s = 1. Specifically, we construct a matrix
X′ with dimension (9 × 27), where X′(i,j)(∆i,∆j ,k) =
Xi+∆i,j+∆j ,k. Similarly, we construct a matrix Y′ of
dimension (27×3) such that Y′(∆i,∆j , k)k′ = Y∆i,∆j ,k′ .
Then, the original convolution operation is transformed
into Z′ = X′ ∗Y′, where Z′(ij)k′ = Zijk′ .

APPENDIX D
PROOF OF THEOREM 4

Proof: Semi-honest client security.The security of
the protocol πONlin against the semi-honest client P1

is evident by observing the execution of the protocol.
This stems from the fact that P1 does obtain output in
OTκλ and does not receive any information from P0 in
subsequent executions. Here we focus on the security
analysis of πONlin against malicious model holder P0.
Malicious model holder security. We first define the
functionality of the protocol πONlin, denoted as FONlin,
as shown in Figure 10. We use Real to refer to the
view of the real interaction between P1 and the ad-
versary A controlling P0, and then demonstrate Real
indistinguishability from the simulated view interacted
by the simulator Simm and A through standard hybrid
arguments. In the following we will define three hybrid
executions Hyb1, Hyb2 and Hyb3. We prove that πONlin is
secure from the malicious model holder P0 by proving
indistinguishability among these hybrid executions.

Function f : Fp → Fp.
Input: P1 holds 〈vi〉1 ∈ Fp and a MAC key α uniformly chosen
from Fp. P0 holds 〈vi〉0 ∈ Fp.
Output: Pb obtains {(〈αvi〉b, 〈f(vi)〉b, 〈αf(vi)〉b)} for b ∈
{0, 1}.

Figure 10: Functionality of the nonlinear layer FONlin

Hyb1: This hybrid execution is identical to Real except
in the authentication phase. To be precise, in the au-
thentication phase, the simulator Simm use labels ˆlabouti,j

(described below) to replace the labels labouti,j used in
Real. Please note that in this hybrid the simulator Simm
can access P1’ input 〈vi〉1 and α, where 〈vi〉0+〈vi〉1 = vi.
Let δ = (vi||sign(vi)). Therefore, for i ∈ [2κ], we set

ˆlabouti,j = labouti,j if j = δ[i], otherwise, ˆlabouti,1−δ[i] (i.e.,

19

the “other” label) is set to a random value chosen from
{0, 1}λ uniformly, where the first bit of ˆlabouti,1−δ[i] is
1 − ςi,δ[i]. We provide the formal description of Hyb1
as follows, where the indistinguishability between the
view of A in Real and Hyb1 is directly derived from the
authenticity of the garbled circuit.

1. Simm receives 〈vi〉0 from A as the input of OTκλ.
2. Garbled Circuit Phase:

◦ For boolnf , Simm first com-
putes Garble(1λ, boolnf) →
(GC, {{labini,j}, {labouti,j }}j∈{0,1}) for each
i ∈ [2κ], and then for i ∈ {κ+ 1, · · · , 2κ}
sends { ~lab

in
j = labinj,〈vi〉0[j]} to A as the

output of OTκλ. In addition, Simm sends the
garbled circuit GC and its garbled inputs
{{ ~lab

in
j = labj,〈vi〉1[j]}j∈[κ] to A.

3. Authentication Phase 1:
◦ Simm sets δ = (vi||sign(vi)).
◦ For i ∈ [2κ], Simm sets ˆlabouti,j = labouti,δ[i] if j =

δ[i].
◦ For i ∈ [2κ], if j = 1 − δ[i], S sets ˆlabouti,j as a

random value chosen from {0, 1}λ uniformly,
where first bit of ˆlabouti,1−δ[i] is 1− ςi,δ[i].

◦ Simm computes and sends
{cti,j , ˆcti,j}i∈[κ],j∈{0,1} to A using

ˆlabouti,j i∈[2κ],j∈{0,1}. This process is same
as in Real execution using labouti,j i∈[2κ],j∈{0,1}.

4. Local Computation Phase: The execution of this
phase is indistinguishable from Real since no in-
formation needs to be exchanged between Simm and
A.

5. Authentication Phase 2:
◦ The execution is identical to Real.

Hyb2: We will make four changes to Hyb1 to ob-
tain Hyb2, and argue that Hyb2 is indistinguishable
from Hyb1 from the adversary’s view. To be pre-
cise, let GCEval(GC, { ~lab

in
i }i∈[2κ]) → {(ς̃i||ϑ̃i)i∈[2κ] =

{ ~lab
out
i }i∈[2κ]}. First, we have { ~lab

out
i = labouti,δ[i]}i∈[2κ]

based on the correctness of garbled circuits. Second,
we note that ciphertexts {cti,1−ς̃i , ĉti,1−ς̃i+κ}i∈[κ] are com-
puted by exploiting the “other” set of output labels
picked uniformly in Hyb1. Based on this observation, Simm
actually can directly sample them uniformly at random.
Third, in real execution, for every i ∈ [κ] and j ∈ {0, 1},
P1 sends cti,ςi,j and ĉti,ςi+κ,j to P0, and then P0 computes
ci, di and ei based on them. To simulate this, Simm only
needs to uniformly select random values ci, di and ei
which satisfy 〈αvi〉0 = (−

∑
j∈[κ] cj2

j−1), 〈sign(vi)〉0 =

(−
∑
j∈[κ] dj2

j−1) and 〈αsign(vi)〉0 = (−
∑
j∈[κ] ej2

j−1).
Finally, since 〈αvi〉0, 〈sign(vi)〉0 and 〈αsign(vi)〉0 are
part the outputs of functionality FONlin, Simm can obtain
these as the outputs from FONlin. In summary, with the
above changes, Simm no longer needs α of P1. We provide

the formal description of Hyb2 as follows.
1. Simm receives 〈vi〉0 from A as the input of OTκλ.
2. Garbled Circuit Phase: Same as Hyb1.
3. Authentication Phase 1:

◦ Simm runs GCEval(GC, { ~lab
in
i }i∈[2κ]) →

{(ς̃i||ϑ̃i)i∈[2κ] = { ~lab
out
i }i∈[2κ]}.

