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Abstract—gVisor is a Google-published application-level kernel for containers. As gVisor is lightweight and has sound isolation, it has
been widely used in many IT enterprises [1]–[3]. When a new vulnerability of the upstream gVisor is found, it is important for the
downstream developers to test the corresponding code to maintain the security. To achieve this aim, directed fuzzing is promising.
Nevertheless, there are many challenges in applying existing directed fuzzing methods for gVisor. The core reason is that existing
directed fuzzers are mainly for general C/C++ applications, while gVisor is an OS kernel written in the Go language. To address the
above challenges, we propose G-Fuzz, a directed fuzzing framework for gVisor. There are three core methods in G-Fuzz, including
lightweight and fine-grained distance calculation, target related syscall inference and utilization, and exploration and exploitation
dynamic switch. Note that the methods of G-Fuzz are general and can be transferred to other OS kernels. We conduct extensive
experiments to evaluate the performance of G-Fuzz. Compared to Syzkaller, the state-of-the-art kernel fuzzer, G-Fuzz outperforms it
significantly. Furthermore, we have rigorously evaluated the importance for each core method of G-Fuzz. G-Fuzz has been deployed in
industry and has detected multiple serious vulnerabilities.

Index Terms—gVisor, OS Kernel, Directed Fuzzing, Vulnerability Detection

✦

1 INTRODUCTION

gVisor [4] is an application kernel that aims to provide
secure isolation between the host kernel and the applica-
tions running inside the containers. Compared to the virtual
machine, gVisor is more lightweight and can provide a
similar isolation level. Thus, it has been adopted in many
IT companies [1]–[3].

The vulnerabilities of gVisor may severely impact the
security and stability of the production environments. Those
IT companies usually implement a customized gVisor based
on the specific application scenario, and they may face many
security issues. How to test whether the modified code
of the customized gVisor introduces new vulnerabilities?
When a vulnerability of gVisor has been patched, whether
the patch can fix the vulnerability? To address the above
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questions, directed fuzzing is one promising and practical
solution. Directed fuzzing aims at generating the test cases
that can trigger the specified target code. The current di-
rected fuzzing techniques can be mainly categorized into
two classes: symbolic execution based whitebox directed
fuzzing [5], [6] and directed greybox fuzzing (DGF) [7], [8].
As symbolic execution has limitations such as path explo-
sion and complex constraints, it is hard to apply symbolic
execution based directed fuzzing on large and complex
software like kernels. For OS kernels, compared to symbolic
execution based methods, DGF has better scalability and is
more feasible. Nevertheless, there are still many challenges
when applying existing DGF techniques on gVisor as fol-
lows.

High Time Overhead in Distance Calculation. DGF
usually leverages distance information as the guidance for
testing the target. Specifically, DGF selects the closer in-
puts as seeds to generate new inputs. For each code (e.g.,
function/basic block) of the test program, DGF calculates
its static distance to the target function/basic block before
fuzzing. Then, during the fuzzing process, the executed
inputs that cover the code closer to the target will be selected
as the seeds to further generate new inputs. However,
the time overhead of the current DGF in calculating static
distance is hardly affordable for large software or systems
like OS kernels. For instance, when leveraging the state-
of-the-art DGF method, AFLGo [7], to calculate the static
distance for gVisor, the average time it takes is more than
16 hours. Therefore, the time burden brought by the current
static distance methods severely impedes the efficiency of
directed fuzzing.

The Limitations of the Distance Information. Even
with the distance information, there are still many chal-
lenges. First, the distance information may not be precise.
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For instance, when constructing a program’s function Call
Graph (CG), AFLGo does not consider the indirect calls. As
a result, the CG may lose some critical edges, which further
affects the precision of the distance information. In addition,
both AFLGo and Hawkeye [8], the state-of-the-art directed
greybox fuzzers, approximate basic block level distance by
multiplying function level distance with a constant (e.g., 10
in AFLGo paper [7]), which may cause many biases. Second,
although the distance information can provide guidance in
triggering the target, it still has disadvantages. The paths
that are closer to the target may not necessarily be easier
to get there, as distance is spatial information and may not
provide an equivalent measure of the difficulty in reaching
the target. Moreover, in patch testing, a typical application
scenario of directed fuzzing, there may be multiple paths
leading to the patch target. Therefore, only focusing on the
shortest path might not be able to comprehensively test
the patch code. Thus, to improve DGF, it is necessary to
improve the precision of the distance calculation and make
reasonable use of the distance information.

Difference of Inputs. Existing DGF mainly focuses on
testing the general user-space applications that take files as
inputs. Although gVisor runs in the user mode, in essence,
it is an OS kernel that takes syscall➀ sequences as inputs.
Compared to files, the structure and semantic requirements
for syscall sequences are more strict. When testing kernels,
it is necessary to provide meaningful syscall sequences as
inputs. Otherwise, only the shallow code of the kernel
can be triggered. gVisor implements more than 200 Linux
syscalls, and each syscall may have several parameters. As a
result, the whole input space for fuzzing gVisor is extremely
vast. However, for directed fuzzing, the target is triggered
by a limited syscalls. Thus, identifying the target related
syscalls to reduce the input space needed to be explored is
crucial to directed fuzzing for kernels.

To address the above challenges, we propose G-Fuzz,
a directed fuzzing framework for gVisor, including three
principal methods.

Lightweight and Fine-grained Distance Calculation.
To solve the problem of the high time overhead and low
precision in distance calculation, we propose a lightweight
and fine-grained distance calculation method. First, we perform
reachability analysis to find the paths that can lead to the
target. We then calculate the distance only for the code on
these reachable paths instead of all code. Second, we utilize
the Breadth First Search (BFS), a less complex algorithm than
the Dijkstra algorithm [9] that used by existing DGF [7],
[8], to calculate the distance between two nodes. To solve
the false negatives, we use type analysis to identify the
indirect calls. Then, we construct an inter-procedural CFG
to calculate basic block level distance, which is more fine-
grained than existing DGF’s distance.

Target Related Syscall Inference and Utilization. To re-
duce the input space that needs to be explored, we propose
a target related syscall inference and utilization method. Before
directed fuzzing, G-Fuzz automatically infers which syscalls
are related to the specified target. Specifically, we propose
eight inference rules based on static analysis and the expert
knowledge of the gVisor code. Then, based on the inference

➀We use syscall to indicate system call in this paper.

results, G-Fuzz utilizes the inferred syscalls in the muta-
tion operations to generate new inputs during the fuzzing
process. To make efficient use of the inferred syscalls, we
adjust the selection probability of each syscall according to
the dynamic information of the fuzzing process. In addition,
considering the dependencies of different syscalls, we adjust
the order of each syscall in the mutation process to improve
the semantic correctness of the generated inputs.

Exploration and Exploitation Dynamic Switch. To make
reasonable use of the distance information, we propose the
exploration and exploitation dynamic switch method. There are
two modes of G-Fuzz in the fuzzing process: exploration
and exploitation. In the exploration mode, G-Fuzz acts like a
“coverage-based” fuzzer, aiming at covering as many paths
as possible, which can increase the diversity of the seeds
and mitigate false negatives (e.g., missing CG edges). In the
exploitation mode, G-Fuzz pays more attention to the target
by selecting the closer seeds, which aims at accelerating
triggering the target. Exploring more paths may increase
the probability of triggering the target, but it is not efficient.
Only focusing on testing the closer paths may make the
fuzzing fall into local optimal. Therefore, it is necessary
to make a trade-off and an adaptive adjustment. G-Fuzz
adopts a dynamic strategy to adjust the mode selection
according to the feedback from the current fuzzing state.
During the fuzzing process, if one mode does not make any
progress over a time threshold, G-Fuzz will switch to the
other mode adaptively.

To evaluate G-Fuzz, we test its performance in three
typical application scenarios of directed fuzzing, including
general target testing, patch testing and bug reproduction.
We compare G-Fuzz to Syzkaller and Syz-Go. Syzkaller is
a state-of-the-art kernel fuzzer, and Syz-Go is implemented
by us by applying the advanced directed fuzzing methods of
AFLGo on Syzkaller. The experimental results demonstrate
that G-Fuzz achieves more efficient and stable performance
than both Syzkaller and Syz-Go. Out of the evaluated 59 typ-
ical targets, G-Fuzz outperforms Syzkaller on 58 ones, and
outperforms Syz-Go on 53 ones. G-Fuzz achieves at least
twice speed in trigger the targets than Syzkaller and Syz-
Go on 32 targets. On 5 targets, only G-Fuzz can successfully
trigger while Syzkaller cannot trigger. On 2 targets, only G-
Fuzz can successfully trigger while Syz-Go cannot trigger.
We also evaluate the effectiveness of each core method of
G-Fuzz separately in § 6, and the results show that all
methods make important contribution to the outstanding
performance of G-Fuzz. Furthermore, we have deployed G-
Fuzz in Ant Group, a world-leading IT company, and G-
Fuzz has detected multiple real-world vulnerabilities of its
customized gVisor.

The contributions of our paper are summarized as fol-
lows.

• Novel and General Methods. We propose G-Fuzz, a
directed fuzzing framework for gVisor, with three novel
methods: lightweight and fine-grained distance calculation,
target related syscall inference and utilization and explo-
ration and exploitation dynamic switch. The methods of
G-Fuzz are general and scalable, which can be easily
extended to testing more OS kernels. Based on the
proposed methods of G-Fuzz, we also implement a
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Fig. 1: The framework of gVisor.

prototype called G-Fuzz-Linux, for directed fuzzing
Linux kernels.

• Significant Performance. We conduct extensive exper-
iments to evaluate the performance of G-Fuzz. The
experimental results demonstrate that G-Fuzz outper-
forms the state-of-the-art kernel fuzzer significantly.

• Real-world Impacts. We have applied G-Fuzz in prac-
tice and leverage it to discover multiple real-world
vulnerabilities of the downstream gVisor in industry. To
facilitate further research on OS kernel directed fuzzing,
we have open-sourced both G-Fuzz [10] and G-Fuzz-
Linux [11].

2 BACKGROUND

In this section, we first give a brief introduction about
gVisor. Then, we introduce directed fuzzing techniques.

2.1 gVisor
gVisor is an application kernel, which is mainly used in
virtual environments such as containers. It implements
the isolation by intercepting the syscalls requested from
the applications in containers, acting as a guest kernel.
gVisor supports most Linux syscalls and runs as a stan-
dard, unprivileged process in user-space. Specifically, gVi-
sor supports 260 syscalls for the AMD64 arch in version
release-20210125.0. The yellow color part of Fig. 1
presents the framework of gVisor. It consists of two pri-
mary components: Sentry and Gofer, which run as two
processes. Sentry is the core of gVisor, which is responsible
for processing the syscalls from the user-space applications.
gVisor provides two modes: KVM and ptrace, to redirect
the syscalls to Sentry. To provide extra security protection,
gVisor adopts the seccomp (secure computing mode)
mechanism to restrict the available syscalls to the host
kernel. For instance, the Sentry process has no access to file-
related syscalls. Therefore, when Sentry needs to read or
write files on the host file system, it will communicate with
the Gofer process using the 9P protocol. Gofer mediates all
these host file-system accesses, providing an additional level
of isolation. gVisor also implements a user-space network
stack (i.e., netstack), which can process most network-
related tasks.

