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Abstract—The fog radio access network (Fog-RAN) has been
considered a promising wireless access architecture to help
shorten the communication delay and relieve the large data
delivery burden over the backhaul links. However, limited by
conventional inflexible communication design, Fog-RAN cannot
be used in some complex communication scenarios. In this study,
we focus on investigating a more intelligent Fog-RAN to assist
the communication in a high-speed railway environment. Due to
the train’s continuously moving, the communication should be
designed intelligently to adapt to channel variation. Specifically,
we dynamically optimize the power allocation in the remote
radio heads (RRHs) to minimize the total network power cost
considering multiple quality-of-service (QoS) requirements and
channel variation. The impact of caching on the power allocation
is considered. The dynamic power optimization is analyzed to
obtain a closed-form solution in certain cases. The inherent
tradeoff among the total network cost, delay and delivery content
size is further discussed. To evaluate the performance of the
proposed dynamic power allocation, we present an invariant
power allocation counterpart as a performance comparison
benchmark. The result of our simulation reveals that dynamic
power allocation can significantly outperform the invariant power
allocation scheme, especially with a random caching strategy or
limited caching resources at the RRHs.

Index Terms—Fog-RAN, caching, dynamic power allocation,
quality-of-service.

I. INTRODUCTION

As an evolution of the conventional cloud radio access

network (C-RAN) [1], [2], the fog radio access network (Fog-

RAN) has been regarded as a promising new wireless access

network architecture, which can help relieve the large data

traffic burden in the backhaul links of a cellular network

and satisfy the stricter delay requirements in beyond-fifth-

generation (B5G) and sixth-generation (6G) wireless commu-

nications [3], [4]. The key technology of the Fog-RAN to

achieve this performance enhancement is the introduction of

caching resources on the edge devices, i.e., the remote radio

heads (RRHs), of the access network. With some popular

contents cached at the RRHs, the frequently requested data by

the terminals can be instantly acquired from the RRHs without

needing to be fetched from remote servers. This scenario

avoids possible traffic congestion over the backhaul links and

further shortens the content delivery delay.
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Due to the advantage of the Fog-RAN, the corresponding

studies have recently received much attention. Current studies

on the Fog-RAN mainly focus on two aspects: performance

characterization and resource optimization. Here, the resources

include caching, beamforming, power and computation re-

sources. The authors in [5] investigated the delay and energy

efficiency of the Fog-RAN by considering the hybrid caching

strategy, which combines coded cached, nonpartitioned cached

and uncached files. The hybrid caching strategy was fur-

ther optimized to balance the delay and energy efficiency.

Successful transmission probability (STP) is often used a

performance metric to characterize the impact of content

caching at an RRH. In [6], the authors first derived the STP

of the Fog-RAN system with a proactive probabilistic caching

strategy. The caching probability for different contents was

further optimized to maximize the STP. In [7], Fog-RAN-

assisted transmission was studied in a heterogeneous Fog-

RAN wireless network. Different from [6], the authors in [7]

optimized the caching strategy in both the RRHs and mobile

users, aiming to optimize the STP. The power allocation of

the Fog-RAN was studied in [8]–[11]. In [8], the authors

proposed using the nonorthogonal multiple access (NOMA)

technique to distinguish multiple users in the Fog-RAN.

An improved fractional transmit power allocation algorithm

was developed for the three-user NOMA-assisted Fog-RAN

system. In [9], the latency minimization problem for the

Fog-RAN was formulated with a dynamic user demand. To

understand the demand of the user and to intelligently perform

the joint optimization of the proactive cache strategy and

power allocation, a deep reinforcement learning approach was

used. The authors in [10] jointly optimized the power and

the model selection for uplink transmission of the Fog-RAN.

The reinforcement learning approach was used to solved the

nonconvex mixed-integer programming problem. Subchannel

assignment and power control were jointly optimized in [11]

for a mmWave-based Fog-RAN. The alternative direction

method of multipliers (ADMM) was utilized to solve the

power control problem.

