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Abstract—Intelligent reflecting surface (IRS) has garnered
growing interest and attention due to its potential for facilitating
and supporting wireless communications and sensing. This paper
studies a semi-passive IRS-enabled sensing system, where an IRS
consists of both passive reflecting elements and active sensors.
Our goal is to minimize the Cramér-Rao bound (CRB) for
parameter estimation under both point and extended target
cases. Towards this goal, we begin by deriving the CRB for
the direction-of-arrival (DoA) estimation in closed-form and then
theoretically analyze the IRS reflecting elements and sensors
allocation design based on the CRB under the point target
case with a single-antenna base station (BS). To efficiently solve
the corresponding optimization problem for the case with a
multi-antenna BS, we propose an efficient algorithm by jointly
optimizing the IRS phase shifts and the BS beamformers. Under
the extended target case, the CRB for the target response matrix
(TRM) estimation is minimized via the optimization of the BS
transmit beamformers. Moreover, we explore the influence of
various system parameters on the CRB and compare these
effects to those observed under the point target case. Simulation
results show the effectiveness of the semi-passive IRS and our
proposed beamforming design for improving the performance of
the sensing system.

Index Terms—Intelligent reflecting surfaces, semi-passive IRS
architecture, Cramér-Rao bound, direction-of-arrival, target re-
sponse matrix, beamforming, wireless sensing.

I. INTRODUCTION

Due to the emergence of environment-aware applications,
including autonomous driving, unmanned aerial vehicle track-
ing, and human activity recognition, sensing services need
to fulfill increasingly stringent demands [1]–[6]. These ap-
plications require not only reliable communications but also
advanced sensing capabilities to collect real-time information
on the surrounding environment. In massive multi-input multi-
output systems, a large number of antennas are deployed at
the transmitter (TX) and receiver (RX), thereby improving
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spatial resolution and received power. In addition, millimeter-
wave/terahertz technologies offer higher carrier frequencies,
thereby providing wider bandwidth and higher spatial reso-
lution. With the development of these technologies, a base
station (BS) or an access point can achieve high-reliable
and high-accuracy sensing [7]–[9]. Moreover, the existing
communication infrastructures can be easily reutilized for
sensing with adjustments to hardware, signaling strategies,
and communication standards [10]. Without dedicated sensing
infrastructures, it provides new opportunities for cost-effective
and simplified network architectures for sensing services.

Wireless/radio frequency sensing refers to the use of trans-
mission, reflection, diffraction, and/or scattering of radio
waves to detect the presence of objects in the environment
or to estimate their various physical properties, e.g., po-
sition, direction, and velocity [11]. In traditional wireless
sensing/localization, line-of-sight (LoS) paths are exploited
to extract the sensing information from the echo signals
[12]. Specifically, in a mono-static BS sensing system, the
TXs and RXs are located at the same location, or the BS
transmits and receives the probing signals for a full-duplex
mode [13]. In contrast, sensing is conducted at the RX, which
is situated at a different location from the TX in a bi-static BS
sensing system [14]. For sensing, the non-LoS (NLoS) path is
generally considered as interference that can negatively impact
the performance of target sensing [15]. Therefore, the sensing
performance of both mono-static and bi-static BS sensing
systems is limited due to the lack of LoS links between the
BS and targets caused by dense obstacles as well as significant
signal attenuation across long distances.

The intelligent reflecting surface (IRS) has been leveraged
for improving the efficiency in wireless communication net-
works, which is commonly classified into three types, i.e., the
fully-passive IRS, fully-active IRS, and hybrid active-passive
IRS [16]–[20]. The IRS can reconfigure the signal propagation
paths by altering its phase shifts, and can be exploited to
enhance the sensing capability. Specifically, the IRS can create
virtual LoS links between the BS and the targets, which is
beneficial for scenarios where the direct links between them
are blocked [21]. Moreover, the IRS utilizes a large aperture
to enable intelligent reflection of signals, thereby countering
the effects of signal attenuation and boosting the received echo
signal strength for more accurate detection. Accordingly, the
IRS has been investigated in wireless sensing systems [15],
[22]–[24] and integrated sensing and communication (ISAC)
systems [25]–[30]. The IRS beam pattern gains were maxi-
mized for parameter estimation and target detection in [15].
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Fig. 1. A semi-passive IRS-enabled sensing system.

In [22], [23], the optimization of IRS reflective beamforming
aimed to enhance the probability of detecting the target at
a given level of false alarms. In [24], IRS was deployed to
control the echoes by tuning its phase shifts for enhancing the
signal-to-noise ratio (SNR). In [25], [26], a codebook design
was proposed to minimize the localization error probability
while meeting the users’ quality-of-service requirement. [27]
investigated an intelligent omni-surface-enabled ISAC system,
where the minimum SNR was maximized for sensing while
accounting for communication requirements. Furthermore, the
received SNR was maximized via transmission protocol design
and beamforming optimization [28]–[30].

In addition to the sensing SNR and the target detection prob-
ability, Cramér-Rao bound (CRB) is also one of the commonly
used metrics for evaluating the sensing performance, which
delineates the fundamental lower bound on the covariance
matrix of any unbiased estimator of the parameters. In recent
works, different IRS architectures have been employed in the
sensing systems for CRB minimization, i.e., the fully-passive
IRS [31], [32], semi-passive IRS [33], [34], and active IRS
[35]. To be specific, the fully-passive IRS only comprises a
number of passive reflective elements that reflect signals to
the target and echoes to the BS. In both semi-passive and
active IRS-enabled sensing systems, additional active sensors
are deployed as RXs with the difference being that the radar
sensing signal in the latter is transmitted through the IRS
controller rather than the BS in the former. For example,
[31] considered a fully-passive IRS-enabled sensing system
and focused on the CRB minimization. However, its sensing
performance is largely limited because the system suffers
severe signal attenuation after multiple reflections, i.e., the
BS-IRS-target-IRS-BS (BITIB) link. To tackle this issue, [35]
proposed an active IRS architecture and provided analytical
insights on the CRB for direction-of-angle (DoA) estimation.
The proposed active IRS is equipped with passive reflecting
elements, dedicated active sensors, and a controller, which
differs from the fully-active IRS that consists of active ele-
ments with signal amplification capabilities in communication
systems. In this case, the IRS controller functions as a TX,
enabling the transmission of probing signals, which makes it
similar to a traditional radar station. Although this is beneficial

for sensing, it incurs not only greater hardware expenses and
energy usage at the IRS but also complicated and effective
interference cancellation techniques, which may severely con-
strain the application scenarios of active IRS-enabled sensing
in practice. In light of this, the semi-passive IRS architecture
emerges as a cost-effective solution for wireless sensing [33],
[34]. Different from the fully-passive IRS, the semi-passive
IRS consists of a number of additional active sensors, which
directly receive and process the target echo signals, thereby
enabling the signals to travel through a less-hop link, i.e.,
the BS-IRS-target-sensor (BITS) link. As such, the intrinsic
limitations on the sensing performance of the semi-passive IRS
can be theoretically characterized by capturing the effect of the
system parameters, e.g., the number of BS transmit antenna,
IRS reflecting elements, and active sensors. Compared to the
active IRS, the semi-passive IRS is incapable of proactively
transmitting signals, thus the BS transmit beamforming needs
to be jointly designed with the IRS phase shifts for CRB
minimization. To this end, it remains unexplored how to design
a CRB-based scheme to improve the sensing performance in
such systems.