2.2 Directed Fuzzing
Given a target site of a program, the goal of directed fuzzing
is to generate the inputs that can trigger it. Compared to

coverage-based fuzzing, directed fuzzing is faster in detect-
ing vulnerabilities that locate in specified sites. The original
directed fuzzing methods are symbolic execution based [5],
[12]–[14], which cast the reachability problem as the itera-
tive constraint satisfaction problem [7]. Nevertheless, due
to the heavyweight program analysis and the difficulty of
constraint solving, these methods suffer from the issues of
lousy scalability.

To solve these issues, DGF techniques [7], [8] are pro-
posed, which leverage the distance information to guide
the fuzzing in generating inputs that can reach the target.
Before the fuzzing, DGF calculates a static distance for each
component (e.g., basic block or function) of a program to the
target. During the fuzzing process, the inputs that are closer
to the target are selected as seeds and given more mutation
times. The distance of an input is calculated based on the
static distance of its covered paths. Compared to symbolic
execution based directed fuzzing methods, DGF is more
practical and has better performance. For instance, AFLGo, a
state-of-the-art DGF, spends less than 20 minutes triggering
the heartbleed vulnerability, while KATCH [5], a state-of-the-
art symbolic execution based fuzzer, cannot trigger this vul-
nerability within 24 hours [7]. Therefore, in this paper, we
choose to leverage the DGF method for testing gVisor. There
are many works to improve the efficiency of DGF [15]–[19].
Nevertheless, the above directed fuzzing work is still not
appropriate for testing OS kernels. As we discuss in §1, there
are many challenges in applying existing DGF techniques on
kernels. That is what we aim to solve in this paper.

3 DESIGN OF G-FUZZ

In this section, we first present the overview of G-Fuzz. Then
we describe each core method of G-Fuzz in detail.

3.1 Overview

Fig. 2 illustrates the overview of G-Fuzz, which consists of
two main components: static analysis and directed fuzzing.
Given a target in gVisor, the static analysis component aims
to extract the information for directed fuzzing, including
static distance, target related syscalls, etc. Then, the directed
fuzzing component leverages the extracted information to
steer the fuzzer in generating inputs that can trigger the
target.

Static Analysis. There are four main steps involved
in the static analysis component of G-Fuzz. First, G-Fuzz
constructs the CG and CFG of gVisor. Second, based on the
CG and CFG, G-Fuzz performs reachability analysis for the
given target to find the paths in gVisor which can lead to
the target. We name the code on these paths as the reachable
set of the target. Third, G-Fuzz calculates the static distance
for each basic block in the reachable set. Finally, G-Fuzz
determines which syscalls are related to the target based
on the automatic inference rules, which are designed based
on static analysis and expert knowledge. In addition, G-
Fuzz leverages the static distance information to measure
the relevance between each inferred syscall with the target.

Directed Fuzzing. After static analysis, G-Fuzz moves
on to directed fuzzing. The initial seeds are constructed
based on the inferred target related syscalls. Next, G-Fuzz
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Fig. 2: The overview of G-Fuzz.

selects the inputs with good performance as seeds through-
out the fuzzing process. There are two strategies for select-
ing inputs. One is selecting inputs that find new paths (i.e.,
exploration strategy), and the other is selecting inputs closer
to the target (i.e., exploitation strategy). To make reasonable
use of the distance information and alleviate its limitations,
we propose an exploration and exploitation dynamic switch
method to seek a balance. When the fuzzer gets “stuck” by
using a seed selection strategy over a time threshold, G-Fuzz
will switch to the other strategy adaptively.

As a mutation-based fuzzer, G-Fuzz mutates the seeds
to generate new inputs. Considering that gVisor is an OS
kernel, whose inputs are syscall sequences, we propose
the following methods in G-Fuzz to generate high-quality
inputs for directed fuzzing. First, G-Fuzz leverages the
inferred syscalls in the mutation process to generate inputs
that tend to trigger the target. Second, as there may exist
false positives in the inferred syscalls, G-Fuzz dynamically
adjusts the selection probability of each syscall according
to its effectiveness in directed fuzzing. Third, G-Fuzz does
not insert the syscalls randomly but determines their orders
based on the dependencies of different syscalls. Based on the
above methods, G-Fuzz can generate semantically correct
inputs that have close relevance to the target.

Below, we will give a detailed description of the methods
in G-Fuzz.

3.2 Lightweight and Fine-grained Distance Calculation
When applying the existing DGF techniques in OS kernels
like gVisor, there are two main issues with their static
distance calculation methods. One is that the time overhead
of distance calculation is unacceptably high. The other is
that the distance information is coarse-grained and impre-
cise. Next, we first provide a depth analysis on the two
challenges in detail and then propose our solutions.

High Time Overhead. The time overhead of existing
DGF in calculating static distance is hardly affordable for
large systems like OS kernels. There are two main state-
of-the-art directed greybox fuzzers: AFLGo and Hawkeye.
As only AFLGo is open-source, we can only test AFLGo
and analyze its code. Next, we mainly take AFLGo as the
example. For instance, AFLGo spends nearly 2 hours in
compiling and instrumenting cxxfilt [20]. Compared to
cxxfilt, gVisor is an OS kernel, which has more code.
In our experiments, we find that AFLGo spends more than
16 hours in average in calculating the static distance for
gVisor. Note that when testing a new target, the distance

information needs to be re-calculated. To address the high
time overhead issue, we conduct an in-depth analysis about
the method and code of existing DGF in calculating distance
and find the following causes.

First, AFLGo calculates the distance between all code
and the target with a traversal method. Nevertheless, only
parts of the code can lead to the target. Thus, it is un-
necessary to calculate distances for all code. Second, both
AFLGo and Hawkeye utilize the Dijkstra algorithm to find
the shortest path between two nodes to further calculate
their distance. The Dijkstra algorithm is mainly used to find
the shortest path for weighted graphs. As both CG and CFG
are unweighted graphs, it is unnecessary to use the Dijkstra
algorithm. Third, the implementation code of AFLGo has
many issues. For instance, each time AFLGo calculates a
function level distance, it starts a Python process, incurring
unnecessary Python startup and library initialization time
cost repeatedly. Moreover, the static distance information
is instrumented into the target program. That is, the high
time overhead distance calculation is tightly coupled to the
compilation process. When testing other targets, in addition
to re-calculating the static distance, AFLGo has to re-build
the target program, causing much overhead.

Coarse-grained and Imprecise Distance. Despite the
time overhead issue, the distance information calculated by
the existing DGF methods is inadequate in terms of gran-
ularity and precision. First, AFLGo and Hawkeye approxi-
mate basic block level distance with function level distance,
which is coarse-grained and may cause much bias. Second,
when constructing CG, AFLGo does not consider the indi-
rect calls. Thus, the CG may miss some edges, which further
affects the precision of the distance information. Hawkeye
uses Andersen’s pointer analysis method [21] to identify
indirect calls. However, pointer analysis is computational
expensive [22] and does not guarantee the soundness [23],
[24].

Solutions of G-FUZZ. To address the above issues, we
propose a lightweight and fine-grained distance calcula-
tion method. First, G-Fuzz constructs the CG of gVisor
and performs intra-procedural analysis to extract the CFG
of each function in gVisor. We leverage Rapid Type Anal-
ysis (RTA) [25], a type analysis method, and customize
go-callvis [26] to identify the indirect calls in gVisor.
Compared to pointer analysis, type analysis is faster and
has fewer false negatives. We find that there exist false
negatives (i.e., missing some critical indirect calls) when
using pointer analysis for gVisor. Missing critical indirect



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 1, 2024 5

1 func ( r fd * r e p l i c a F i l e D e s c r i p t i o n ) I o c t l ( c t x
↪→ contex t . Context , io usermem . IO , args arch .
↪→ SyscallArguments ) ( u intptr , e r r o r ) {

2 . . .
3 switch cmd := args [ 1 ] . Uint ( ) ; cmd {
4 case l inux .FIONREAD:
5 re turn 0 , r fd . inode . t . ld . inputQueueReadSize ( t ,

↪→ io , args )
6 case l inux . TCGETS :
7 re turn rfd . inode . t . ld . getTermios ( t , args )
8 case l inux . TCSETS :
9 re turn rfd . inode . t . ld . setTermios ( t , args )

10 . . .
11 }

Fig. 3: A code snippet related with ioctl.

calls may make CG lose many edges, which will severely
impact the guidance of directed fuzzing. Thus, we choose
to use type analysis although it may over-approximate
some indirect calls. Based on the extracted CG, G-Fuzz
performs reachability analysis on gVisor for the given target
to find out which functions are on the paths to the target.
We name these functions as reachable functions. In specific,
starting from the target function, G-Fuzz adopts a bottom-
up method to traverse the callers iteratively to obtain all the
reachable functions. Then, based on the CG, G-Fuzz connects
the CFGs for these reachable functions to construct a local
inter-procedural CFG. Next, G-Fuzz utilizes the BFS algo-
rithm to find the shortest path between each node of the
local inter-procedural CFG and the target node. The length
of the shortest path is the basic block level distance.

In summary, our proposed method can effectively ad-
dress the issues of high time overhead and low precision
in distance calculation. For the time overhead issue, first,
by performing reachability analysis, we reduce the overhead
caused by the unrelated code. Second, we use the BFS
algorithm rather than the Dijkstra algorithm to find the
shortest paths, which has a lower complexity. More specif-
ically, the complexity of the Dijkstra algorithm is O(V 2),
while the complexity of the BFS algorithm is O(V + E),
where V represents the number of nodes in the graph,
and E represents the number of edges in the graph. For
the low precision issue, first, we utilize type analysis to
identify the indirect calls of CG to reduce the false negatives.
Second, based on the reachability analysis, we can effectively
construct a local inter-procedural CFG to calculate the more
precise basic block level distance than existing DGF. In
addition, we do not instrument the distance information
into the gVisor, but use a file to map each basic block and
its static distance, making the method more scalable than
existing DGF methods. We conduct experiments to provide
detailed evaluation and analysis about the overhead and
precision of our distance calculation method. Specifically,
for six different gVisor’s targets, G-Fuzz spends 97.1 seconds
in calculation the static distance for gVisor in average, while
AFLGo spends 68346 seconds in average, demonstrating the
significant performance of G-Fuzz. More detailed results are
presented in §6.1.

3.3 Inference of Target Related Syscalls
In essence, the goal of directed fuzzing gVisor is to generate
the syscall sequences that can trigger the specified target.
However, generating the inputs which can trigger the target

TABLE 1: The information of the syscall variants that G-
Fuzz can infer.