The beamforming design problem for the Fog-RAN was

investigated in [12]–[14]. In particular, the uplink Fog-RAN

was studied [12], aiming to maximize the delivery rate subject

to the constraints, including the backhaul capacity, trans-

mit power, and file size. A two-layer transmission scheme

including the cache level and network level was applied

for content transmission. Both the centralized algorithm and

the decentralized algorithm were proposed for optimizing
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the beamforming problem. In [13], the authors considered

the Fog-RAN with multicast transmission. The beamforming

design problem was constructed to minimize the network total

cost subject to the power and signal-to-interference-plus-noise

ratio (SINR) constraints. The sparse beamforming vector was

found with the convex-concave procedure. The authors in [14]

further extended the channel model in [13] to a scenario with

both multicast and unicast transmission. A branch-and-bound

algorithm was utilized to find the global optimal solution.

Computational resource allocation was considered in [15]–

[18] for performance improvement. In [15], edge/cloud com-

puting and edge computing task migration were included in

the design problem to improve the quality-of-service (QoS) at

the users. Optimizing the user association and computational

offloading, the communication resources and computational

resources could be balanced. A reinforcement-learning-based

approach was used in [16] to optimize the computational

resources with the objective of reducing the latency and

energy consumption. In [17], the authors proposed using the

computational resources at the edge devices of the Fog-RAN

to create cooperative downlink transmission to decrease the

latency. An order-optimal upload-download communication

latency pair was characterized to evaluate the network perfor-

mance. In [18], the authors formulated a joint decision problem

for communication, caching and computing resources. The

problem was modeled as a multiple-choice multidimensional

knapsack problem, and was then solved by the Lagrangian

dual decomposition approach.

As we summarized above, even though a large number

of contributions to the Fog-RAN have been reported, the

investigations are still not sufficient to address all challenges

under different application scenarios. A key shortcoming of the

existing work is that current studied Fog-RAN are not intelli-

gent enough, leading to that it cannot be used in some complex

dynamic communication scenarios. A typical scenario is the

high-speed railway scenario [19]. The technology of the high-

speed railway, identified as a typical wireless communication

scenario for future cellular networks, has developed rapidly

on a global scale [20]. How to use the Fog-RAN architecture

to provide reliable and low-latency communication services is

an interesting topic that will require in-depth studies.

To compensate for the deficiencies of the current research

on the Fog-RAN, we aim to design a more intelligent Fog-

RAN to assist the communication in a high-speed railway

environment. In specific, we investigate the Fog-RAN-assisted

downlink data transmission in the high-speed railway scenario.

Because of the time-varying channel state information, the

corresponding studies become more challenging. Although

wireless communication in the high-speed railway scenario

has received much attention [21]–[25], to our knowledge, few

works have studied the Fog-RAN in the high-speed railway

scenario. This lack motivates the study of this work.

In the considered high-speed railway Fog-RAN, we assume

that the train is cooperatively served by multiple RRHs. By

taking the time-varying channel into account, we investigate

an intelligently dynamic power allocation to minimize the

cost of the entire network power, which includes the transmit

power at the RRHs and the power consumed over the backhaul
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Fig. 1. Fog-RAN-assisted high-speed communication system.

links, subject to a few quality-of-service (QoS) requirements.

With this goal, the caching placement on the RRHs affects

the physical layer power allocation. To find a reasonable

solution to the considered nonconvex problem, smoothed l0-

norm approximation is employed to convert the nonconvex

problem into a tractable form. By analyzing the unique channel

properties of the considered high-speed railway Fog-RAN, we

provide a closed-form solution in certain special cases. With

the obtained solution, the inherent tradeoff among the total

network cost, delay and delivery content size is further dis-

cussed. Moreover, the invariant power allocation counterpart

is derived to evaluate the performance of the proposed dynamic

power allocation. Simulation results reveal that the intended

dynamic power allocation is able to significantly outperform

the invariant power allocation scheme. The performance gain

is more pronounced when the random caching strategy is used

or the caching resources at the RRHs are limited.

The organization of the remainder of the paper is shown

below. In Section II, we present the channel model as well

as problem formulation of the considered high-speed railway

Fog-RAN. In Section III, optimization of the dynamic power

allocation is discussed. In Section IV, we analyze the tradeoff

among the total network cost, delay and delivery content

size. In Section V, we present the invariant power allocation

counterpart. In Section VI, extensive numerical results are

stated to demonstrate the performance. Finally, we conclude

the paper in Section VII.