Motivated by these considerations, this paper investigates
the CRB minimization problem in a semi-passive IRS-enabled
sensing system, in which an IRS is deployed for enhancing tar-
get parameters estimation as depicted in Fig. 1. For a complete
study, we discuss two cases in the following, i.e., the point
target case and the extended target case. The objective involves
minimizing the CRB for parameter estimation and analyzing
the correlation between CRB and relevant system parameters
under both cases. Note that the CRB characterization problem
is challenging since it involves the joint design of the BS
beamformer and the IRS phase shifts. The main contributions
are summarized as follows:

• We first study the semi-passive IRS-enabled sensing
system under the point target case and obtain the cor-
responding CRB. The formulation of the CRB mini-
mization problem is aimed at enhancing the accuracy
of DoA estimation. To obtain some useful insights, we
analyze the problem for the case with a single-antenna
BS and derive the optimal solution. Furthermore, we
investigate the issue of IRS element and sensor allocation



3

for CRB minimization. Specifically, the optimal number
of reflecting elements and that of sensors at the IRS for
CRB minimization are derived, subject to a constraint
of power/cost/total number for them. Since the formu-
lated CRB minimization problem is more challenging for
the case with a multi-antenna BS, we apply alternating
optimization (AO) and semi-definite relaxation (SDR)
techniques to obtain a high-quality solution.

• Then, we derive the CRB for the target response matrix
(TRM) estimation for the case with an extended target.
Given that the CRB does not rely on the design of the
reflective beamformer, the corresponding CRB minimiza-
tion problem is solved by optimizing the transmit beam-
forming. Moreover, we obtain the closed-form expression
of CRB based on our proposed design by performing
singular value decomposition (SVD). The correlation
between the derived CRB and system parameters is
unveiled, which differs from the conclusion under the
point target case. Furthermore, we compare the semi-
passive IRS-enabled sensing system and the fully-passive
IRS-enabled sensing system in terms of the CRB.

• Numerical results illustrate the effectiveness of the pro-
posed scheme in the semi-passive IRS-enabled sensing
systems in terms of the sensing performance measured by
the CRB. Moreover, our results also reveal the correlation
between the CRB and various system parameters. To be
specific, the CRB for the DoA estimation decreases with
the transmit power, the number of BS transmit antennas,
IRS reflecting elements, and IRS sensors. Furthermore, it
is shown that the CRB for the TRM estimation decreases
with the transmit power and the number of BS transmit
antennas and increases with the number of reflecting
elements and of sensors at the IRS.

The rest of this paper is organized as follows. Section II
presents the system model for the semi-passive IRS-enabled
sensing system. We analyze the CRB for the DoA estimation
under the point target case with a single-antenna BS and
a multi-antenna BS, respectively, in Section III. Section IV
presents the transmit beamforming design and derives the
optimal CRB for the TRM estimation in closed-form under
the extended target case. Simulation results are presented in
Section V and finally, Section VI brings the conclusion.

Notations: Matrices and vectors are denoted by boldface
upper-case and lower-case letters, respectively. Cr1×r2 and
Rr1×r2 denote the complex-valued and real-valued matrices of
dimensions r1× r2, respectively. For a complex-valued vector
s, arg (s) represents its phase, [s]n denotes the n-th entry of
s, and diag (s) denotes a diagonal matrix with its diagonal
entries taken from the vector s. For a square matrix B, B ⪰ 0
implies that B is positive semi-definite and tr (B) denotes its
trace. For a general matrix S, vec (S), and rank (S) represent
its vector and rank, respectively. IR is an identity matrix of
dimensions R×R. 0 represents an all-zero matrix. (·)∗, (·)T ,
∂
∂ (·), (·)H and ∥ · ∥ stand for the conjugate, transpose, partial
derivative and conjugate transpose operators, and Euclidean
norm, respectively. For a complex scalar x, |x|, Im (x), and
Re (x) denote the absolute value, the imaginary part and the

real part of x, respectively. j denotes the imaginary unit,
i.e., j2 = −1. For a circularly symmetric complex Gaussian
random variable x with mean µ and variance σ2, the notation
is x ∼ CN (µ, σ2). O (·) expresses the big-O notation. ⊗
represents the Kronecker product.

II. SYSTEM MODEL

As illustrated in Fig. 1, a semi-passive IRS-enabled sensing
system is considered, which includes a BS with M antennas,
a target, and a semi-passive IRS with N0 = Nh×Nv reflecting
elements and K0 = 2Kh − 1 = 2Kv − 1 sensors.1 The
probing signals are reflected by passive reflecting elements
arrayed horizontally and vertically in the number of Nh and
Nv, respectively. Kh sensors and Kv sensors are respectively
placed horizontally and vertically, which are active and ac-
countable for the reception and processing of the echo signal
emitted by the target. The inter-element spacing and inter-
sensor spacing at the semi-passive IRS are given by dI and ds,
respectively. For simplicity, this paper considers the estimation
of the target’s azimuth angle relied on the signals received by
the Kh horizontal sensors, and the proposed design is also
applicable to its elevation angle estimation. We assume that
the BS-target direct link is obstructed due to dense obstacles.

Denote the vector of transmitted signal at symbol t ∈ T =
{1, . . . , T} by x (t) ∈ CM×1. The transmit covariance matrix
is given by

Rx =
1

T

∑
t∈T

x (t)x(t)
H
. (1)

The TRM H varies according to the particular target models.
To be specific, we take into account the following two cases,
i.e., the point and extended target cases.

1) Point Target Case: In this case, the target is an object
that is small relative to the radar resolution cell and can be
modeled as an unstructured point that reflects the signal from
a single scatterer within the space (see Fig. 1 (a)). To facilitate
the channel description, we denote the steering vector function
for a uniform linear array (ULA) by u

(
ϑ̄, N̄

)
, which can be

expressed as

u
(
ϑ̄, N̄

) ∆
=

[
e

−j(N̄−1)πϑ̄

2 , e
−j(N̄−3)πϑ̄

2 , . . . , e
j(N̄−1)πϑ̄

2

]T
, (2)

where ϑ̄ represents the steering vector direction. N̄ is the
number of elements of the ULA. Then, the TRM is modeled
as

H = αb (θh)a
T (θh, θv) , (3)

where the channel coefficient is denoted by α = α0β0 ∈ C,
determined by both the round-trip path-loss and the radar cross
section (RCS). The small-scale fading α0 ∼ CN (0, 1) refers
to rapid fluctuation of the amplitude and phase of the received

1To explore the potential advantages of semi-passive IRS in a sensing
system for minimizing the CRB, we assume that there is one target. We can
analyze the CRB for angle estimation and response matrix estimation similar
to the one without IRS in [36]. Note that the AO and SVD-based approaches
are applicable to the multi-target case.
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signal. β0 =
√

λ2
Rκ

64π3d4
IT

with λR denoting the carrier wave-
length, dIT representing the IRS-target distance, and κ denoting
the RCS. In addition, the steering vector at the IRS sensors is
expressed as b (θh) = u

(
2ds
λR

sin (θh) ,Kh

)
∈ CKh×1 and the

response vector function of the IRS is given by a (θh, θv) =

u
(

2dI
λR

sin (θh) sin (θv) , Nh

)
⊗u

(
2dI
λR

cos (θv) , Nv

)
, where θh

and θv denote the azimuth and vertical angles-of-departure
from the IRS to the target, respectively. To obtain insights,
we consider the special case with a ULA of N reflecting
elements and K sensors at the IRS.2 Assuming that N and
K are even integers (N ≥ 2 and K ≥ 2), and the inter-
element distance and the inter-sensor distance are the same,
i.e., ds = dI = d̂, the TRM in (3) with the target’s DoA θ is
rewritten as H = αb(θ)aT (θ), where

a(θ)=

[
e
− jπ(N−1)d̂ sin(θ)

λR ,e
− jπ(N−3)d̂ sin(θ)

λR ,. . .,e
jπ(N−1)d̂ sin(θ)

λR

]T
,

(4)

b(θ)=

[
e
− jπ(K−1)d̂ sin(θ)

λR ,e
− jπ(K−3)d̂ sin(θ)

λR ,. . .,e
jπ(K−1)d̂ sin(θ)

λR

]T
.