Syscall Variants
Count Example

arch prctl 3 arch prctl$ARCH GET FS
epoll ctl 3 epoll ctl$EPOLL CTL MOD

getsockopt 10 getsockopt$inet6 IPV6 IPSEC POLICY
ioctl 49 ioctl$TCGETS2
prctl 21 prctl$PR SET MM AUXV

semctl 15 semctl$SEM INFO
setsockopt 16 setsockopt$inet MCAST JOIN GROUP

shmctl 9 shmctl$SHM LOCK
waitid 1 waitid$P PIDFD

from the whole input space is quite challenging. gVisor
implements more than 200 Linux syscalls, and each syscall
may have multiple parameters. Moreover, a sequence may
contain different numbers of syscalls, and the permutations
of their order are various. Thus, the whole input space is
extremely vast. To reduce the input space needed to explore
and improve the efficiency of directed fuzzing, we propose
an automatic method to infer which syscalls are related
to the given target before fuzzing. This method is based
on static analysis and the expert knowledge of gVisor. It
needs to note that the generation process of the inference
rules relies on the expert knowledge. But once the inference
rules are formed, they can be used automatically. The us-
age process is as follows: a user just provides the specific
location of the target or crash report➀, and the inference
rules automatically output its related syscalls. During the
next dynamic fuzzing process, the utilization of the inferred
syscalls is also automatic. G-Fuzz has incorporated the
following eight inference rules and can be further extended
to incorporate more rules.

Function Call Chain based Inference. This is a general
rule for all the targets of gVisor. First, based on the reacha-
bility analysis of the given target, we can obtain the reachable
functions that lead to the target. Some of the reachable func-
tions are syscall handlers, and the corresponding syscalls
may be related to the target. According to the information of
files pkg/sentry/syscalls/linux/linux64.go and
pkg/sentry/syscalls/linux/vfs2/vfs2.go in gVi-
sor code, we construct the mapping table of the functions
and the corresponding syscalls. Second, we extract the re-
lated syscalls from the reachable functions. Note that not all
these syscalls have close relevance to the target. To reduce
false positives, in this rule, we only select the syscalls of the
function that has the smallest distance to the target as the
inference results.

Specialized Syscall Inference. The syscalls may have
multiple parameters, and some of them may have com-
plex structures and various values. To provide precise
and semantically correct mutation, Syzkaller provides the
syscall variants [27] by instantiating partial arguments of
the original syscalls. For instance, ioctl$FIONREAD is
a variant of syscall ioctl, which denotes the value of
its parameter request is set as FIONREAD (the concrete
value is 1074030207). When Syzkaller mutates this variant,
the request parameter will not be modified. For original
syscall ioctl, Syzkaller implements 411 syscall variants for

➀For bug reproduction, if a user has the crash report, the eighth
inference rule stack trace based syscall inference will be used.
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it. If we successfully infer that the ioctl is related to a
target but not be able to infer the concrete parameters, it is
still challenging to reach this target.

In total, Syzkaller implements 948 syscall variants for 47
original syscalls. Thus, to reduce the input space, we have
to infer the target related syscall variants. By conducting
an in-depth analysis of the gVisor code, we find that the
variant information can be extracted from the related code
paths. Fig. 3 illustrates an example code that is related
with ioctl. From the constants of the case statements,
we can extract the concrete variants of ioctl. For in-
stance, the code on line 5 is related with syscall variant
ioctl$FIONREAD, and the code on line 7 is related with
syscall variant ioctl$TCGETS. Thus, we infer the syscall
variants by extracting the special constants from the code
path towards the target. Notably, in the inference process,
if an inferred syscall has variants, we then perform further
inference about its variants, and add the syscall variants into
the inference results. Based on this method, we can infer
127 variants for nine syscalls accurately. Table 1 presents the
information about the nine syscalls.

Network Packet Processing Related Syscalls. gVisor
implements a user-space network stack (i.e., netstack) to
process the network packets between the host kernel and
the container applications. Fig. 4 illustrates the how gVisor
processes the network packets. In the practical scenario, the
host kernel receives the network packets from the network
device, and then transfers the packets to the netstack
of gVisor. In essence, the inputs to trigger of netstack
come from the network devices, not the upper syscalls. Nev-
ertheless, deploying the real network devices to generate
inputs to trigger the targets of netstack is not practical. To
solve this problem, Syzkaller designs an extra syscall named
syz_emit_ethernet. As red arrows in Fig. 4 shows,
syz_emit_ethernet leverages the TUN, a virtual network
device to directly inject network packets to netstack.
Thus, we can leverage the syz_emit_ethernet syscall to
test the targets of gVisor network stack code.

Nevertheless, the parameters of syz_emit_ethernet
syscall are complex, which are related with many nested
unions and structs. As Fig. 5 shows, there are three
parameters of syz_emit_ethernet. Taking the second
parameter packet ptr as example, packet ptr points
to a struct type data structure, which consists of four
members. The fourth member variable eth_payload is

1syz emit e thernet (
2len len [ packet ] ,
3packet ptr [ in , eth packet ] ,
4f r a g s ptr [ in , vnet fragmentation , opt ] )
5

6eth packet {
7dst mac mac addr
8src mac mac addr
9vtag opt iona l [ vlan tag ]
10payload eth payload
11} [ packed ]
12

13eth payload {
14eth2 eth2 packet
15} [ packed ]
16

17eth2 packet [
18gener ic e th2 packet gener ic
19arp eth2 packet t [ETH P ARP, arp packet ]
20ipv4 eth2 packet t [ ETH P IP , ipv4 packet ]
21ipv6 eth2 packet t [ ETH P IPV6 , ipv6 packet ]
22l l c e th2 packet t [ ETH P 802 2 , l l c p a c k e t ]
23. . . // 7 more union s e l e c t i o n s omitted
24] [ var len ]
25

26ipv4 packet [
27gener ic ipv4 packet t [ f l a g s [ ipv4 types , i n t 8 ] ,

array [ i n t 8 ] ]
28tcp ipv4 packet t [ const [ IPPROTO TCP , i n t 8 ] ,

tcp packet ]
29udp ipv4 packet t [ const [IPPROTO UDP, i n t 8 ] ,

udp packet ]
30icmp ipv4 packet t [ const [ IPPROTO ICMP , i n t 8 ] ,

icmp packet ]
31. . . // 4 more union s e l e c t i o n s omitted
32] [ var len ]

Fig. 5: The parameters of syz emit ethernet.

a struct, and its member eth2_packet is an union.
eth2_packet includes 12 members, and its third memeber
ipv4 is also an union. ipv4_packet, a member of ipv4
is also an union, which consists of eight members. As a
consequence, the parameters of syz_emit_ethernet are
nested and complex. Only successfully inferring the target
related syscall syz_emit_ethernet is not enough nor
efficient. The whole input space of syz_emit_ethernet
is vast due to the complex parameters.

To address this problem, we conduct in-depth analysis
on the syz_emit_ethernet related targets. We find that
some parameters of syz_emit_ethernet can be inferred
based on the information of the targets. For instance, for
the target function handleICMP that locates in the direc-
tory network/ipv4/icmp.go of gVisor, intuitively, it is
related with ipv4 and icmp. Moreover, some parameters
are mutually exclusive from each other. For instance, if the
target is related with ipv4, it may have less relevance to
ipv6. For the target function handleICMP, we can set the
parameter eth2_packet as ipv4, and set the parameter
ipv4_packet as icmp_packet, with high probability. In
this way, we can reduce the input space efficiently. Accord-
ing to the different parameters, we implement ten syscall
variants for syz_emit_ethernet. The detailed informa-
tion of the ten syscall variants is shown in Table 2.

Virtual File System Related Syscalls. gVisor and other
Unix-like kernels implement virtual file systems such as
proc, devpts, etc. Different from the file systems such
as ext4, FAT32, virtual file systems are virtual and do
not locate in the disk space. The content of the virtual file
systems resides in memory. The container applications use
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TABLE 2: The variants of syscall syz_emit_ethernet in
G-Fuzz.

Variants Union Selections
syz emit ethernet$ipv4 eth2 packet=ipv4
syz emit ethernet$ipv4 tcp eth2 packet=ipv4 && ipv4 packet=tcp
syz emit ethernet$ipv4 udp eth2 packet=ipv4 && ipv4 packet=udp
syz emit ethernet$ipv4 icmp eth2 packet=ipv4 && ipv4 packet=icmp
syz emit ethernet$ipv4 igmp eth2 packet=ipv4 && ipv4 packet=igmp
syz emit ethernet$ipv6 eth2 packet=ipv6
syz emit ethernet$ipv6 tcp eth2 packet=ipv6 && ipv6 packet=tcp
syz emit ethernet$ipv6 udp eth2 packet=ipv6 && ipv6 packet=udp
syz emit ethernet$ipv6 icmp eth2 packet=ipv6 && ipv6 packet=icmp
syz emit ethernet$arp eth2 packet=arp

TABLE 3: Different Virtual File System Related syscalls.

Virtual
Filesystem Inferred Syscalls

devpts openat$ptmx, syz open pts
eventfd eventfd2, eventfd
kernfs syz open procfs
pipefs pipe, pipe2

signalfd signalfd4, signalfd
timerfd timerfd create, timerfd settime, timerfd gettime

the interfaces such as open, read, write to communicate
with the kernel. Specifically, by setting different parameters,
applications can request different file operations. If the
targets reside in the virtual file system implementation code
of gVisor, the corresponding syscalls to trigger them are the
common interfaces.

Nevertheless, only knowing the interfaces is not enough
to trigger these targets. These common interfaces can be
invoked by much code. For instance, taking the function
masterFileDescription.Read of devpts virtual file
system as the target, the syscall to trigger this target is read
and the its first parameter should be a devpts type file
descriptor. We can use syscall openat$ptmx to generate a
devpts related file descriptor. Thus, in addition, to infer the
read syscall, we have to infer the corresponding parameter
type. Based on the expert knowledge, we provide the infer-
ence rules for six types of the most used virtual file systems,
which are shown in Table 3.

Error Handling Code Related Syscalls. There is much
error handling code in OS kernels including gVisor, which
is critical and may contain serious security problems [28],
[29]. It is vital to test error handling code. However, the
current mechanism of Syzkaller cannot effectively test the
error handling code. For instance, Fig. 6 presents an ex-
ample of memory copy error handling code in gVisor.
The function primitive.CopyInt32SliceOut at line 3
is to copy the third parameter fds to the second param-
eter addr. colorred To trigger the target that resides in
the code of line 4 to 9, the input sequence must make
function primitive.CopyInt32SliceOut eturn an er-
ror. Syzkaller generates the concrete value of the syscall
parameter based on its type. For this instance, the parameter
addr is a pointer type, and Syzkaller tends to assign a valid
memory address for addr. However, this target branch can
not be triggered with a valid memory address.