II. CHANNEL MODEL AND PROBLEM FORMULATION

In this section, we present the channel model of the consid-

ered Fog-RAN. After that, the dynamic optimization problem

is formulated.

A. Channel model

As illustrated in Fig. 1, we consider a dynamic wireless

transmission scenario of a train running at high speed along

a straight-line railway. To provide the required high data rate

and low latency downlink transmission, the train is served by

a Fog-RAN in which multiple base stations, i.e., RRHs, are
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uniformly deployed along one side of the road at intervals of

the same size. The RRHs are assumed to be connected to the

same baseband unit (BBU). The BBU is responsible for the

RRH resource allocation as well as the serving-RRH switch.

At any time, the train is served by the two nearest RRHs.

Because the service repeats periodically for different pairs of

neighboring RRHs, with no loss of generality, only one time

interval is considered, where the train is assisted by RRH 1
and RRH 2.

It is assumed that the contents requested by the train

include L different popular contents of the same size Q. All

RRHs have a limited local storage size, and all L contents

cannot be cached in a single RRH simultaneously. Suppose

Fn as the local storage size of RRH n; thus, we have

Fn < LQ. According to the requested frequency of the

contents, the popularity distribution of the contents is denoted

by p = [p1, p2, · · · , pL], where pl ∈ (0, 1) denotes the

popularity of content l. With unchanged generality, in this

study, we make the assumption that p1 ≥ p2 ≥ · · · ≥ pL and

that the content popularity follows a Zipf distribution given

by pl = l−η

∑
L
l=1

l−η , where η denotes the shaping parameter

defining the skewness of the popularity distribution [7], [13],

[26]. According to the content popularity distribution, the

RRHs can store the requested contents with different caching

strategies. Two caching strategies that widely used are the

popularity-aware caching (PopC) strategy and random caching

(RndC) strategy. The PopC strategy allows each RRH to cache

the most popular contents until its storage size is fully utilized,

while the RndC strategy asks each RRH to cache the contents

randomly with identical probabilities regardless of the content

popularity distribution. Therefore, to identify the used caching

strategy, we define a cache placement matrix C ∈ B
N×L

with cn,l ∈ 0, 1. Specifically, cn,l = 1 occurs if content l

is cached in RRH n; otherwise, content l is not cached in

RRH n. To satisfy the RRH storage size constraints, we have
∑F

l=1 cn,lQ ≤ Fn, ∀n.

We consider the Fog-RAN-assisted downlink transmission

described in Fig. 1. We assume d equal intervals between every

two RRHs that d0 is the distance between each RRH and the

road, and that h is the height of the transmit antenna on each

RRH. The train moves down the railway at a unchanging ve-

locity v. To determine the coordinates of the RRHs, we assume

that there is an original point o and the system time when the

train passes through o equals to 0. The coordinates of RRH n

are represented as (ln, d0). During the time interval (0, T ],
RRH 1 and 2 serve the train. According to the geometric

structure of the system, the distance between RRH n and the

train can be denoted by

dn(t) =
√

(vt− ln)2 + d20 + h2, t ∈ (0, T ]. (1)

When t > T , the BBU coordinates the handoff process, and

the train is served by a new set of RRHs. However, because

the communications over different time intervals are periodic,

with no loss of generality, we next focus only on the dynamic

resource allocation over time interval t ∈ (0, T ].

During the time interval t ∈ (0, T ], we assumed that a

requested content has to be delivered from the RRHs to the

train. Denote x(t) as the modulated signal for the requested

content transmitted in the downlink. Here, we assume that

signals transmitted from different RRHs are sent over an

orthogonal bandwidth. Moreover, assume that signal x(t) is

a stochastic process with mean of zero and with unit variance.