◦ Simm learns 〈αvi〉0, 〈sign(vi)〉0 and
〈αsign(vi)〉0 by sending 〈vi〉0 to FONlin.

◦ For j ∈ [κ], Simm uniformly selects
random values cj , dj and ej ∈ Fp
which satisfy 〈αvi〉0 = (−

∑
j∈[κ] cj2

j−1),
〈sign(vi)〉0 = (−

∑
j∈[κ] dj2

j−1) and
〈αsign(vi)〉0 = (−

∑
j∈[κ] ej2

j−1).
◦ For every i ∈ [κ], Simm computes

cti,ς̃i = ci ⊕ Trunκ(ϑ̃i) and ĉti,ς̃i+κ =

(di||ei) ⊕ Trun2κ(ϑ̃i+κ). For ciphertexts
{cti,1−ς̃i , ĉti,1−ς̃i+κ}i∈[κ], Simm samples them
uniformly at random.

◦ Simm sends {cti,j , ˆcti,j}i∈[κ],j∈{0,1} to A.
4. Local Computation Phase: The execution of this

phase is indistinguishable from Real since no in-
formation needs to be exchanged between Simm and
A.

5. Authentication Phase 2:
◦ The execution is identical to Real.

Hyb3: This hybrid we remove Simm’s dependence on
P1’s input 〈vi〉1. The indistinguishability between Hyb3
and Hyb2 stems from the security of the garbled circuit.
We provide the formal description of Hyb3 below.

1. Simm receives 〈vi〉0 from A as the input of OTκλ.
2. Garbled Circuit Phase:

◦ Simm samples Garble(1λ, boolnf) →
(G̃C, { ˆlab

in

i }i∈{κ+1,··· ,2κ}) and sends
{ ˆlabi}i∈{κ+1,··· ,2κ} to A as the output of
OTκλ. S also sends G̃C and { ˆlab

in

i }i∈[κ] to A.
3. Authentication Phase 1:
4. Local Computation Phase: The execution of this

phase is indistinguishable from Real since no in-
formation needs to be exchanged between Simm and
A.

5. Authentication Phase 2: Same as Hyb2, where Simm

uses (〈vi〉0, G̃C, and { ˆlab
in

i }i∈[2κ]) to process this
phase for A.

APPENDIX E
PROOF OF THEOREM 5

Proof: Assuming that P0 tampered with any of the
inputs it holds during the execution, q can be expressed
as follows

q = ∆ +
∑
j∈[t]

rj(ρj − ατj) +
∑

i∈[m−1]

ri(τi − ξi)

20

where ∆ refers to the increment caused by P0’s violation
of the protocol. The above formula can be expressed as
a 1-degree polynomial function Q(α) with respect to the
variable α. It is clear that Q(α) is a non-zero polynomial
whenever P0 introduces errors. Further, when Q(α) is

a non-zero polynomial, it has at most one root. Hence,
over the choice of α, the probability that Q(α) = 0 is at
most 1/p . Therefore, the probability that P1 aborts is at
least 1− 1/p when P0 cheats.

	1 Introduction
	2 Preliminaries
	2.1 Threat Model
	2.2 Notations
	2.3 ML Fairness Measurement
	2.4 Fully Homomorphic Encryption
	2.5 Parallel Matrix Homomorphic Multiplication
	2.6 Secret Sharing
	2.7 Authenticated Beaver's Triples
	2.8 Oblivious Transfer
	2.9 Garbled Circuits

	3 Technical Intuition
	3.1 Offline-Online Paradigm
	3.2 Linear Layer Optimization
	3.3 Non-linear Layer Optimization

	4 The VerifyML Framework
	4.1 Offline Phase
	4.1.1 Generating matrix-vector multiplication triple
	4.1.2 Generating convolution triple
	4.1.3 Preprocessing for the nonlinear layer

	4.2 Online Phase
	4.2.1 Perform linear layers in the online phase
	4.2.2 Perform non-linear layers in the online phase

	4.3 Consistency Check

	5 Performance Evaluation
	5.1 Implementation details
	5.2 Performance of offline phase
	5.2.1 Cost of generating matrix-vector multiplication triple
	5.2.2 Cost of generating convolution triple

	5.3 Performance of online phase
	5.3.1 Performance of executing linear layers
	5.3.2 Performance of executing nonlinear layers

	5.4 Performance of end-to-end secure inference
	5.5 Comparison with other works

	6 Conclusion
	References
	Appendix A: Threat Model
	Appendix B: Proof of Theorem 1
	Appendix C: Conversion between convolution and matrix multiplication
	Appendix D: Proof of Theorem 4
	Appendix E: Proof of Theorem 5