To trigger the error handling code, intuitively, it should
increase the probability of “causing an error”. Here, we
mainly focus on two common types of error handling
code of gVisor: 1) memory related and 2) permission check
related error handling code. For memory related error

1func pipe2 ( t * kernel . Task , addr usermem . Addr , f l a g s i n t 3 2 )
e r r o r {

2. . .
3i f , e r r := p r i m i t i v e . CopyInt32SliceOut ( t , addr , fds ) ;

e r r != n i l {
4f o r , fd := range fds {
5i f , f i l e := t . FDTable ( ) . Remove ( t , fd ) ; f i l e

!= n i l {
6f i l e . DecRef ( t )
7}
8}
9re turn e r r
10}
11re turn n i l
12}

Fig. 6: An example of memory copy error handling code in
gVisor.

handling code, we can add three syscalls: mmap, munmap
and mprotect into the inferred results to make some
memory invalid. Specifically, setting the parameter prot
of syscalls mmap and mprotect as PROT_NONE, or using
syscall munmap to release memory, can likely make the
pointer type parameter points to the invalid memory.

For permission check related error handling code, we
can add two syscalls: setuid and setresuid to change
the current user of the running process. Thus, the syscalls
after setuid or setresuid are more likely to have no
access to the previously created resources, which increases
the probability of permission check errors.

Seccomp Related Syscalls. Seccomp (Secure computing
mode) is a security mechanism in Linux kernel, which is
also adopted in gVisor. By setting the filter rules, seccomp
restricts the syscalls that are allowed to be accessed by the
current process. In particular, programmers can specify
which system calls are permitted by writing Berkeley
Packet Filter (BPF) programs. The BPF related code in
gVisor resides in directory pkg/bpf, which is to parse and
execute the BPF rules. However, these code are not directly
executed when registering BPF rules, but are triggered by
a hook mechanism afterward. Before subsequent syscalls
of the current process can be executed, the hook will first
execute all registered BPF rules to determine whether
the syscall is allowed, which will trigger the code under
the directory pkg/bpf. Thus, the Function Call Chain based
inference rule cannot effectively find these registering
syscalls. To tackle this problem, when testing this code as
the target, we add the four BPF registering syscalls as the
inference results, which are prctl$PR_SET_SECCOMP,
seccomp$SECCOMP_SET_MODE_STRICT,
seccomp$SECCOMP_SET_MODE_FILTER and
seccomp$SECCOMP_SET_MODE_FILTER_LISTENER.
These syscalls can register the BPF hook for subsequent
syscalls or change the operating mode of seccomp of the
current process. It is worth noting that there are more
syscalls that are related to BPF mechanism, like bpf.
Nevertheless, gVisor does not support these syscalls by
directly returning capability errors. Therefore, we do not
include them in the inference results.

Readiness Mechanism Code Related Syscalls. In
order to achieve high-performance I/O operations, the
Linux kernel proposes epoll mechanism to provide scal-
able I/O event notification. The applications do not
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panic: Unknown syscall 165 error: strconv.ParseInt: parsing "": invalid syntax
goroutine 610 [running]:
panic(0xfc5280, 0xc0002162e0)

…
gvisor.dev/gvisor/pkg/sentry/kernel.(*Task).doSyscallInvoke(0xc0005ff500, 0xa5, 

0x20001d40, 0x20001d80, 0x20001dc0, 0x2000000, 0x20001e00, 0x0, 0x20001e00, 0x0)
pkg/sentry/kernel/task_syscall.go:249 +0x165 fp=0xc00025fce0 sp=0xc00025fc58 

pc=0x9cefa5
gvisor.dev/gvisor/pkg/sentry/kernel.(*Task).doSyscallEnter(0xc0005ff500, 0xa5, 0x20001d40, 
0x20001d80, 0x20001dc0, 0x2000000, 0x20001e00, 0x0, 0xde0665, 0xc0004ae2e8)

…

Fig. 7: The stack trace information of a gVisor bug.

need to repeatedly query the status of the file descrip-
tor to see whether I/O operation is possible, but in-
stead, wait for the kernel to notify the state changes
of the file descriptors. gVisor also implements this epoll
mechanism, and adds a virtual file system level in-
terface named vfs.FileDescriptionImpl.Readiness.
All virtual file systems implement this interface to re-
turn whether the current file is readable or writable. With
the understanding of this epoll mechanism, for Readi-
ness function-related targets, that is, the target itself is
implementing vfs.FileDescriptionImpl.Readiness
interface or called by a Readiness function, we should
add epoll-related syscalls into our inference results, includ-
ing pselect6, epoll_ctl$EPOLL_CTL_ADD, ppoll and
poll.

Stack Trace Based Syscall Inference. Bug reproduction
is a typical application scenario of directed fuzzing. Com-
pared to the general directed fuzzing scenarios that are only
provided with the target locations, bug reproduction scenar-
ios usually have more information, such as the stack trace
information when the bug is triggered. Thus, we should
make full use of this information when reproducing the
bugs. Fig. 7 illustrates the stack trace and a PoC information
of a gVisor bug. We can extract the bug related syscalls
from its stack trace. For instance, the second parameter (i.e.,
0xa5) of function doSyscallInvoke or doSyscallEnter
represents the ID of syscall mount, and the PoC of this bug
contains the syscall mount. Intuitively, for this bug, we can
reproduce it effectively if we can infer its related syscalls.

Motivated by the above instance, for the target of bug
reproduction, we infer its related syscalls from the stack
trace (if given). First, similar to the function call chain based
inference method, we extract the related syscalls from the
functions of the stack trace. Second, we extract the related
syscalls from the arguments of special functions such as
doSyscallInvoke to find the corresponding syscalls. By
incorporating the extracted syscalls into the inference re-
sults, G-Fuzz leverages the information from the stack trace
to facilitate bug reproduction.

3.4 The Utilization of the Inferred Syscalls
In directed fuzzing process, the inferred syscalls are utilized
in the mutation process to generate new inputs. We define
the probability that whether we choose to use the inferred
syscalls in the mutation as p. The value of p decreases
linearly during the fuzzing process. Assume the maximum
value of p is pmax, and the minimum value of p is pmin.
The fuzzing timeout is Tfuzz . The value of p at the current
fuzzing time t is:

p = pmax − pmax − pmin

Tfuzz
∗ t (1)

In our experiment, we set pmax = 0.9 and pmin = 0.1.
At the beginning of directed fuzzing, the probability of
utilizing the inferred syscalls is 90%. With the fuzzing time
increases, the probability decreases linearly until 10%. The
rationale behind this design choice is that if we cannot
trigger the target in a relatively long time with the inferred
syscalls, the inference results may have false positives and
further mislead the fuzzing process. Thus, we should de-
crease the probability of using the inferred syscalls.

The inferred syscalls are used to insert into a selected
seed to generate the new inputs. To make efficient use of the
inferred syscalls and generate semantically correct inputs,
we propose two methods in the mutation stage: Selection
Probability Scheduling Strategy and Insert Order Scheduling
Strategy.

Selection Probability Scheduling Strategy. There may
exist false positives in the inference results. In other words,
some inferred syscalls may not be related to the target in
fact, which may reduce the efficiency of directed fuzzing.
To alleviate the impacts of the false positives, we propose
a strategy to dynamically adjust the selection probability of
each inferred syscall in the mutation process.

Assume the set of the inferred syscalls for the given
target is S = {s1, s2, ..., sn}, where n is the number of all in-
ferred syscalls. The initial weight W of each inferred syscall
is one, which is equal. That is, WS1 = WS2 = ... = WSn = 1.

During the fuzzing process, the inputs which can trigger
new paths will be saved in a global seed queue. For the
new saved input, we will determine whether its distance is
shorter than its parent seed. If so, we will save it in another
seed queue named shorter distance queue. Intuitively, the seed
in shorter distance queue may contain the syscalls that can
be helpful to reach the target. For each inferred syscall, we
count its frequency in shorter distance queue. An incorrect
inferred syscall is highly unlikely to appear in this queue.
Assume at fuzzing time t, the frequency of an inferred
syscall si is F(si,t). At time t, the inferred syscall si’s weight
Wsi(t) is F(si,t) + 1. The selection probability of the syscall
si is calculated by formula 2.

Psi(t) =
Wsi(t)∑n
j=1 Wsj (t)

(2)

As the fuzzing goes on, the probability of selecting the
correct inferred syscalls increases, and the probability of
selecting the incorrect inferred syscalls decreases. In this
way, G-Fuzz can effectively mitigate the negative impacts
of incorrect inference results.

Insert Order Scheduling Strategy. The order of the
syscalls has a significant impact on the semantic of the
whole input. There may exist dependencies between dif-
ferent syscalls. MoonShine [30] classifies the dependency
relationships between different syscalls into two types: ex-
plicit and implicit dependencies. The explicit dependencies
represent that the return value is used as an argument of
another syscall. The implicit dependencies represent that
there are shared data structures among syscalls. Thus, to
generate the semantically correct inputs as possible, the
syscalls dependent on others should be placed at the front
position of the entire sequence.

MoonShine focuses on generating the initial seeds with
offline static analysis. In contrast, we aim to generate inputs
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by mutating seeds during the fuzzing process, which is an
online and time-sensitive task. To provide fast mutation, we
mainly consider the explicit dependencies. We regard the
syscalls that generate the dependent return values as the
“producers” and regard the syscalls that receive the depen-
dent values as the “consumers”. Intuitively, the “producer”
syscalls should be inserted in front of the “consumer”
syscalls. To this end, we use the function biasedRand
provided by Syzkaller to generate the insert index for
“consumer” syscalls. In specific, biasedRand(n, k) is
to randomly generate a number, which conforms that the
probability of outputting n-1 is k times higher than the
probability of outputting 0. We set k as 5 in the experiments.
For the “producer” syscall, we use n - biasedRand(n,
k) to generate its insert index. In this way, the “producer”
syscalls tend to be inserted in front of the “consumer”
syscalls.

3.5 Exploration and Exploitation Dynamic Switch

The core idea of directed greybox fuzzing is using dis-
tance information to guide the fuzzer to constantly generate
test cases closer to the target until triggering it. However,
distance information has limitations in guiding directed
fuzzing. As we discussed in §3.2, distance information has
low precision. Despite the issues caused by distance cal-
culation methods, existing static analysis technique cannot
identify the indirect calls with no error [22]. In addition,
distance cannot be able to measure the difficulty to reach
the target. Thus, it is necessary to make reasonable use of
the distance information.

One practical solution is to incorporate the exploitation
with exploration. Here the exploitation represents the typical
“directed fuzzing”, which focuses on testing the shortest
or closer paths to the target. The exploration represents the
typical “coverage-based fuzzing”, which focuses on explor-
ing the new paths. The exploration can alleviate the errors
of the distance and can avoid directed fuzzing trapping
into the local optimal. Nevertheless, overusing exploration
makes directed fuzzing degenerate into the coverage-based
fuzzing, which is not efficient.

Thus, how to coordinate the exploitation and exploration
to amplify their advantages in directed fuzzing is critical.
AFLGo [7] adopts a fixed time-wise splitting method to
balance the exploration and exploitation phases. Specifically,
for a 24-hour fuzzing experiment, AFLGo sets the explo-
ration time as 20 hours and the exploitation time as 4 hours.
However, this fixed setting may not suit all the conditions
in directed fuzzing, such as testing different programs or
targets. Paper [15] shows that the performance of AFLGo
varied much with different settings in exploration time.
Therefore, the solution of AFLGo is not satisfying. Other
fuzzing work such as EcoFuzz [31] also studies the exploita-
tion and exploration trade-off problem, whereas it focuses on
solving the seed power scheduling problem, not the directed
fuzzing.