Thus, the baseband signal transmitted from RRH n at time t

can be represented by

yn(t) =
√

Pn(t)hn(t)x(t) + nn(t), (2)

where Pn(t) denotes the instantaneous transmit power at

RRH n, hn(t) shows the instantaneous channel coefficient,

and nn(t) represents the additive complex cycle symmetric

Gaussian noise at the train following CN(0, σ2). In this study,

we assume that the train runs in an open area and that the

channel coefficient is dominated by the line-of-sight (LOS)

component without any scatter. In this way, the propagation

attenuation model can be represented as hn(t) =
√
G

dα
n(t)

, where

G shows the constant channel gain and α represents the path-

loss exponent.

At the receiver, the received signals can be combined using

a maximal ratio combiner. The instantaneous achievable rate

at time t can be given as

C(t) = B log2

(

1 +
∑

n∈N

Pn(t)|hn(t)|2

σ2

)

, (3)

where N = {1, 2} and B denotes the frequency bandwidth

that is distributed for every channel between an RRH and the

train.

B. Problem formulation

In the considered Fog-RAN-assisted downlink transmission,

if the content requested by the train has been cached at the

serving RRH, the serving RRH is able to instantly convey

the content to the train; if not, fetching the content from the

BBU via backhaul links is required for the RRH , which

consumes extra backhaul transmission resources. Denote the

instantaneous content delivery rate over the backhaul link

between RRH n and the train at time t as Rn(t). The target

of dynamic power allocation is to reduce the entire network

power cost as much as we can, which includes the backhaul

power consumption and RRH convey power consumption.

Specifically, assuming that content l is requested by the train,

the backhaul power consumption can be represented as

Costb =

∫ T

0

2
∑

n=1

β||

∫ T

0

Pn(t)dt||0(1 − cn,l)Rn(t)dt. (4)

Here, we consider that only the backhaul link associated with

the active RRH at which the requested content is not cached

consumes extra power. In (4), we use the term ||
∫ T

0 Pn(t)dt||0
to indicate the active RRH, which implies that if Pn(t) is not

always zero over time period (0, T ], RRH n is an active RRH.

1− cn,l is used to indicate the impact of content l caching on

the backhaul link associated with RRH n. We observe that

if cn,l = 1, which means that content l has been at RRH n,

then 1 − cn,l = 0 indicates that no extra power is needed

for backhaul link n; otherwise, extra power is required for
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backhaul link n. Parameter β in (4) is a constant number

establishing a relationship between the rate Rn(t) and the cost

of power.

In addition, the entire RRH transmit power consumed over

time period (0, T ] can be denoted as

Costp =

∫ T

0

∑

n∈N
Pn(t)dt. (5)

In this way, the network power cost in total can be written as

Cost = Costb +Costp. (6)

In addition to minimizing the total network power con-

sumption, our dynamic power allocation also considers several

QoS-related constraints. The most important one is the delay

requirement. Basically, for an RRH that does not cache the

requested content, the delay contains two hops: one for the

backhaul link and another for the wireless transmission link

between this RRH and the train. However, as we here assume

that Rn(t) ≥ C(t) always succeeds, the instantaneous delay

can be written as

τ(t) =
1

C(t)
. (7)

In brief,the overall dynamic power allocation problem is

formulated as

min
Pn(t)

Cost (8a)

s.t.
1

T

∫ T

0

Pn(t)dt ≤ Pn,avg ∀n ∈ N (8b)

τ(t) ≤ τmax (8c)
∫ T

0

C(t)dt ≥ Q (8d)

Pn(t) ≥ 0, (8e)

where (8b) denotes the average power constraint of every

RRH, with Pn,avg being the maximum average power at RRH

n; (8c) denotes the instantaneous transmission delay require-

ment, with τmax being the maximum delay requirement; (8d)

is the requested content delivery that requires to be completed

through the network during the time period (0, T ]; and (8e)

shows that the instantaneous power at each time t should

not be negative. Our final objective is to minimize the total

network cost through maximizing the instantaneous power at

every RRH and the instantaneous transmission rate over each

backhaul link.