(5)

2) Extended Target Case: In this case, the size of the target
exceeds the radar range resolution. The extended target can
be approximated by an object composed of distributed point-
like scatterers and reflects the incident signal from multiple
scatterers dispersed over a larger spatial area (see Fig. 1
(b)). The mathematical representation of the problem for the
extended target case is similar to that for the point target
case if the received signal is processed individually at each
sensor. Due to the impact of target spatial range and scattering
characteristics on analysis and application, extended targets
and point targets are not directly related in general. Denote
the set of the resolvable scatterers by S = {1, . . . , Ns}. For
the scatterer s ∈ S, αs denotes the reflection coefficient, and
the angle is denoted by θs. In this case, The TRM can be
modeled as

H =
∑
s∈S

αsb (θs)a
T (θs). (6)

The IRS reflection-coefficient matrix is denoted by Φ =

diag (v), where v =
[
ejϕ1 , . . . , ejϕN

]T
with the phase shift

ϕn ∈ [0, 2π), n ∈ {1, . . . , N}. At symbol t, we can express
the received echo signal as

y (t) = HΦGx (t) + n (t) , (7)

where G ∈ CN×M represents the channel from the BS to the
semi-passive IRS, and n (t) ∼ CN

(
0, σ2

RIK
)

represents the
additive disturbance at the IRS sensors with the noise power
σ2

R. By stacking the received signals, we represent them in a
matrix form as

Y = [y (1) ,y (2) , . . . ,y (T )] = HΦGX+N, (8)

where X = [x (1) ,x (2) , . . . ,x (T )] and N =
[n (1) ,n (2) , . . . ,n (T )]. Based on (8), we analyze the

2The proposed algorithm is extendable for scenarios involving a uniform
planar array IRS. This is due to the fact that the estimation of horizontal and
vertical directions can be treated independently [35].

CRB for the DoA estimation under the point target case and
for the TRM estimation under the extended target case in the
following sections.

III. CRB ANALYSIS AND OPTIMIZATION FOR POINT
TARGET CASE

In this section, we investigate the CRB minimization prob-
lem under the point target case. To obtain useful insights, we
first derive the optimal solution for a scenario involving a
single-antenna BS. Then, an efficient algorithm is developed
for the corresponding problem to derive its high-quality solu-
tion for the case with a multi-antenna BS.

In this case, we rewrite the received echoes Y in (8) as

Y = αE(θ)X+N, (9)

where E(θ) = b(θ)aT (θ)ΦG. For ease of notation, we denote
a(θ), b(θ), and E(θ) as a, b and E, respectively. To facilitate
the CRB derivation, we convert Y in (9) into a vector form
as

ŷ = vec (Y) = ẑ+ n̂, (10)

where ẑ = αvec (EX). n̂ is the vectorization of the matrix
N, and is distributed as CN (0, R̂n) with R̂n = σ2

RIKT . The
unknown parameters are defined by ξ =

[
θ, α̂T

]T ∈ R3×1

with α̂ = [Re {α} , Im {α}]T . To begin with, we derive the
Fisher information matrix (FIM) F̂ ∈ R3×3 for estimating ξ,
where the (p, q) entry of F̂ is given by [37]

[F̂]p,q =tr

(
R̂−1

n
∂R̂n

∂ξp
R̂−1

n
∂R̂n

∂ξq

)

+ 2Re

{
∂ẑH

∂ξp
R̂−1

n
∂ẑ

∂ξq

}
, p, q ∈ {1, 2, 3} . (11)

Based on (11), we write the FIM in a block matrix form, which
is given by

F̂ =

[
F̂θθ F̂θα̂

F̂T
θα̂ F̂α̂α̂

]
, (12)

where

F̂θθ =
2T |α|2

σ2
R

tr
(
ĖRxĖ

H
)
, (13)

F̂θα̂ =
2T

σ2
R
Re
{
α∗tr

(
ERxĖ

H
)
[1, j]

}
, (14)

F̂α̂α̂ =
2T

σ2
R
tr
(
ERxE

H
)
I2, (15)

where Ė = ∂E
∂θ . The details of the above derivations can be

found in Appendix A. We focus on the estimation of θ. Based
on (12), (13), (14) and (15), the corresponding CRB matrix is
given by

CRB(θ) = [F̂−1]1,1

=
[
F̂θθ − F̂θα̂F̂

−1
α̂α̂F̂

T
θα̂

]−1

=
σ2

R

2T |α|2
(
tr
(
ĖRxĖH

)
− |tr(ERxĖH)|2

tr(ERxEH)

) . (16)



5

CRB(θ) =
σ2

Rλ
2
R

2T |α|2π2d̂2cos2(θ)
(
(K

3−K
3 )(vHR1v) +K(vHDaR1Dav)−K |vHDaR1v|2

(vHR1v)

) . (25)

Since we choose the array centroid as the reference point in
(4) and (5), we have that due to the symmetry,

ȧHa = 0,aH ȧ = 0, ḃHb = 0,bH ḃ = 0,∀θ, (17)

where the derivative of a and b are given by

ȧ =
∂a

∂θ
= jπ

d̂

λR
cos(θ)Daa, (18)

ḃ =
∂b

∂θ
= jπ

d̂

λR
cos(θ)Dbb, (19)

with Da = diag(−(N − 1),−(N − 3), . . . , (N − 1)) and
Db = diag(−(K − 1),−(K − 3), . . . , (K − 1)). By intro-
ducing A = diag (a), we have

E = baTΦG = bvTAG, (20)

Ė = ḃaTΦG+ bȧTΦG

= jπ
d̂

λR
cos(θ)

(
Dbbv

TAG+ bvTDaAG
)
. (21)

Based on (18), (19), (20) and (21) and the orthogonality
property (17), it yields

tr
(
ERxE

H
)
=tr

((
baTΦG

)
Rx
(
baTΦG

)H)
=∥b∥2vHR1v, (22)

tr
(
ERxĖ

H
)
=tr

(
(baTΦG)Rx(ḃa

TΦG+ bȧTΦG)
H
)

=− jπ
d̂

λR
cos(θ)∥b∥2vHDaR1v, (23)

tr
(
ĖRxĖ

H
)
=tr

(
ḃaTΦGRx(ḃa

TΦG)
H
)

+ tr
(
bȧTΦGRx(bȧ

TΦG)
H
)

=π2 d̂
2

λ2
R
cos2(θ)∥Dbb∥2vHR1v

+ π2 d̂
2

λ2
R
cos2(θ)∥b∥2vHDaR1Dav, (24)

where R1 = A∗G∗RT
x G

TA. As such, we derive the follow-
ing proposition regarding the CRB and proceed to conduct
theoretical analysis on it.