To tackle this problem, we propose a exploration and
exploitation dynamic switch method, which coordinates the
two phases adaptively according to the current state of
fuzzing. When one phase does not make any contribution
to fuzzing for a time threshold, gVisor will switch to the

other phase, and vice versa. The detailed workflows of this
method are the following.

At the start of directed fuzzing, G-Fuzz first enters the
initial phase, generating and executing the initial inputs. The
inputs that can discover new paths will be saved in the
seed pool. After this phase, G-Fuzz first enters the closer
seed exploitation phase. In this phase, G-Fuzz randomly
selects m seeds from the seed pool and selects the top k
seeds with the shortest distance. Note that the distance of a
seed is the shortest distance of its executed basic blocks. The
shortest k seeds are mutated to generate new inputs. Then,
G-Fuzz executes the new inputs. For the inputs that trigger
the new paths, G-Fuzz saves them in the seed pool. During
the fuzzing process, G-Fuzz monitors whether the current
phase gets into a “stuck” state. If so, G-Fuzz will switch into
the other phase. For the closer seed exploitation phase, the
“stuck” state is not finding any new paths of the reachable
set over the time threshold Ta. When G-Fuzz switches into
the path exploration phase, it does not consider the distance
of each seed. In specific, it selects seeds from the seed pool
according to the coverage of each seed. The seed with more
coverage has a higher probability of being selected. During
this phase, if a seed finds new paths, before saving it in the
seed pool, it will be directly mutated to generate the new
inputs. The “stuck” state of this phase is not finding any
new paths in time threshold Tb. Where Ta and Tb are user-
defined. In our experiments, we set Ta to five minutes, and
Tb to ten minutes.

4 IMPLEMENTATION OF G-FUZZ

G-Fuzz contains two components: static analysis and di-
rected fuzzing. The functionalities of the static analysis
include CG/CFG extraction, reachability analysis, distance
calculation and target related syscalls inference. We imple-
ment the CG extraction based on go-callvis [26]. For
the CFG of gVisor, we first use GoLLVM [32] to compile
gVisor into LLVM IR, an intermediate representation. Then,
we implement an LLVM Pass to construct the target related
inter-procedural CFG. The Pass has 1,238 lines of C++ code.
The distance calculation of G-Fuzz is implemented with 313
lines of Python code. The target related syscalls inference is
written with 212 lines of Python code. The directed fuzzing
component of G-Fuzz is implemented based on the state-of-
the-art OS kernel fuzzer Syzkaller (commit ID=9d751681c).
We add more than 1,500 lines of Go language code, compar-
ing with the origin Syzkaller.

5 EVALUATION

In this section, we mainly evaluate the performance of G-
Fuzz in directed fuzzing for gVisor.

Basic Settings. As there exists randomness in fuzzing
experiments, following the guidance in paper [33], we con-
duct each experiment with 20 repetitions. For general target
testing and patch testing, the fuzzing time is 24 hours. For
bug reproduction, as it is more difficult, the fuzzing time is
72 hours.
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TABLE 4: The performance of G-Fuzz, Syz-Go and Syzkaller
in general target testing.

Target ID Fuzzer runs µTTE (h) Speedup Â12 p-value

#1
G-Fuzz 18 6.79 - - -
Syz-Go 18 12.43 1.83 0.79 <0.01
Syzkaller 12 17.26 2.54 0.87 <0.01

#2
G-Fuzz 20 0.92 - - -
Syz-Go 16 15.06 16.39 0.99 <0.01
Syzkaller 7 20.57 22.38 1.00 <0.01

#3
G-Fuzz 20 0.15 - - -
Syz-Go 18 14.23 97.46 1.00 <0.01
Syzkaller 8 19.27 131.96 1.00 <0.01

#4
G-Fuzz 19 1.36 - - -
Syz-Go 20 5.40 3.96 0.95 <0.01
Syzkaller 14 15.42 11.31 0.96 <0.01

#5
G-Fuzz 20 0.20 - - -
Syz-Go 20 5.40 26.99 0.99 <0.01
Syzkaller 17 11.55 57.80 1.00 <0.01

#6
G-Fuzz 20 0.18 - - -
Syz-Go 19 6.05 33.84 1.00 <0.01
Syzkaller 20 8.23 46.09 1.00 <0.01

#7
G-Fuzz 9 18.02 - - -
Syz-Go 3 21.21 1.18 0.63 0.044
Syzkaller 5 21.28 1.18 0.61 0.077

#8
G-Fuzz 19 4.69 - - -
Syz-Go 4 20.28 4.33 0.91 <0.01
Syzkaller 2 22.91 4.89 0.95 <0.01

#9
G-Fuzz 10 14.49 - - -
Syz-Go 2 23.28 1.61 0.72 <0.01
Syzkaller 0 24.00 1.66 0.75 <0.01

#10
G-Fuzz 19 4.28 - - -
Syz-Go 10 17.85 4.17 0.91 <0.01
Syzkaller 6 20.30 4.74 0.93 <0.01

#11
G-Fuzz 12 15.20 - - -
Syz-Go 8 20.78 1.37 0.67 0.027
Syzkaller 5 19.92 1.31 0.66 0.032

#12
G-Fuzz 13 11.20 - - -
Syz-Go 7 19.85 1.77 0.72 <0.01
Syzkaller 5 21.98 1.96 0.78 <0.01

#13
G-Fuzz 10 13.78 - - -
Syz-Go 1 23.01 1.67 0.73 <0.01
Syzkaller 0 24.00 1.74 0.75 <0.01

#14
G-Fuzz 16 9.36 - - -
Syz-Go 12 15.64 1.67 0.71 0.012
Syzkaller 12 14.43 1.54 0.61 0.111

#15
G-Fuzz 20 2.26 - - -
Syz-Go 15 11.68 5.16 0.89 <0.01
Syzkaller 15 11.61 5.13 0.91 <0.01

#16
G-Fuzz 19 1.57 - - -
Syz-Go 6 19.63 12.53 0.97 <0.01
Syzkaller 9 18.21 11.63 0.96 <0.01

#17
G-Fuzz 20 1.46 - - -
Syz-Go 16 14.86 10.15 0.99 <0.01
Syzkaller 16 13.98 9.55 0.95 <0.01

#18
G-Fuzz 8 17.45 - - -
Syz-Go 7 20.42 1.17 0.56 0.252
Syzkaller 6 19.32 1.11 0.56 0.247

#19
G-Fuzz 16 8.35 - - -
Syz-Go 13 14.23 1.70 0.74 <0.01
Syzkaller 12 16.29 1.95 0.73 <0.01

#20
G-Fuzz 19 2.89 - - -
Syz-Go 8 18.78 6.51 0.93 <0.01
Syzkaller 16 14.39 4.99 0.92 <0.01

#21
G-Fuzz 14 10.20 - - -
Syz-Go 4 20.68 2.03 0.78 <0.01
Syzkaller 12 17.07 1.67 0.73 <0.01

#22
G-Fuzz 15 12.16 - - -
Syz-Go 7 20.39 1.68 0.76 <0.01
Syzkaller 9 18.16 1.49 0.73 <0.01

#23
G-Fuzz 17 14.92 - - -
Syz-Go 8 19.64 1.32 0.72 <0.01
Syzkaller 11 17.94 1.20 0.64 0.069

#24
G-Fuzz 20 0.31 - - -
Syz-Go 10 17.68 57.17 1.00 <0.01
Syzkaller 15 13.54 43.81 1.00 <0.01

#25
G-Fuzz 3 21.46 - - -
Syz-Go 1 23.90 1.11 0.55 0.138
Syzkaller 0 24.00 1.12 0.57 0.040

#26
G-Fuzz 2 23.52 - - -
Syz-Go 1 23.94 1.02 0.53 0.267
Syzkaller 0 24.00 1.02 0.55 0.081

TABLE 5: The performance of G-Fuzz, Syz-Go and Syzkaller
in patch testing.

Patch ID Fuzzer runs µTTE (h) Speedup Â12 p-value

#1
G-Fuzz 20 1.16 - - -
Syz-Go 20 3.41 2.95 0.83 <0.01
Syzkaller 20 2.11 1.82 0.74 <0.01

#2
G-Fuzz 20 1.01 - - -
Syz-Go 20 2.40 2.38 0.77 <0.01
Syzkaller 20 2.20 2.18 0.78 <0.01

#3
G-Fuzz 20 0.07 - - -
Syz-Go 20 4.42 61.94 1.00 <0.01
Syzkaller 18 6.90 96.73 1.00 <0.01

#4
G-Fuzz 18 3.75 - - -
Syz-Go 14 17.11 4.56 0.89 <0.01
Syzkaller 3 21.99 5.86 0.93 <0.01

#5
G-Fuzz 18 6.08 - - -
Syz-Go 15 14.50 2.38 0.85 <0.01
Syzkaller 12 14.98 2.46 0.77 <0.01

#6
G-Fuzz 18 12.06 - - -
Syz-Go 7 19.98 1.66 0.81 <0.01
Syzkaller 2 22.98 1.91 0.91 <0.01

#7
G-Fuzz 20 1.24 - - -
Syz-Go 20 5.75 4.64 0.91 <0.01
Syzkaller 17 12.03 9.72 0.98 <0.01

#8
G-Fuzz 17 5.24 - - -
Syz-Go 19 6.20 1.18 0.73 <0.01
Syzkaller 15 14.05 2.68 0.85 <0.01

#9
G-Fuzz 20 0.33 - - -
Syz-Go 20 2.75 8.42 1.00 <0.01
Syzkaller 20 4.28 13.09 1.00 <0.01

#10
G-Fuzz 20 0.35 - - -
Syz-Go 20 1.54 4.45 0.95 <0.01
Syzkaller 20 1.80 5.19 0.94 <0.01

#11
G-Fuzz 19 2.81 - - -
Syz-Go 20 1.52 0.54 0.49 0.473
Syzkaller 20 1.50 0.53 0.49 0.473

#12
G-Fuzz 18 4.53 - - -
Syz-Go 20 2.60 0.57 0.62 0.104
Syzkaller 20 4.67 1.03 0.69 0.023

#13
G-Fuzz 20 0.19 - - -
Syz-Go 20 2.25 11.86 1.00 <0.01
Syzkaller 20 3.68 19.40 1.00 <0.01

#14
G-Fuzz 20 0.42 - - -
Syz-Go 20 1.23 2.92 0.83 <0.01
Syzkaller 20 1.52 3.60 0.92 <0.01

#15
G-Fuzz 20 0.13 - - -
Syz-Go 20 1.98 15.39 1.00 <0.01
Syzkaller 20 5.25 40.73 1.00 <0.01

#16
G-Fuzz 20 0.26 - - -
Syz-Go 20 2.91 11.08 0.99 <0.01
Syzkaller 19 6.32 24.05 1.00 <0.01

#17
G-Fuzz 20 4.60 - - -
Syz-Go 13 13.73 2.98 0.81 <0.01
Syzkaller 11 17.33 3.76 0.89 <0.01

#18
G-Fuzz 20 0.21 - - -
Syz-Go 20 4.62 21.85 1.00 <0.01
Syzkaller 20 3.53 16.70 1.00 <0.01

#19
G-Fuzz 20 1.47 - - -
Syz-Go 20 3.98 2.70 0.76 <0.01
Syzkaller 20 3.90 2.65 0.82 <0.01

#20
G-Fuzz 20 1.26 - - -
Syz-Go 20 5.57 4.42 0.94 <0.01
Syzkaller 20 5.92 4.70 0.94 <0.01

#21
G-Fuzz 5 21.07 - - -
Syz-Go 7 21.01 1.00 0.46 0.297
Syzkaller 0 24.00 1.14 0.62 <0.01

#22
G-Fuzz 3 22.85 - - -
Syz-Go 0 24.00 1.05 0.57 0.040
Syzkaller 0 24.00 1.05 0.57 0.040
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5.1 Experimental Settings
Compared Fuzzers. We compare G-Fuzz with two fuzzers:
Syzkaller and Syz-Go. Syzkaller is the state-of-the-art kernel
fuzzer. We implement Syz-Go by adopting the method of
AFLGo on Syzkaller. Specifically, as the time overhead of the
original AFLGo implementation in distance calculation is
high, we use the same distance calculation implementation
in Syz-Go as G-Fuzz.