III. DYNAMIC POWER ALLOCATION FOR HIGH-SPEED

RAILWAY FOG-RAN

In this section, our solution to (8) is presented. Different

from the widely studied conventional static power allocation

problem, our considered dynamic is more challenging. The

reason includes the following aspects. First, because our

optimization problem considered the backhaul consumption,

a nonconvex l0-norm function is introduced, which results in

the nonconvexity of our problem. Moreover, our optimization

variable is a function with respect to time t, and the constraints

in problem (8) include an integration form. Basically, the

dynamic optimization problems are widely applied in the fields

of smart power systems, robotics, etc. [27]. In what follows,

by using certain approximations, we present several ways to

find the optimal solution to the approximated problem.

To address the nonconvex objective function in (8), we

utilize the continuous smooth log-function to approximate the

l0-norm function as [13]

||x||0 ≈
log
(

x
θ + 1

)

log
(

1
θ + 1

) , (9)

where the function of θ is to control the smoothness of

the approximation. A smaller value of θ results in a better

approximation, while leads to a worse smooth function, vice

versa. With (9), the nonconvex part Costb in (8) can be written

as

Costb ≈cβ

N
∑

n=1

(1− cn,f ) log

(

∫ T

0
Pn(t)dt + θ

θ

)

×

∫ T

0

Rn(t)dt,

(10)

where c = 1

log( 1
θ
+1)

. With (10), the objective function in (8)

can be rewritten as

Costappro1 ≈

∫ T

0

∑

n∈N
Pn(t)dt+

∑

n∈N
bn

× log

(

∫ T

0 Pn(t)dt+ θ

θ

)

,

(11)

where bn = cβ(1 − cn,f)
∫ T

0 Rn(t)dt.

It is observed that the approximated function Costappro1 is

still nonconvex with respect to Pn(t) as it involves the sum-

mation of concave functions log
(∫

T

0
Pn(t)dt+θ

θ

)

. To address

this problem, we apply the majorization-minimization (MM)

theory to find the upper bound of Costappro1. Considering

that the logarithmic function is a concave function, the MM

theory applied in our case involves using its first-order Taylor

expansion as the upper bound. Then, in the MM algorithm, a

solution to (8) is generated through minimizing the following

upper-bounded function:

Costappro2 ≈

∫ T

0

∑

n∈N
Pn(t)dt+

∑

n∈N
bn

[

log
(θ +

∫ T

0
P 0
n(t)dt

θ

)

+

∫ T

0
Pn(t)dt−

∫ T

0
P 0
n(t)dt

θ +
∫ T

0
P 0
n(t)dt

]

, (12)

where
∫ T

0
P 0
n(t)dt denotes a basis point of the Taylor expan-

sion of log
(∫

T

0
Pn(t)dt+θ

θ

)

.

Assuming kn = 1 + bn
1

θ+
∫

T

0
P 0

n(t)dt
,solving (8) finally
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reduces to solving the following convex problem:

min
Pn(t)

∫ T

0

(

∑

n∈N
knPn(t)

)

dt (13a)

s.t.
1

T

∫ T

0

Pn(t)dt ≤ Pn,avg ∀n ∈ N (13b)

C(t) ≥
1

τmax
(13c)

∫ T

0

C(t)dt ≥ Q (13d)

Pn(t) ≥ 0. (13e)

For solving (13), firstly, we obtain the following theorem.

THEOREM 1. If T
τmax

≥ Q, we have C(t) = 1
τmax

at the

optimal solution, and the optimal solution of (13) can be

represented as

P1(t) = ã0(t)− ã2(t)P2(t), (14)

where ãn(t) is as defined in (17). Denote the critical time

points {t′, t′′} and t̃′ as defined in (29) and (31), respectively;

the optimal P2(t) is given in the following four cases:

• If
∫ T

0
ã3(t)dt ≤ TP2,avg and B ≤ 0

P ∗
2 (t) =

{

0 0 < t < t′

ã3(t) t′ ≤ t ≤ T

• If
∫ T

0 ã3(t)dt ≤ TP2,avg and B > 0

P ∗
2 (t) =

{

0 0 < t < min{t′, t′′}
ã3(t) min{t′, t′′} ≤ t ≤ T

• If
∫ T

0
ã3(t)dt > TP2,avg and B ≤ 0

P ∗
2 (t) =

{

0 0 < t < max{t′, t̃′}
ã3(t) max{t′, t̃′} ≤ t ≤ T

(15)

• If
∫ T

0 ã3(t)dt > TP2,avg and B ≤ 0

– If t′ ≥ t̃′, the optimal solution is given by (15).