Proposition 1: Under the point target case, the CRB for the
DoA estimation is expressed in (25) on the top of this page.

Proof: Based on (5), we have ∥Dbb∥2 = (K3 −K)/3 and
∥b∥2 = K. By substituting (22), (23) and (24) into (16), (25)
is naturally obtained, which completes the proof. ■

Proposition 1 shows that the CRB of θ monotonically
decreases as T increases. This is because more measurements
provide better sampling and more diverse statistical informa-
tion on the parameters being estimated, allowing the estimator
to capture more variation in the data, thus improving the
accuracy. Moreover, it is observed that the CRB increases with

σ2
R, because higher noise power introduces more uncertainty

and randomness into the estimated data, making accurate
estimation more challenging and resulting in greater variance
in the estimator. Next, we further provide an analysis of the
deployment of the IRS sensors.

Proposition 2: Under the point target case, the CRB of θ
monotonically decreases with K.

Proof: Note that CRB (θ) is dependent on K, and thus,
we use CRBθ (K) to represent CRB (θ). By relaxing K to a
continuous variable, the partial derivative of CRBθ (K) with
respect to (w.r.t.) K is given by

∂CRBθ(K)

∂K
=

−β1(3β2K
2 − β3)

(β2K3 − β3K)
2 , (26)

where β1 = σ2
Rλ

2
R/(2T |α|

2
π2d̂2cos2(θ)), β2 = vHR1v/3

and β3 = β2 − vHDaR1Dav +
∣∣vHDaR1v

∣∣2/(vHR1v).
Without loss of generality, CRBθ(K)>0, i.e., β2K

2 − β3>0,
we have d(CRBθ(K))

dK <0, which completes the proof. ■
Proposition 2 shows that more sensors should be deployed

at the IRS to enhance the accuracy for estimating the point
target’s θ. The result is expected because increasing the num-
ber of IRS sensors enhances the spatial resolution of sensing
through the acquisition of more diverse spatial information.
Moreover, it contributes to a higher array gain, which can
effectively enhance the strength of the received signal and
improve the extraction of estimated information from it. In
contrast, increasing K leads to a higher CRB for the TRM
estimation under the extended target case, which will be
explained in Section IV.

Based on (25), we minimize the CRB of θ via the joint
optimization of the transmit and reflective beamforming. Then,
the corresponding problem for CRB minimization can be
formulated as

min
Rx,v

CRB(θ) (27a)

s.t. tr (Rx) ≤ P0, (27b)
Rx ⪰ 0, (27c)
|vn| = 1,∀n ∈ {1, . . . , N} , (27d)

where vn denotes the n-th element of v, and P0 in (27b) is
the BS’s transmit power budget. For problem (27), constraints
(27c) and (27d) are the non-negative constraint on the opti-
mization variable and the unit-modulus constraint for the IRS
phase shift, respectively. Problem (27) is intractable due to the
complex interdependence of the optimization variables Rx and
v in the objective function. To address these challenges, we
first solve problem (27) when dealing with a single-antenna
BS, and then an efficient algorithm is developed to obtain high-
quality solutions for a scenario involving a multi-antenna BS.
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A. Single-Antenna BS

To draw essential insights, we consider the simple system
setup in which the BS is equipped with a single antenna,
i.e., M = 1. Let hBI denote the BS-IRS channel with
the corresponding distance-dependent path-loss factor hBI. As
such, (22), (23) and (24) can be rewritten as

tr
(
ERxE

H
)
=px∥b∥2

∣∣aTΦhBI
∣∣2, (28)

tr
(
ERxĖ

H
)
=px∥b∥2aTΦhBIh

H
BIΦ

H ȧ∗, (29)

tr
(
ĖRxĖ

H
)
=π2 d̂

2

λ2
R
cos2(θ)px∥Dbb∥2

∣∣aTΦhBI
∣∣2

+ px∥b∥2
∣∣ȧTΦhBI

∣∣2, (30)

where E = baTΦhBI. By substituting (28), (29) and (30) into
(16), the CRB of θ can be calculated as

CRB(θ) =
σ2

Rλ
2
R

2T |α|2π2cos2(θ)d̂2px∥Dbb∥2|aTΦhBI|2

=
3σ2

Rλ
2
R

2T |α|2π2cos2(θ)d̂2px(K3 −K)|aTΦhBI|2
. (31)

Then, problem (27) can be equivalently transformed into

max
px,Φ

px
∣∣aTΦhBI

∣∣2 (32a)

s.t. px ≤ P0, (32b)
0 ≤ ϕn ≤ 2π,∀n ∈ {1, . . . , N} . (32c)

It can be readily verified that the optimal solutions to problem
(32) are p∗x = P0 and ϕ∗

n = − arg {[a]n}−arg {[hBI]n} ,∀n ∈
{1, . . . , N}, which are used in the following proposition to
obtain the closed-form CRB.

Proposition 3: Under the point target case with a single-
antenna BS, the CRB for DoA estimation can be obtained in
closed-form, which is expressed as

CRB(θ)opt
=

3σ2
Rλ

2
R

2T |α|2π2cos2(θ)d̂2h2
BIP0N2(K3 −K)

. (33)

Proof: Substituting the optimal solution to problem (32) into
(31), the CRB of θ can be calculated as

CRB(θ)opt
=

3σ2
Rλ

2
R

2T |α|2π2cos2(θ)d̂2rx(K3 −K)|aTΦhBI|2

(a1)
=

3σ2
Rλ

2
R

2T |α|2π2cos2(θ)d̂2h2
BIrxN2(K3 −K)

(a2)
=

3σ2
Rλ

2
R

2T |α|2π2cos2(θ)d̂2h2
BIP0N2(K3 −K)

, (34)

where (a1) utilizes the optimal design of Φ, i.e., ϕ∗
n =

− arg {[a]n} − arg {[hBI]n} ,∀n ∈ {1, . . . , N} and (a2) uti-
lizes p∗x = P0. ■

Proposition 3 shows that the CRB decreases inversely
proportional to N2(K3−K) since it is influenced by both the
received power and the phase difference among the sensors
at the IRS. To be specific, the IRS elements provide the
squared-power passive beamforming gain [38], whereas the

IRS sensors contribute the total gain of O(K3), including the
receive beamforming gain of O(K) and the spatial direction
gain of O(K2).

Inspired by the above analysis in Proposition 3, we further
investigate the optimal configuration of system parameters for
CRB minimization. Let Qtot = QI+Qs denote the constraint of
power/cost/total number for the number of IRS elements and
sensors. By relaxing the value of N and K into continuous
values Ñ and K̃, we have QI = ÑWI and Qs = K̃Ws,
where WI and Ws are the corresponding weights. With the
constraint, we derive the following proposition for the IRS
element allocation design.