For the directed fuzzing part of Syz-Go, we implement
the simulated annealing-based power scheduling algorithm
of AFLGo in it. Following the original design of AFLGo [14],
for the 24-hour experiment, the exploration time of Syz-Go
is 20 hours, and the exploitation time is 4 hours. For the 72-
hour experiment, the exploration time of Syz-Go is 60 hours,
and the exploitation is 12 hours.

Evaluation Metrics. Following the methods of the state-
of-the-art directed fuzzing papers [7], [8], we mainly use
runs and Time-to-Exposure (TTE) as the evaluation metrics.
Specifically, runs represents the times that a fuzzer triggers
the target in multiple repeated experiments. TTE is the
first time that a fuzzer triggers the target, and µTTE is the
arithmetic average of TTE in multiple repeated experiments.
In specific, if a fuzzer does not trigger the target over the
fuzzing timeout (e.g., 24 hours), the TTE of this experiment
is regarded as the timeout.

Moreover, we use statistical metrics such as Â12 [34] and
p-value to provide more comprehensive evaluations. Â12 is
the metric to measure the effect size, that is, the probability
of one group of samples perform better than the other. The
p-value is to measure whether the difference between the
two groups is real or due to randomness. If the p-value
is less than 0.05 (or 0.01), there is a significant difference
between the two groups. We use the Mann-Whitney U test,
a non-parametric statistical test, to calculate the p-value.

Initial Seeds and Environment. For Syzkaller and Syz-
Go, the initial seeds are the same, generated by the original
design of Syzkaller. For G-Fuzz, the initial seeds are gen-
erated according to the inferred target related syscalls. We
conduct all the experiments on several servers with the same
settings. Each server has 20 Intel Xeon E5-2650 V4 CPUs,
and the OS is 64-bits Ubuntu 16.04 LTS.

5.2 General Target Testing
In this scenario, the targets are the arbitrary locations of
gVisor. We randomly select 50 code sites as the targets.
Among the 50 targets, there are 24 targets that no fuzzer
can find with the 24-hour × 20 repetition evaluation. Table 4
shows the performance of gVisor, Syz-Go and Syzkaller in
directed fuzzing for the 26 targets.

From Table 4, we can get the following observations. (1)
It is evident that G-Fuzz outperform both Syzkaller and Syz-
Go in discovering the targets. In terms of Â12 metric, G-Fuzz
achieves more than 0.5 Â12 values on all targets comparing
to Syz-Go and Syzkaller. Specifically, G-Fuzz achieves more
than 0.71 Â12 on 21 targets, except for target #7, #11, #18,
#25 and #26. Â12 value is more than 0.71 means that the
probability of one group performs better than the other is
large [34]. For 20 targets, the p-value of G-Fuzz between Syz-
Go and Syzkaller is less than 0.01, demonstrating the signif-
icantly better performance of G-Fuzz. (2) G-Fuzz has more

stable performance than Syz-Go and Syzkaller. According to
the runs column, G-Fuzz has the highest values in 25 targets,
except for target #4. (3) G-Fuzz accelerates the performance
of directed fuzzing by a large margin. For instance, G-Fuzz
only takes 0.92 hours in triggering target #2, whereas Syz-
Go and Syzkaller need to use more than 12 hours. More
importantly, for target #25 and #26, G-Fuzz can trigger them
while Syzkaller cannot. From the speedup column, we can
see that the max speedup that G-Fuzz can achieve is more
than 130 (target #3). For seven targets, the speedup value of
G-Fuzz is more than 10. In summary, the performance of
G-Fuzz in testing the general targets of gVisor is stable and
efficient.

5.3 Patch Testing
The targets of patch testing are the code modified by the
patch commits. In this scenario, we select 50 code locations
modified by the patch commits as the targets. Among the 50
patch targets, 28 of them are not found by any fuzzer with
the 24-hour × 20 repetition evaluation. Table 5 shows the
performance of G-Fuzz, Syzkaller and Syz-Go in directed
fuzzing for the rest of 22 patch targets.

From Table 5, we can get the following observations.
(1) Under the runs metrics, G-Fuzz has the best perfor-
mance among the compared fuzzers on 18 targets, which
demonstrates the effectiveness of G-Fuzz. (2) In terms of
µTTE and speedup metrics, G-Fuzz takes the least amount
of time in triggering 20 targets, except for target #11 and
#12. Moreover, G-Fuzz can boost the performance of patch
testing up to 96.73 times. (3) As for the Â12 metric, G-Fuzz
has more than 0.5 Â12 value on 20 targets and has more
than 0.71 Â12 value on 18 targets. (4) For over 90 percent
of targets (18/20), the p-value of G-Fuzz is less than 0.01.
In summary, G-Fuzz outperforms Syz-Go and Syzkaller in
patch testing.

5.4 Bug Reproduction
Bug reproduction is a significant application scenario of
directed fuzzing. Assuming that we have already known the
information about the bug, such as the vulnerable locations
or the stack trace, etc., but do not have the PoC to validate
the bug. The goal of directed fuzzing is to generate the PoC
that can trigger the bug. In this scenario, we select the public
gVisor bugs as the targets from the official Syzbot web-
site [35]. For the public bugs, we first use the provided PoCs
to validate whether the bugs can be reproduced. Finally, we
select 30 bugs as the targets. It needs to be emphasized that
we only use the provided PoCs when selecting target bugs.
In the experiment, we assume that we do not have the PoCs
and the goal of directed fuzzing is to generate the PoCs. For
the 30 bugs, only 11 of them can be successfully triggered
by at least one fuzzer within 72 hours with 20 repetitions.
Table 6 presents the performance of G-Fuzz, Syz-Go and
Syzkaller in bug reproduction.

From Table 6, we can observe the following facts. (1) For
11 bugs, G-Fuzz successfully trigger all of them, whereas
Syz-Go fails to trigger two of them, and Syzkaller fails to
trigger two of them. (2) In terms of the runs metric, G-
Fuzz achieves the highest number for all bugs, which is
significantly better than Syz-Go and Syzkaller. (3) The speed
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TABLE 6: The performance of G-Fuzz, Syz-Go and Syzkaller
in bug reproduction.

Bug ID Fuzzer runs µTTE (h) Speedup Â12 p-value

#1
G-Fuzz 20 3.91 - - -
Syz-Go 20 13.53 3.46 0.88 <0.01
Syzkaller 19 15.49 3.96 0.85 <0.01

#2
G-Fuzz 20 0.08 - - -
Syz-Go 20 0.84 10.74 0.99 <0.01
Syzkaller 20 2.09 26.82 1.00 <0.01

#3
G-Fuzz 3 65.37 - - -
Syz-Go 2 66.68 1.02 0.52 0.345
Syzkaller 3 69.71 1.07 0.51 0.431

#4
G-Fuzz 8 61.87 - - -
Syz-Go 1 70.32 1.14 0.67 <0.01
Syzkaller 1 71.22 1.15 0.68 <0.01

#5
G-Fuzz 4 62.16 - - -
Syz-Go 2 69.61 1.12 0.56 0.175
Syzkaller 1 71.70 1.15 0.58 0.069

#6
G-Fuzz 3 67.50 - - -
Syz-Go 1 69.72 1.03 0.55 0.162
Syzkaller 0 72.00 1.07 0.57 0.040

#7
G-Fuzz 6 63.30 - - -
Syz-Go 5 60.60 0.96 0.51 0.466
Syzkaller 3 65.75 1.04 0.57 0.163

#8
G-Fuzz 17 15.42 - - -
Syz-Go 10 48.87 3.17 0.84 <0.01
Syzkaller 5 62.27 4.04 0.89 <0.01

#9
G-Fuzz 7 52.44 - - -
Syz-Go 0 72.00 1.37 0.68 <0.01
Syzkaller 1 70.48 1.34 0.66 <0.01

#10
G-Fuzz 6 57.73 - - -
Syz-Go 0 72.00 1.25 0.65 <0.01
Syzkaller 2 68.24 1.18 0.60 0.054

#11
G-Fuzz 8 56.93 - - -
Syz-Go 5 63.46 1.11 0.57 0.186
Syzkaller 0 72.00 1.26 0.70 <0.01

of G-Fuzz in discovering the bugs is faster than both Syz-
Go and Syzkaller. According to the speedup metric, G-Fuzz
can boost the performance of bug reproduction up to 26.82
(target #2). (4) Compared to Syz-Go and Syzkaller, G-Fuzz
has over 0.5 Â12 value in reproducing all 11 bugs. Besides,
for seven bugs, the p-value of G-Fuzz is less than 0.01. In
summary, the above observations prove that G-Fuzz has
outstanding performance in reproducing bugs.

6 FURTHER ANALYSIS

To provide comprehensive evaluations, in this section, we
conduct further experiments and analysis on the effective-
ness of each core methods of G-Fuzz, as well as ablation
studies. Moreover, we present the deployment and the
application of G-Fuzz in real-world.

6.1 Static Distance Calculation Method
Below, we measure the performance of the static distance
calculation method of G-Fuzz from two aspects: time over-
head and precision.

Time Overhead. To measure the time overhead of G-
Fuzz in distance calculation, we randomly select six versions
of gVisor. We randomly select a code location as the target
for each version to calculate the static distance for the rest
code of gVisor. We compare the G-Fuzz with AFLGo. Table 7
presents the average time overhead of AFLGo and G-Fuzz
in static distance calculation with three repetitions. For the
six targets, on average, AFLGo spends 68,346 seconds (18.9
hours) in calculating the static distance, while G-Fuzz only

spends 97.1 seconds. Compared to AFLGo, G-Fuzz reduces
the time overhead in distance calculation drastically. The
third column of Table 7 shows the reachable function ratio
of each target. Among the six targets, the highest ratio is
18.90%, and four of them only have less than 0.2% reachable
ratios. Note that as we use RTA method to identify the
indirect calls, there is almost no false negative in the result
and the number of ground truth value of reachable function
ratio may be even smaller/less. This observation shows that
the target related code only accounts for a tiny fraction. The
time of calculating static distance for the unrelated code
is unnecessary and wasteful. Thus, G-Fuzz’s reachability
analysis based distance calculation can effectively reduce
the time overhead.