– Otherwise, the optimal solution can be obtained by

solving linear program problem (33).

Proof: It is noted that if T
τmax

≥ Q succeeds, for condition

(13d), we have
∫ T

0
C(t)dt ≥

∫ T

0
1

τmax
dt = T

τmax
≥ Q. This

implies that condition (13d) in (13) is redundant. Next, we

show that at the optimal solution, (13c) must be active. We

prove this result using a contradiction. Assume that at the

optimal solution of (13), the optimal Pn(t) makes C(t) > 1
τmax

at some time t. Now, we can multiply Pn(t) by a coefficient

δn(t) ∈ (0, 1), which can further reduce the value of the objec-

tive function while not violating the constraints. According to

the above analysis, under the condition of T
τmax

≥ Q, problem

(13) is equivalent to

min
Pn(t)

∫ T

0

(

∑

n∈N
knPn(t)

)

dt (16a)

s.t.

∫ T

0

Pn(t)dt ≤ TPn,avg ∀n ∈ N (16b)

B log2

(

1 +
∑

n∈N

GPn(t)

dn(t)ασ2

)

=
1

τmax
(16c)

Pn(t) ≥ 0, ∀n. (16d)

With the equality constraint (16c), by denoting an(t) =
G

dn(t)ασ2 , we have

P1(t) = ã0(t)− ã2(t)P2(t), (17)

where ã0(t) = 2
1

Bτmax −1
a1(t)

and ã2(t) = a2(t)
a1(t)

. Problem (16)

can be further transformed into

min
P2(t)

∫ T

0

(

k2 − k1ã2(t)

)

P2(t)dt (18a)

s.t.

∫ T

0

P2(t)dt ≤ TP2,avg (18b)

B ≤

∫ T

0

ã2(t)P2(t)dt ≤ A (18c)

0 ≤ P2(t) ≤ ã3(t), (18d)

where A =
∫ T

0 ã0(t)dt, B =
∫ T

0 ã0(t)dt − TP1,avg and

ã3(t) = ã0(t)
ã2(t)

. Constraint (18c) comes from the fact that

0 ≤
∫ T

0
P1(t)dt ≤ TP1,avg, while (18d) comes from the fact

that P1(t) ≥ 0.

According to the definitions of ã3(t) and ã2(t), we observe

that if constraint (18d) is satisfied, we have

∫ T

0

ã2(t)P2(t)dt ≤

∫ T

0

ã2(t)ã3(t)dt = A. (19)

Then, problem (18) can be equivalent to

min
P2(t)

∫ T

0

(

k2 − k1ã2(t)

)

P2(t)dt (20a)

s.t.

∫ T

0

P2(t)dt ≤ TP2,avg (20b)

∫ T

0

ã2(t)P2(t)dt ≥ B (20c)

0 ≤ P2(t) ≤ ã3(t). (20d)

To find the analytical solution to (20), we next discuss

certain particular cases that help simplify the problem.

Case 1) when
∫ T

0
ã3(t)dt ≤ TP2,avg and B ≤ 0 are

satisfied.

In this case, constraints (33b) and (33c) are redundant.

Problem (20) reduces to

min
Pn(t)

∫ T

0

(

k2 − k1ã2(t)

)

P2(t)dt (21a)

s.t. 0 ≤ P2(t) ≤ ã3(t). (21b)

It is noted that the optimal solution to (21) depends on the

sign of k2 − k1ã2(t). To minimize the objective function, the

optimal solution to (21) is given as

P ∗
2 (t) =

{

0 t ∈ {t|k2 − k1ã2(t) > 0}
ã3(t) t ∈ {t|k2 − k1ã2(t) ≤ 0}

. (22)

Case 2) when
∫ T

0 ã3(t)dt ≤ TP2,avg and B > 0 are

satisfied.
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In this case, constraint (33b) is redundant. Problem (20)

reduces to

min
P2(t)

∫ T

0

(

k2 − k1ã2(t)

)

P2(t)dt (23a)

s.t.