Proposition 4: The optimal number of the IRS passive
reflecting elements and that of the active sensors for CRB
minimization are respectively given by

Ñ opt = Qtot/((1 + ς1)WI),

K̃opt = ς1Qtot/((1 + ς1)Ws), (35)

where ς1=−1/β4+
3
√
(β6 + β7)/(2β3

4)+
3
√

(β6 − β7)/(2β3
4),

β4= −2(Q2
tot −W 2

s )/(Q
2
tot +W 2

s ), β5 = −W 2
s /(Q

2
tot +W 2

s ),
β6 = −β2

4β5−2 and β7 =
√
β2
6 − 4. To obtain useful insights,

we also provide a high-quality solution, which is expressed as

Ñ sub-opt =
2Q3

tot − 2QtotW
2
s

5Q2
totWI +W 2

s WI
,

K̃sub-opt =
3Q3

tot + 3QtotW
2
s

5Q2
totWs +W 3

s
. (36)

Proof: Please refer to Appendix C. ■
Proposition 4 provides helpful guidance for the IRS element

and sensor allocation design. One can observe from (36)
that the number of IRS elements exceeds that of sensors if
WI ∈ (0, (2Q2

totWs − 2W 3
s )/(3Q

2
tot + 3W 2

s )). However, the
condition is not satisfied when WI = Ws = 1 for any Qtot. As
such, under the case with the constraint of total number, more
sensors should be deployed at the semi-passive IRS. This is
expected because equipping the IRS with a greater number
of sensors under the same weight configuration will result
in a higher overall gain. Our findings will be validated via
simulations in Section V.

B. Multi-Antenna BS

Before solving problem (27) under the case with a
multi-antenna BS, it can be equivalently converted into
a form that is more tractable. We define f (Rx,V) =
K2−1

3 tr(A∗G∗RT
x G

TAV) + tr(DaA
∗G∗RT

x G
TADaV) −∣∣tr(A∗G∗RT

x G
TADaV)

∣∣2/tr(A∗G∗RT
x G

TAV), where the
semi-definite matrix V = vvH satisfying rank(V) = 1. With-
out the non-convex rank-one constraint, the SDR reformulation
of problem (27) is expressed as

max
Rx,V

f (Rx,V) (37a)

s.t. Vn,n = 1,∀n = 1, . . . , N, (37b)
V ⪰ 0, (37c)
(27b), (27c). (37d)



7

Solving problem (37) optimally is challenging because of the
coupling of the optimization variables Rx and V in (37a),
which causes the non-convexity of problem (37). To address
this difficulty, the AO method is applied to iteratively optimize
Rx and V until convergence. Specifically, with fixed either
Rx or V, problem (37) is reduced to a typical semi-definite
program (SDP), which can be solved by CVX directly.

1) Transmit Beamforming Optimization: For any fixed V,
define R2 = K2−1

3 GHAHVTAG + GHAHDaV
TDaAG

and J = GHAHVT . By adopting the Schur’s complement
condition with the introduced auxiliary variable t2, problem
(37) is reformulated as

max
Rx,t1

t1 (38a)

s.t.
[

tr(R2Rx)− t1 tr(JDaAGRx)
tr(RH

x GHAHDaJ
H) tr(JAGRx)

]
⪰0, (38b)

(27b), (27c), (38c)

which is a standard SDP and is readily to be solved using
existing solvers, e.g., CVX.

2) IRS Beamforming Optimization: For any given Rx, we
define R3 = (K2−1)

3 R1+DaR1Da. By leveraging the Schur’s
complement condition with the introduced auxiliary variable
t2, problem (37) is transformed into

max
V,t2

t2 (39a)

s.t.
[

tr (R3V)− t2 tr (DaR1V)
tr
(
VHRH

1 Da
)

tr (R1V)

]
⪰ 0, (39b)

(37b), (37b), (39c)

which is also a standard convex SDP and is solvable with
numerical methods available in tools such as CVX.

3) Convergence and Computational Complexity: The ob-
jective value of problem (37) is non-decreasing after each
iteration since the sub-problem for Rx or V is solved op-
timally. Moreover, the optimal objective value has an upper
bound from above, ensuring that the proposed algorithm will
converge. Upon the AO algorithm reaching convergence, if the
solution is not rank-one, the standard Gaussian randomization
method can be leveraged to generate candidate solutions that
are restricted to be rank-one and feasible to the optimization
problem. Then, we choose the feasible solution with the
minimum objective value as the final solution and update Rx.
The main computational complexity of the AO algorithm is
primarily determined by the solution of the two SDP sub-
problems. Specifically, the complexity for solving problems
(38) and (39) are O

(
M3.5

)
and O

(
N3.5

)
, respectively [39].

Therefore, the overall complexity of the AO algorithm is given
by O

((
M3.5 +N3.5

)
Iiter
)
, where Iiter denotes the number of

iterations needed for convergence.

IV. CRB ANALYSIS AND OPTIMIZATION FOR EXTENDED
TARGET CASE

In the previous section, the analysis of the CRB of θ is
presented under the point target case. This section is dedicated
to exploring the scenarios involving another target model,
i.e., the extended target. We first derive the CRB for the

TRM estimation, and then the CRB is minimized through the
optimization of the BS transmit beamforming.

Under the extended target case, the dedicated active sensors
at the IRS have no prior knowledge about the scattering
characteristics. Therefore, we estimate the TRM H instead
of θs, ∀s ∈ S.3 In this case, the vectorization of Y in (9) is
denoted by

ỹ = vec (Y) = z̃+ ñ, (40)

where ñ, denoting the vectorization of the matrix N,
is distributed as CN (0, R̃n) with R̃n = σ2

RIKT . z̃ =
vec (HΦGX) =

(
XTGTΦT ⊗ IK

)
h with h = vec (H).

A. Estimation Performance Evaluation via CRB

In this case, we have 2KN real parameters to be estimated,
which are denoted by ζ =

[
hT

R ,h
T
I

]T
, where hR = Re{h}

and hI = Im{h}. Denote the FIM associated with the
estimation of ζ by F̃ ∈ R2KN×2KN . Similar to (11), we
can derive each entry of the FIM F̃. Accordingly, the FIM
is expressed as

F̃ =

[
F̃hRhR F̃hRhI

F̃hIhR F̃hIhI

]
, (41)

where

F̃hRhR = F̃hIhI =
2T

σ2
R
Re
{(

Φ∗G∗R∗
XG

TΦT
)
⊗ IK

}
, (42)

F̃hIhR = −F̃hRhI

=
2T

σ2
R
Im
{(

Φ∗G∗R∗
XG

TΦT
)
⊗ IK

}
. (43)

The details of the above derivations can be found in Appendix
B. By combining the above analysis, we derive the CRB for
the TRM estimation as follows:

Proposition 5: Under the extended target case, the CRB for
the TRM estimation is expressed as

CRB(H) =
σ2

RK

T
tr((GRH

x GH)
−1

). (44)

Proof: The CRB of H can be obtained by taking the inverse
of the FIM. Substituting (42) and (43) into (41), we can obtain
the CRB of H as

CRB (H) = tr
(
F̃−1

)
=

σ2
R

T
tr
((

ΦGRH
x GHΦH

)−1
)
tr
(
I−1
K

)
=

σ2
RK

T
tr
(
ΦH

(
GRH

x GH
)−1

Φ
)

=
σ2

RK

T
tr
((

GRH
x GH

)−1
)
, (45)

which completes the proof. ■
Proposition 5 shows that the CRB for the TRM estimation

does not rely on the design of the IRS reflective beamforming.
By comparing (25) and (44) presented in Proposition 1 and

3The angle and reflection coefficients of each scatter can be extracted from
H using signal processing techniques, e.g., the amplitude and phase estimation
of a sinusoid [40] and generalized likelihood ratio test algorithms [41].
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Proposition 5, one can observe that the CRB increases with
σ2

R and decreases with T under both cases. Moreover, it can
be seen that more sensors degrade the sensing performance
under the extended target case, whereas it results in a lower
CRB under the point target case, which is explained in Section
III. This is because increasing K leads to more parameters
that need to be estimated, which means more unknowns to
be determined from the available information. The available
information is dispersed among more unknowns, increasing
estimation uncertainty, which makes it more challenging to
accurately estimate the parameters.