In addition, we conduct a time profiling experiment on
AFLGo. We find that the find_nodes function of AFLGo
takes more than 50% time, and this function has been
invoked almost two billion times on average. Given a string
of a basic block (i.e., file name and the line number), the
functionality of find_nodes function is to find its cor-
responding node object in the current CFG. Nevertheless,
find_nodes function will be called for each basic block
of all functions, whereas most of the traversed basic blocks
do not belong to the current CFG. The complexity of this
implementation is O(N2), where N is the number of basic
blocks. The complexity can be reduced to O(N) by only
traversing basic blocks of the current CFG.

Precision of Distance. In addition to reducing the time
overhead in distance calculation, G-Fuzz improves the dis-
tance’s precision, compared with AFLGo. Based on the
discussion in §3.2, there are two main issues of AFLGo in
the precision of distance: (1) AFLGo does not consider the
indirect calls. (2) AFLGo uses the coarse-grained function
level distance to approximate the basic block level distance.
Next, we discuss the impact of these two issues on directed
fuzzing and whether G-Fuzz can solve them.

For issue (1), Table 8 shows the number of indirect calls
of gVisor with six different versions. We can observe that
the ratio of the indirect calls to the total calls ranges from
4.89% to 5.24%. Although the ratio of the indirect calls is
not very large, it may cause missing edges. In particular,
the absence of some critical edges will cause many errors
in distance calculation. The sixth and seventh columns of
Table 8 lists the number of target related functions (i.e.,
have the static distance) that can be found by AFLGo and
G-Fuzz. We can observe that the number of target related
functions decreases by a large margin if the indirect calls
are not considered, which makes the fuzzer fail to find
some important seeds. For issue (2), we present frequency
distribution of the number of basic blocks within a gVisor
function in Fig. 8. We can observe that the number of basic
blocks has a wide range. Most of the gVisor functions have
only one basic block. Some functions even have more than
20 basic blocks. The largest number of basic blocks that a
gVisor function has is 162. Thus, instead of using a constant
to approximate, we provide a fine-grained (i.e., basic block
level) distance information in the implementation of G-
Fuzz. Moreover, compared to AFLGo, G-Fuzz uses RTA to
discover the indirect calls and calculates the basic block level
distance with a low time overhead, effectively solves the two
issues.
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TABLE 7: The time overhead of AFLGo and G-Fuzz in distance calculation.

Commit ID Target Reachable Function Ratio Time(s) of Static Distance Calculation
AFLGo G-Fuzz

cdf49c44 pkg/tcpip/stack/linkaddrcache.go:189 18.88% 76,275 102.0
c564293b6 pkg/sentry/syscalls/linux/vfs2/splice.go:398 0.16% 60,507 92.8
76da673a pkg/tcpip/network/ipv4/igmp.go:158 18.90% 76,233 102.6
8b9cb36d1 pkg/sentry/syscalls/linux/vfs2/splice.go:147 0.16% 60,339 91.6
55332aca9 pkg/sentry/vfs/file description.go:828 0.17% 75,937 103.0
7f89a26e1 pkg/sentry/kernel/fd table.go:369 0.19% 60,782 90.8

Average 68,346 97.1

TABLE 8: The impact of the indirect calls on the reachable sets of gVisor.

Commit ID Target #Call Sites #Indirect Call Indirect Call Ratio # Target Related Functions
AFLGo G-Fuzz

cdf49c44 pkg/tcpip/stack/linkaddrcache.go:189 79,048 4,142 5.24% 12 3,376
c564293b6 pkg/sentry/syscalls/linux/vfs2/splice.go:398 70,725 3,467 4.90% 1 24
76da673a pkg/tcpip/network/ipv4/igmp.go:158 79,047 4,131 5.23% 1 3,376
8b9cb36d1 pkg/sentry/syscalls/linux/vfs2/splice.go:147 70,492 3,448 4.89% 1 24
55332aca9 pkg/sentry/vfs/file description.go:828 78,922 4,120 5.22% 1 30
7f89a26e1 pkg/sentry/kernel/fd table.go:369 70,872 3,476 4.90% 2 29
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Fig. 8: The frequency distribution of the number of basic
blocks within a function of gVisor.

Ablation Study. We conduct ablation study on the static
distance calculation optimization. we compare G-Fuzz to
G-Fuzz-func-dis (G-Fuzz that uses function level distance
multiplied by a constant 10 to approximate basic block
level distance) and Syzkaller in directed fuzzing 10 targets,
with five repetitions. Fig. 9 shows the experimental results.
We can obverse that, as a whole, G-Fuzz uses significantly
less time in triggering the targets than G-Fuzz-func-dis
and Syzkaller. G-Fuzz outperforms G-Fuzz-func-dis in 8
out of 10 targets (except for target 3 and target 10), and
outperforms Syzkaller in 10 targets. Therefore, the experi-
mental results demonstrate the effectiveness of the distance
calculation optimization of G-Fuzz in directed fuzzing.

6.2 Target Related Syscall Inference and Utilization
We evaluate this method from two aspects: the precision of
the inference and the effectiveness of the utilization.

Precision of Inference. To verify whether the inferred
target related syscalls can help to trigger the targets, we
compared the syscalls of the PoC➀ to the inference results.
As there may exist syscalls in the PoC that have no con-
tribution to triggering the target, we perform minimization
operations on the PoC to remove redundant syscalls. In
particular, we delete each syscall of a PoC in turn to obtain

➀For the convenience of expression, here we use PoC to refer to the
inputs that can trigger the target.
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Fig. 9: Ablation study 1: static distance calculation optimiza-
tion.

a pruned PoC and execute it. If the pruned PoC can still
trigger the target, then the deleted syscall will be considered
redundant. We can obtain the minimized PoC by removing all
redundant syscalls. We define the precision of the inference
as the number of inferred syscalls that are contained in the
minimized PoC divided by the number of all inferred syscalls.

Table 9 and Table 10 present the inferred syscalls and
the precision for the general targets and the patch testing
targets, respectively. For the general target #2, #18, and patch
#11, #22, we cannot reproduce the PoC, and their minimized
PoC is not presented in the table. The inferred syscalls that
are contained in the minimized PoC is presented with bold.

We can observe that for most of the targets, the precision
of inference is 100%, which means that all the inferred
syscalls are necessary for triggering these targets. None of
the target’s inference precision is zero, which demonstrates
that at least one inferred syscall could contribute to finding
the target. It needs to emphasize that G-Fuzz provides
solutions for mitigating the impacts caused by the false
positives and negatives of the inference. For false positives,
G-Fuzz uses a strategy (3.4) to reduce the selection prob-
abilities of the false inferred syscalls. For false negatives,
G-Fuzz reduces it by combining directed fuzzing with path
exploration (3.5). Therefore, G-Fuzz can effectively improve
the performance of directed fuzzing.

Effectiveness of Utilization. There may exist false pos-
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TABLE 9: The inferred syscalls for the general targets.

Target ID Inferred Syscalls Precision
#1 syz_emit_ethernet 100%
#2 syz_emit_ethernet -
#3 syz_emit_ethernet 100%

#4 syz_emit_ethernet,
syz_emit_ethernet$ipv4_igmp

100%

#5 syz_emit_ethernet 100%

#6 syz_emit_ethernet,
syz_emit_ethernet$ipv4

100%

#7 recvmmsg, recvmsg 100%
#8 tee 100%
#9 getcwd 100%

#10 splice, tee 100%
#11 waitid 100%
#12 link, linkat 50%
#13 alarm 100%
#14 dup 100%
#15 mremap 100%
#16 mbind, set_mempolicy 100%
#17 unshare 100%
#18 io_destroy -
#19 mmap, mprotect, munmap, wait4 75%

#20 getpeername, getsockname, mmap, mprotect,
munmap

60%

#21 getsockopt, mmap, mprotect, munmap 50%
#22 recvmmsg 100%
#23 sendmmsg 100%
#24 io_setup, mmap, mprotect, munmap 50%
#25 sendfile, syz_emit_ethernet$ipv6 50%
#26 getsockopt, syz_emit_ethernet 50%

itives in the inference results. Thus, as we describe in §3.4,
G-Fuzz adjusts the selection probability of each syscall dy-
namically according to the current fuzzing state. To verify
the effectiveness of this strategy, we record the selection
probability of each inferred syscall during the fuzzing pro-
cess. Fig. 10 presents the curve of the selection probabil-
ity of each inferred syscall of patch target #9 with the
fuzzing time increasing. For this target, G-Fuzz infers four
target related syscalls: fstatfs, statfs, openat$ptmx
and syz_open_pts. From Fig. 10, we can observe that the
initial selection probability for the four inferred syscalls are
equal. With the fuzzing going on, G-Fuzz finds that using
fstatfs can reduce the distance to the target effectively.
Thus, the selection probability of fstatfs increases, while
the probabilities of the rest three syscalls decrease. At time
1,354 seconds, G-Fuzz successfully triggers the target, which
is denoted in the red line of the figure, and the PoC contains
the syscall fstatfs. This observation indicates that the pro-
posed selection probability scheduling strategy can mitigate
the impacts caused by the false positives of the inference.

Ablation Study. We conduct ablation study on the target
related syscall inference method. we compare G-Fuzz to G-
Fuzz-noInfer (G-Fuzz that does not leverage the inferred
syscalls) and Syzkaller. Fig. 11 shows the experimental re-
sults, we can obverse that G-Fuzz uses significantly less time
in triggering the targets than G-Fuzz-noInfer and Syzkaller.
G-Fuzz outperforms G-Fuzz-noInfer and Syzkaller in 10
targets. G-Fuzz-noInfer outperforms Syzkaller in 8 targets
(except for target 2 and 10). The results can prove the
effectiveness of the target inference optimization of G-Fuzz.

TABLE 10: The inferred syscalls for the patch targets.