According to [31], the CRB for the TRM estimation
of the fully-passive IRS-enabled sensing system is given
by CRBFPS (H) =

σ2
R
T tr

((
GRH

x GH
)−1
)
tr
((

GH
r Gr

)−1
)

,
where Gr ∈ CMr×N denotes the IRS-BS channel with the
number of receive antenna Mr. Comparing the CRB for the
TRM estimation of the two sensing systems with different IRS
architectures, we have the following remarks.

Remark 1: It is worth mentioning that the FIM F̃ in (41)
is a singular matrix, and the corresponding CRB is infinite
when rank (G)<N . This is because the lack of sufficient
degrees of freedom to accurately measure the target’s direction
limits the precision of the DoA estimation. As such, in both
fully-passive and semi-passive IRS-enabled sensing systems,
the common requirement for H to be estimable under the
extended target case is that rank (G) = N . However, there
exists an extra condition to be fulfilled in the fully-passive
IRS-enabled sensing system, i.e., rank (Gr)<N [31].

Remark 2: Under the extended target case, the CRB of the
sensing system with the semi-passive IRS outperforms that
with the fully-passive IRS if K<tr

((
GH

r Gr
)−1
)

. This is
because a lower CRB implies that the former architecture
offers better estimation accuracy, as it has a smaller theoretical
lower bound on the variance. By applying SVD to Gr, the
expression tr

((
GH

r Gr
)−1
)

can be rewritten as the sum of
the reciprocals of the squared singular values of Gr, which is
generally much larger than K.

B. Transmit Beamforming Design

Given the derived CRB for the TRM estimation in (44),
there is no need to optimize the reflective beamformer Φ.
Thus, the CRB minimization problem by optimizing Rx is
formulated as

min
Rx

tr
((

GRH
x GH

)−1
)

(46a)

s.t. tr (Rx) ≤ P0, (46b)
Rx ≥ 0. (46c)

Note that the objective function (46a) and constraints (46b) and
(46c) are convex, thus making problem (46) convex. Then, we
derive the optimal solution and the CRB in closed-form as fol-
lows. We denote the SVD of G as G = ÛΣ̂Q̂H , where Û ∈
RN×N and Q̂ ∈ RM×M with ÛHÛ = ÛÛH = IN , Q̂HQ̂ =
Q̂Q̂H = IM , and Σ̂ = diag (σ̂1, . . . , σ̂N , 0, . . . , 0) =
[Σ̂1,0] ∈ RN×M with σ̂1 ≥ . . . ≥ σ̂N>0 denoting the N

positive singular values. Following a similar procedure as in
[31], the optimal solution to problem (46) is given by

R∗
x = Q̂R̂

opt
x Q̂H , (47)

where

R̂opt
x =

[
Σ̂−1

1 P0∑N
i=1 σ̂−1

i

0

0 0

]
. (48)

Based on (44) and (47), the optimal CRB for the TRM
estimation under the extended target case is expressed as

CRB(H)
opt

=
σ2

RK

P0T

(∑N

i=1
σ̂−1
i

)2

. (49)

From (49), it is noticed that the value of the inverse singular
value σ̂−1

i depends on both M and N , and the number of σ̂−1
i

increases with N . The impact of M and N on the CRB will
be explored in detail in Section V.

V. SIMULATION RESULTS

To characterize the performance of our proposed CRB-
based scheme in the semi-passive IRS-enabled sensing system,
numerical results are presented in this section. The distance
between BS and IRS is set as dBI = 60 meter (m), and that
between the IRS and target is dIT = 20 m. Denote the large-
scale path loss model by L (d) = C0 (d/D0)

−αd with the
path-loss exponent αd, the link distance d, and the path loss
C0 = 30 dB at the reference distance D0 = 1 m. Considering
the small-scale fading, we characterize the BS to IRS channel
by Rician fading, which is modeled as

G = ρBI

(√
βBI

βBI + 1
Ḡ+

√
1

βBI + 1
G̃

)
, (50)

where ρBI is the large-scale path-loss with the path-loss expo-
nent αBI, and βBI denotes the Rician factor. Ḡ and G̃ denote
the LoS and NLoS components of the channel, respectively.
We set βBI = 5 dB and αBI = 2.5. Unless otherwise specified,
other system parameters given in the following are set as
θ = 60◦, κ = 7 dBsm, λR = 0.2 m, d̂ = λR/2, σ2

R = −90
dBm, and T = 64.

A. Point Target Case

To illustrate the effectiveness of the proposed scheme with
the semi-passive IRS, the following schemes are considered
for comparison: 1) Fully-passive [31]: The number of receive
antennas at the BS Mr is set equal to the number of sensors
K for a fair comparison by assuming that no active sensors
are deployed at the IRS; 2) Semi-passive, random phase
shift: the IRS phase shifts are randomly chosen over the range
[0, 2π), and the CRB is minimized by optimizing the BS
beamforming; 3) Semi-passive, isotropic transmission: the
BS transmits orthonormal signal beams, i.e., Riso

x = P0IM/M
[42], while the phase shifts are optimized at the semi-passive
IRS; 4) Semi-passive, proposed design: the CRB is obtained
by our proposed joint beamforming design. In Fig. 2, we plot
the CRB for the DoA estimation versus P0 when Mr = M =
K = N = 16. One can observe that the semi-passive IRS
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Fig. 2. The CRB for the DoA estimation versus P0 for different schemes.
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Fig. 3. The CRB for the DoA estimation versus P0 under different channel
models.

architecture outperforms the fully-passive IRS architecture.
This can be attributed to the shorter signal propagation path
in the former configuration, in which the signal traverses the
BITS link. In contrast, the fully-passive IRS-enabled sensing
system introduces significant signal attenuation through the
BITIB link, which degrades the sensing performance. In
addition, for the semi-passive IRS-enabled sensing system,
it is observed that the scheme with random phase shifts
exhibits inferior performance compared to the schemes with
reflective beamforming design (i.e., isotropic transmission and
proposed design). This discrepancy can be attributed to the
absence of passive beamforming gain, which highlights the
importance of carefully designing the IRS beamforming. For
the entire range of transmit power, our proposed scheme yields
a substantial enhancement in performance compared to other
baseline schemes, which demonstrates its superiority in terms
of the CRB.

1) Impact of the Rician Factor: In Fig. 3, we investigate
the impact of the Rician factor by plotting the CRB for the
DoA estimation versus the transmit power P0 under different
channel models when N = 64, M = 8, and K = 8. One
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)

Fig. 4. Impact of the system parameters on the CRB for the DoA estimation.

can observe that the CRB of θ decreases as βBI increases.
Note that the NLoS component of the BS-IRS channel re-
duces the beamforming gain, thereby degrading the sensing
performance. Semi-passive IRS can be utilized to mitigate
this adverse effect and enhance the sensing performance in
challenging scenarios. The results highlight the importance of
deploying a semi-passive IRS to establish the dominant LoS
path, especially when the sensing target is situated in the NLoS
area of the BS.

2) Impact of the System Parameters: In Fig. 4, we eval-
uate the performance of our proposed design by plotting the
CRB versus P0 under different numbers of antennas M , IRS
reflecting elements N , and sensors K. First, one can see that
the CRB of θ decreases linearly with P0 because the CRB
is inversely proportional to P0 in (16). Moreover, increasing
P0 allows a stronger signal to be transmitted. Second, we
can observe that the CRB decreases with M since adding
antennas at the BS can provide more spatial diversity and
higher beam gain. Third, it can be seen that the CRB decreases
with N because an increase in N results in higher passive
beamforming gain, thereby contributing to better sensing per-
formance. Finally, we can observe that the CRB decreases
with K due to higher spatial resolution and higher array gain,
which is consistent with Proposition 2. Given M , the sensing
performance can be effectively enhanced by deploying more
sensors at the semi-passive IRS in a flexible manner, except
in the fully-passive IRS-enabled sensing system where it can
only be achieved by adjusting N .

3) Impact of the Weight on IRS Elements and Sensors
Allocation: In Fig. 5a, we plot the optimized IRS elements
and sensors allocation design for CRB minimization versus
WI under the special case with a single-antenna BS where
Ws = 1. One can observe that more reflecting elements
should be deployed at the IRS when WI<0.7. In the regime
where WI is small, the performance of sensors is mainly
restricted by the deployment cost. Compared to the sensors,
the reflecting elements enjoy the advantages of lower cost
and reaping a higher passive beamforming gain of O(N2).
Nevertheless, the number of reflecting elements gradually
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(a) The proposed optimized Ñ and K̃ versus WI under different Qtot.
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(b) Comparison of the proposed optimized Ñ and K̃ and the solution obtained by the
exhaustive search algorithm versus WI with Qtot = 600.

Fig. 5. The optimized number of IRS passive reflecting elements/active sensors versus WI with Ws = 1.

decreases as WI increases since the sensors can provide a gain
of O(K3) including both the spatial direction gain and the
receive beamforming gain. As WI becomes large, the benefit
from the gain provided by the sensors becomes dominant.
Moreover, we observe that K̃ is always greater than Ñ
when given the total number, i.e., WI = Ws = 1 for both
Qtot = 600 and Qtot = 400, which corroborates our analysis
in Section III. Fig. 5b compares the optimized numbers of
IRS elements/sensors under different WI with Qtot = 600. It
is observed that both the optimal and sub-optimal solutions
we derived closely approximate the optimal solution achieved
through the exhaustive search algorithm, exhibiting a similar
trend. The results illustrate the effectiveness of our proposed
solutions.

B. Extended Target Case

To illustrate the effectiveness of the semi-passive IRS-
enabled sensing system with the proposed scheme, we com-
pare the transmit beamforming design with R∗

x in (47) and that
with the isotropic transmission solution, in terms of the CRB.
With Riso

x = P0IM/M [42], the CRB for the TRM estimation
of the isotropic transmission scheme can be expressed as

CRB(H)
iso

=
σ2

RKM

P0T

∑N

i=1
σ̂−2
i . (51)

Based on (49) and (51), the performance gap in decibels (dB)
between the two schemes is given by

10 lg(CRB(H)
iso
)− 10 lg(CRB(H)

opt
)

=10 lg

(
M
∑N

i=1
σ̂−2
i /

(∑N

i=1
σ̂−1
i

)2
)
. (52)

1) Impact of the Transmit Power: Fig. 6 shows the CRB
comparison versus different transmit power P0 under the
extended target case. For a fair comparison, we set Mr =
M = K = N = 32. One can observe that the CRB decreases
linearly with P0 due to its inverse proportionality to P0 in
both (49) and (51), exhibiting a similar impact as observed in
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Fig. 6. The CRB for the TRM estimation versus P0.

the scenario with a point target. In addition, it can be seen
that the performance gap between our proposed CRB-based
scheme and the isotropic transmission scheme is constant with
the transmit power. This is expected because the performance
gap in (52) is regardless of P0. For the entire range of
transmit power, the results indicate significant performance
enhancements with the deployment of the semi-passive IRS,
measured by the CRB. Moreover, our proposed scheme con-
sistently demonstrates superior performance, which highlight
its superiority.

2) Impact of the Number of Sensors at the IRS: In Fig.
7a, we plot the CRB versus K with M = N = 32
under different transmit power P0. One can observe that the
CRB increases linearly with K as revealed in Proposition
5. This is because more parameters need to be estimated.
Consequently, it leads to an increase in estimation uncertainty,
thereby making it more difficult to accurately estimate each
parameter. Nevertheless, it is observed that the adverse effects
caused by an increase in K on CRB can be mitigated by
increasing P0. This is due to the fact that increasing P0 is
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Fig. 7. The CRB for the TRM estimation versus K.
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Fig. 8. The CRB for the TRM estimation versus M .

helpful for augmenting the power received at the sensors. In
Fig. 7b, we compare the proposed scheme with the isotropic
transmission scheme by plotting the CRB in dB versus K
with M = N = 32 for both P0 = 20 dBm and P0 = 30 dBm.
Finally, we observe that our proposed design performs better,
and the performance gap in dB between the two schemes
remains constant, which agrees with the analysis of (52), i.e.,
10 lg(CRB(H)iso)− 10 lg(CRB(H)opt) is regardless of K.

3) Impact of the Number of Antennas at the BS: In Fig. 8,
we plot the CRB versus M when N = 32 and K = 8. One
can see that the CRB decreases with M for both P0 = 20 dBm
and P0 = 30 dBm. The reason is that the increase in M leads
to an increase in the sum of singular values and thus a decrease
in the sum of inverse singular values, i.e., (

∑N
i=1 σ̂

−1
i )2.

Intuitively, more transmit antennas deployed at the BS can
provide more spatial diversity and higher beam gain, which is
explained under the point target case. In addition, we observe
that the proposed design achieves a lower CRB, and the per-
formance gap between them first decreases and then increases
with M . For example, for P0 = 30 dBm, the performance gap

16 18 20 22 24 26 28 30 32

Number of IRS elements

-40

-35

-30

-25

-20

-15

-10

-5

0

C
R

B
 (

d
B

)

Isotropic transmission

Proposed design

Isotropic transmission

Proposed design

Fig. 9. The CRB for the TRM estimation versus N .

is 11.18 dB, 3.26 dB, and 3.3 dB when M is 32, 42, and 48,
respectively. For fixed N ,

∑N
i=1 σ̂

−2
i /(

∑N
i=1 σ̂

−1
i )

2
roughly

decreases with M because the distribution of singular values
tends to become more spread out and diverse. From (52), the
performance gap decreases with M when M is not very large
and

∑N
i=1 σ̂

−2
i /(

∑N
i=1 σ̂

−1
i )

2
dominates. Moreover, the CRB

gap becomes larger with M because M dominates.
4) Impact of the Number of IRS Reflecting Elements: In