Patch ID Inferred Syscalls Precision
#1 getxattr, lgetxattr 100%
#2 lremovexattr, removexattr 100%

#3 syz_emit_ethernet,
syz_emit_ethernet$arp

100%

#4
syz_emit_ethernet,

syz_emit_ethernet$ipv6,
syz_emit_ethernet$ipv6_icmp

100%

#5 socketpair 100%

#6 syz_emit_ethernet,
syz_emit_ethernet$ipv4

100%

#7 syz_emit_ethernet,
syz_emit_ethernet$ipv4

100%

#8 syz_emit_ethernet,
syz_emit_ethernet$ipv4

100%

#9 fstatfs, openat$ptmx, statfs,
syz_open_pts

75%

#10 fstatfs, pipe, pipe2, statfs 75%
#11 pread64, preadv, preadv2, read, readv -

#12
syz_emit_ethernet,

syz_emit_ethernet$ipv6,
syz_emit_ethernet$ipv6_icmp

100%

#13 connect, syz_emit_ethernet$ipv4_udp,
syz_emit_ethernet$ipv6_udp

33%

#14 setsockopt 100%

#15
syz_emit_ethernet,

syz_emit_ethernet$ipv4,
syz_emit_ethernet$ipv4_igmp

100%

#16 splice 100%
#17 splice 100%
#18 sendfile 100%
#19 syz_emit_ethernet 100%

#20 syz_emit_ethernet,
syz_emit_ethernet$ipv6

100%

#21 sendfile, syz_emit_ethernet 50%

#22 sendfile, syz_emit_ethernet$ipv4_icmp,
syz_emit_ethernet$ipv6_icmp

-
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Fig. 10: The change of the selection probability of each
inferred syscall during the fuzzing process.

6.3 Exploration and Exploitation Dynamic Switch

The Selection of Parameters. To test the impacts of the
selection of parameters (i.e., Ta and Tb), we conduct the
experiments. Specifically, we select 10 targets to test the
performance of G-Fuzz with different parameter settings.
Each experiment is conducted in five repetitions. As the
value space of the two parameters (Ta, Tb) is very large, for
convenience, we set Ta = Tb in the experiments. Table 11
shows the experimental results. The second column repre-
sents the experimental results of G-Fuzz with the setting in
this paper (Ta = 5min, Tb = 10min). From the table, we can
observe that in most cases, G-Fuzz has the best performance
with the paper’s setting. On two targets, G-Fuzz with the
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Fig. 11: Ablation study 2: target related syscall inference
optimization.

setting (Ta = Tb = 1min) has the best performance. If
the value of Ta and Tb is set too large, it may hinder the
performance of G-Fuzz.

Ablation Study. We conduct ablation study on the
exploration and exploitation dynamic method. we com-
pare G-Fuzz to G-Fuzz-only-explore (G-Fuzz that only uses
exploration state), G-Fuzz-only-exploit (G-Fuzz that only
uses exploitation state) and Syzkaller. Fig. 12 shows the
experimental results. We can find that G-Fuzz has the best
performance, which proves the effectiveness of the explo-
ration and exploitation dynamic switch optimization. As
G-Fuzz-only-explore has better performance than G-Fuzz-
only-exploit in 4 out of 10 targets (target 2, 3, 8, 10), it is hard
to determine which is better. In total, G-Fuzz-only-explore
and G-Fuzz-only-exploit use less time in triggering targets
than Syzkaller, which also demonstrate the powers of the
other optimizations of G-Fuzz in directed fuzzing.
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Fig. 12: Ablation study 3: exploration and exploitation dy-
namic switch optimization.

6.4 The Deployment and the Application of G-Fuzz

We have applied G-Fuzz in directly fuzzing the customized
gVisor, called gVisor-x, which is widely deployed in Ant
Group, a world-leading IT company. We select several vul-
nerable code from Syzbot [35], and if the vulnerable code
lies in gVisor-x, it will be considered as the target to conduct
directed fuzzing test. Leveraging G-Fuzz, we successfully
discovered seven new vulnerabilities in gVisor-x, which the
developers of Ant Group have confirmed. For commercial

reasons, we present partial information of the discovered
new vulnerabilities in Table 12. The found vulnerabilities
may have severe impacts on the security and reliability
of the business service. For instance, a malicious process
inside the container can make the gVisor panic, so the
business process will also be killed, causing Deny of Service.
Moreover, the race condition vulnerability may potentially
allow the attacker to gain privilege.

6.5 The Generalisability of G-Fuzz

Despite we focus on solving the directed fuzzing problem
for gVisor in this paper. The three core methods of G-
Fuzz are general and scalable, which address the critical
challenges for applying directed fuzzing on other OS ker-
nels. First, the static distance calculation of G-Fuzz can be
applied to any program that can be compiled into LLVM IR.
Second, most of the inference rules for identifying the target
related syscalls are suitable for other OS kernels. Third, the
exploration and exploitable dynamic switch method can be
applied to directed fuzzing for any program. Moreover, to
prove the scalability of G-Fuzz, we implement a simple
directed fuzzing prototype for Linux kernels called G-Fuzz-
Linux, which is based on the methods of G-Fuzz. We con-
duct experiments to compare the performance of G-Fuzz-
Linux with Syzkaller in directed fuzzing Linux kernels.
Here we select ten Linux kernel bugs as the targets and
repeat each experiment in five times. Table 13 presents the
experimental results. We can observe that G-Fuzz-Linux
has better performance than Syzkaller in reproducing Linux
kernel bugs. Bug 3, 4, and 10 can only be triggered by G-
Fuzz-Linux. Moreover, we open source the code of G-Fuzz-
Linux [11] to facilitate the future research.

7 DISCUSSION: THREATS TO VALIDITY

Although G-Fuzz has good performance in directed fuzzing
for gVisor, it can be further improved in the following ways.

Optimization of the Inference Methods. The proposed
target related syscall inference method creatively reduces
the huge input space for kernel directed fuzzing. The exper-
imental results also prove the effectiveness of this method.
The existing inference methods can be improved from the
following ways. First, the existing methods are based on the
expert knowledge. Some inference rules are easily to gener-
ate by analyzing the target code and the PoC input, while
some rules still need much expert knowledge. In essence,
the inference rules reflect the relations of the properties
of the target code and the PoC inputs. Thus, it is feasible
to develop an automatic inference rule generation method
from large-scale corpus with machine learning algorithms
in the future. Second, the inference rules are generated by
static analysis. In the future, we will study how to generate
the inference rules dynamically during the fuzzing process.

Discovery of More Vulnerabilities. Due to the limitation
of the targets and the fuzzing time, we do not find a large
amount of new vulnerabilities in the current paper. As
G-Fuzz has outstanding performance in directed fuzzing,
which is also demonstrated from the existing experimental
results, we are confident that G-Fuzz can discover new
vulnerabilities when testing more targets.
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TABLE 11: The performance of G-Fuzz with different Ta and Tb settings.

Targets G-Fuzz Syzkallerpaper-setting Ta = Tb=1min Ta = Tb=30min Ta = Tb=1h Ta = Tb=4h Ta = Tb=8h
1 10.81 18.79 16.86 11.28 13.32 15.03 23.52
2 0.80 9.90 15.85 7.03 12.00 8.73 19.17
3 0.23 0.14 9.70 0.22 4.98 0.16 19.39
4 13.28 17.36 17.49 20.65 22.71 18.10 22.62
5 0.35 5.24 1.59 5.29 3.13 12.01 20.11
6 2.21 0.09 0.15 1.35 5.32 5.30 17.41
7 0.42 0.71 11.14 0.95 0.85 5.53 19.50
8 1.90 4.57 4.91 5.31 72.00 72.00 37.29
9 52.77 54.37 57.49 61.60 72.00 72.00 72.00

10 40.57 23.30 30.18 29.27 72.00 72.00 64.74

TABLE 12: The new vulnerabilities of gVisor-x found by G-Fuzz.

Type Description
buffer overflow panic: runtime error: slice bounds out of range [12:LINE]
buffer overflow panic: runtime error: index out of range [260] with length 260
stack overflow fatal error: heapBitsSetType: called with non-pointer type
logic error panic: Unknown syscall NUM error: rename across inodes with different implementations
floating point error panic: runtime error: floating point error
concurrency bug fatal error: s.freeindex >s.nelems
concurrency bug panic: gofer.dentry.decRefNoCaching() called without holding a reference

TABLE 13: The performance of G-Fuzz-Linux and Syzkaller
in Linux kernel bug reproduction.

Bug Fuzzer Runs µTTE (h) Version

1 G-Fuzz-Linux 5 4.06

4.19.204

Syzkaller 1 65.52

2 G-Fuzz-Linux 5 4.22
Syzkaller 1 71.17

4 G-Fuzz-Linux 3 60.79
Syzkaller 0 72.00

3 G-Fuzz-Linux 1 61.40

4.19.199Syzkaller 0 72.00

6 G-Fuzz-Linux 5 18.27
Syzkaller 1 70.91

7 G-Fuzz-Linux 5 36.71 4.19.194Syzkaller 1 68.49

5 G-Fuzz-Linux 5 38.59

4.19.186Syzkaller 1 58.64

8 G-Fuzz-Linux 5 40.77
Syzkaller 1 70.89

9 G-Fuzz-Linux 5 6.39

4.19.180Syzkaller 1 59.16

10 G-Fuzz-Linux 3 37.92
Syzkaller 0 72.00

8 RELATED WORK

Kernel Fuzzing. Fuzzing is a popular research topic in
software and system security [33], [36]–[38]. There are many
research works focus on kernel fuzzing [30], [39]–[47].
IMF [39] is a model-based API fuzzer that targets macOS.
Syzkaller [48] is a widely used kernel fuzzer and can be
used for multiple OS kernels such as Linux, OpenBSD, Win-
dows, gVisor, etc. kAFL [40] proposes a hardware-assisted
method to record coverage with low overhead, and can
be applied to many OS kernels. Moonshine [30] leverages
static analysis to extract the dependencies across different
syscalls to further distilling the initial seeds for OS kernel
fuzzing. In G-Fuzz, we also analyze the dependencies of
the syscalls to generate semantically correct seeds. Some
OS kernel fuzzers aim at drivers [41]–[43]. DIFUZE [42]
is an interface aware fuzzer for Android device drivers.
Moreover, some kernel fuzzing works aim at testing the file
system of the kernel [44], [45] or detecting some specific
vulnerabilities [46], [47].

Static Analysis for Kernel. A plethora of research has

adopted static analysis to discover different vulnerabilities
of the OS kernels [49]–[55]. K-Miner [49] is a framework for
detecting memory corruption related vulnerabilities of the
Linux kernel. Deadline [50], Dftinker [51] and [52] focus
on discovering double-fetch vulnerabilities in the Linux
kernel. DCNS [53] aims at detecting non-sleep defects in the
Linux kernel. For missing security checks, LRSan [54] and
Crix [55] are proposed for detecting such vulnerabilities. The
kernel code is complex and has many indirect calls, which
brings challenges to the static analysis. Lu et al. [22] propose
multi-layer type analysis to identify the indirect calls with
outstanding performance, demonstrating the effectiveness
of type analysis methods. In this paper, we also leverage
type analysis to find the indirect calls of gVisor.

9 CONCLUSION

We propose G-Fuzz, a directed fuzzing framework for
gVisor, which incorporates three core methods including
lightweight and fine-grained distance calculation, target related
syscalls inference and utilization, and exploration and exploita-
tion dynamic switch. The methods of G-Fuzz are general
and scalable, which can be applied on other OS kernels
like Linux kernels. Compared to the state-of-the-art kernel
fuzzers, G-Fuzz achieves much more efficient and stable
performance. Moreover, G-Fuzz has been deployed in the
industry for the customized gVisor, and has successfully
discovered multiple real-world vulnerabilities.
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