Fig. 9, we investigate the impact of N based on our proposed
design by plotting the CRB versus N when M = 32 and
K = 8. One can observe that the CRB increases with N
for both P0 = 20 dBm and P0 = 30 dBm. This is because∑N

i=1 σ̂
−1
i increases with N in (49), which leads to a higher

CRB. The results differ from those under the point target case
because we analyze the CRB of H under the extended target
case. In this case, increasing N yields more parameters that
need to be estimated, which is similar to the argument for the
influence of the number of IRS sensors. In addition, the CRB
achieved by the proposed design is lower than the isotropic
transmission scheme, and the gap between them first decreases



12

and then increases with N . For example, for P0 = 30 dBm,
the performance gap is 4.04 dB, 3.4 dB, and 10.56 dB when N
is 16, 26, and 32, respectively. For fixed M , both

∑N
i=1 σ̂

−2
i

and (
∑N

i=1 σ̂
−1
i )2 in (52) increase with N . The square of the

sum, i.e., (
∑N

i=1 σ̂
−1
i )2, increases significantly and dominates

when N is not very large, resulting in the performance gap that
decreases with N . M

∑N
i=1 σ̂

−2
i dominates when N becomes

larger and close to M , thus the performance gap is more
pronounced.

VI. CONCLUSION

In this paper, we investigated the CRB minimization prob-
lem in a semi-passive IRS-enabled sensing system. In particu-
lar, we first derived the CRB and formulated the corresponding
minimization problems for both the point and extended targets.
Under the point target case with a single-antenna BS, the IRS
reflecting elements and sensors allocation design based on
the optimal CRB for the DoA estimation was characterized.
For the case with a multi-antenna BS, an efficient algorithm
was developed for tackling the optimization problem. Under
the extended target case, we minimized the CRB for the
TRM estimation through the optimization of the BS transmit
beamforming. Numerical results validated that, compared with
the fully-passive IRS, the semi-passive IRS can significantly
enhance the sensing performance. Moreover, the impact of the
system parameters on the CRB was investigated. Specifically,
more reflecting elements and sensors should be installed at
the IRS when dealing with the point target, whereas fewer are
preferable for scenarios involving an extended target. Besides,
increasing the number of antennas and the transmit power is
beneficial for sensing in both cases. The results in this paper
showed the superiority of our proposed CRB-based scheme
and illustrated that integrating it into semi-passive IRS-enabled
sensing systems is a promising solution for target estimation.

APPENDIX A
Since the noise is Gaussian distributed, the covariance

matrix R̂n is independent of ς . According to (11), we have
∂ẑ

∂θ
= α vec

(
ĖX

)
, (53)

∂ẑ

∂α̂
= [1, j]⊗ vec (EX) . (54)

Then, F̂θθ, F̂θα̂ and F̂α̂α̂ in (12) are given by

F̂θθ =
2

σ2
R
Re

{(
α vec

(
ĖX

))H
·
(
α vec

(
ĖX

))}
=

2T |α|2

σ2
R

tr
(
ĖRxĖ

H
)
, (55)

F̂θα̂ =
2

σ2
R
Re

{(
α vec

(
ĖX

))H
· ([1, j]⊗ vec (EX))

}
=

2T

σ2
R
Re
{
α∗ tr

(
ERxĖ

H
)
[1, j]

}
, (56)

F̂α̂α̂ =
2

σ2
R
Re
{
([1, j]⊗ vec (EX))

H · ([1, j]⊗ vec (EX))
}

=
2T

σ2
R
tr
(
ERxE

H
)
I2. (57)

APPENDIX B

Since the noise is Gaussian distributed, the covariance
matrix R̃n is independent of ζ. Consequently, we have the
following partial derivatives:

∂z̃

∂hR
= XTGTΦT ⊗ IK , (58)

∂z̃

∂hI
= jXTGTΦT ⊗ IK . (59)

Then, F̃hRhR , F̃hIhI , F̃hIhR and F̃hRhI in (41) are given by

F̃hRhR = F̃hIhI

=
2T

σ2
R

Re
{
(XTGTΦT ⊗ IK)

H · (XTGTΦT ⊗ IK)
}

=
2T

σ2
R

Re
{
(Φ∗G∗R∗

XG
TΦT )⊗ IK

}
, (60)

F̃hIhR = −F̃hRhI

=
2T

σ2
R

Im
{
(jXTGTΦT ⊗ IK)

H · (jXTGTΦT ⊗ IK)
}

=
2T

σ2
R

Im
{
(Φ∗G∗R∗

XG
TΦT )⊗ IK

}
. (61)

APPENDIX C

PROOF OF PROPOSITION 4

By introducing a new auxiliary variable ς ∈ R, we have

Ñ =
Qtot

(1 + ς)WI
, K̃ =

ςQtot

(1 + ς)Ws
. (62)

We can use f1 (ς) as a function w.r.t. ς to present
Ñ2(K̃3 − K̃). For f1 (ς), it can be derived as

f1 (ς) =
Q2

tot

(1 + ς)
2
W 2

I

(
ς3Q3

tot

(1 + ς)
3
W 3

s

− ςQtot

(1 + ς)Ws

)

=
Q3

tot

W 2
I W

3
s

(
Q2

totς
3 −W 2

s ς(1 + ς)
2
)

(1 + ς)
5 . (63)

The first-order derivative of f (ς) w.r.t. ς is given by

df (ς)

dς
=

Q3
tot

(
Q2

tot +W 2
s

)
f2 (ς)

W 2
I W

3
s (1 + ς)

6 , (64)

where f2(ς) = β4ς
3 + 3ς2 + β5. By further taking the first-

order derivative of f2(ς) w.r.t. ς , we obtain df2(ς)
dς = 3β4ς

2+6ς .
When 0<ς<− 2/β4, we have df2(ς)

dς >0, i.e., f2(ς) monotoni-
cally increases with ς . When ς>−2/β4, we have df2(ς)

dς <0, i.e.,
f2(ς) monotonically decreases with ς . Since f2(−2/β4)>0,
there exists a single unique root ς rt ∈ (−2/β4,+∞) for
(64), which is given by ς r1 = −1/β4+

3
√
(β6+β7)/(2β3

4)+
3
√
(β6−β7)/(2β3

4). When −2/β4<ς<ς r1, we have f2 (ς)>0

and df1(ς)
dς >0, i.e., f1 (ς) monotonically increases with ς .

When ς>ς r1, we have f2 (ς)<0 and df1(ς)
dς <0, i.e., f1 (ς)

monotonically decreases with ς . Hence, f1 (ς) is maximized
at ςopt = ς r1. Substituting ς r1 into (62), the optimal solution is
given by (35).
W 2

s /(Q
2
tot +W 2

s ) can be approximated as 0 when the total
power/cost/number is sufficient. In this case, f2(ς) is rewritten
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as f2(ς) = β4ς
3 + 3ς2 with the root ς r2 = −3/β4. When

0<ς<ς r2, we have f2(ς)>0 and df1(ς)
dς >0, i.e., f1(ς) monoton-

ically increases with ς . When ς>ς r2, we have f2 (ς)<0 and
df1(ς)
dς <0, i.e., f1 (ς) monotonically decreases with ς . Hence,

f1 (ς) is maximized at ςsub-opt = ς r2 and the CRB is minimized.
Substituting ς r1 into (62), the sub-optimal number of IRS
elements and sensors are given by (36). Thus, we complete
the proof.
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