∫ T

0

ã2(t)P2(t)dt ≥ B (23b)

0 ≤ P2(t) ≤ ã3(t). (23c)

Within the time period (0, T ], as the train departs from

RRH 1 and move closer to RRH 2, we see that functions

k2 − k1ã2(t), ã2(t), and ã3(t) are decreasing, increasing and

decreasing functions with respect to t, respectively. According

to this observation, the two critical time points are defined as

t′ , {t|k2 − k1ã2(t) = 0}

t′′ ,

{

t|

∫ T

0

ã2(t)ã3(t)dt =

∫ T

0

ã0(t)dt = B

}

.
(24)

It is noted that for the time region (t′, T ], P2(t) should be equal

to ã3(t) to minimize the value of the objective. Therefore, in

the scenario with t′ ≥ t′′, the optimal solution is presented as

P ∗
2 (t) =

{

0 t < t′′

ã3(t) t ≥ t′′
. (25)

For the scenario with t′ < t′′, it is easy to see that for the time

region over t ∈ (t′′, T ], the optimal P2(t) should be equal to

ã3(t) as given in (25). However, this kind of solution cannot

satisfy the constraint (23b). To this end, we need to find a

certain P2(t) in the time period t ∈ (0, t′′] to satisfy

∫ t′′

0

ã2(t)P2(t)dt = B −

∫ T

t′′
ã0(t)dt. (26)

Next we show that the optimal solution over t ∈ (0, t′′] is

P ∗
2 (t) =

{

0 t < t′

ã3(t) t ∈ (t′, t′′]
. (27)

We prove this result with contradiction analysis. Assume that

there is a new optimal solution P ∗∗
2 (t) over t ∈ (0, t′′] given

by

P ∗∗
2 (t) =

{

0 t < t̃

< ã3(t) t ∈ (t̃, t′′]
. (28)

To satisfy (26), we have t̃ < t′. However, k2−k1ã2(t) is a de-

creasing function over t. Hence,
∫ t′′

0

(

k2−k1ã2(t)

)

P ∗∗
2 (t)dt

must be larger than
∫ t′′

0

(

k2 − k1ã2(t)

)

P ∗
2 (t)dt with P ∗

2 (t)

given in (27), which implies that P ∗∗
2 (t) cannot be an optimal

solution. According to the above analysis, the optimal solution

for Case 2 is denoted as

P ∗
2 (t) =

{

0 t < min{t′, t′′}
ã3(t) t ≥ min{t′, t′′}

. (29)

Case 3) when
∫ T

0 ã3(t)dt > TP2,avg and B ≤ 0 are

satisfied.

In this case, the constraint (33c) is redundant. Problem (20)

reduces to

min
P2(t)

∫ T

0

(

k2 − k1ã2(t)

)

P2(t)dt (30a)

s.t.

∫ T

0

P2(t)dt ≤ TP2,avg (30b)

0 ≤ P2(t) ≤ ã3(t). (30c)

We define t̃′ as

t̃′ ,

{

t|

∫ T

t̃′
ã3(t)dt = TP2,avg

}

. (31)

Again, because k2 − k1ã2(t) is a decreasing function, similar

to the analysis in Case 2, the optimal solution to problem (30)

is presented as

P ∗
2 (t) =

{

0 t < max{t′, t̃′}
ã3(t) t ≥ max{t′, t̃′}

. (32)

It is noted that in (32), the critical time point is max{t′, t̃′},

which is different from Case 2 due to the inequality constraint

(30b).

Case 4) when
∫ T

0
ã3(t)dt > TP2,avg and B > 0 are

satisfied.

In this case, according to Lemma 3, the feasibility of

problem (20) requires t̃′ ≤ t′′. Under this condition, if t′ ≥ t̃′,
we see that the optimal solution is equal to (29) and that

constraint (33b) is redundant. Otherwise, the optimal solution

can be approximately obtained through solving the following

linear programming:

min
P2(tm)

M
∑

m=1

(

k2 − k1ã2(tm)

)

P2(tm)△t (33a)

s.t.

M
∑

m=1

P2(tm)△t ≤ TP2,avg (33b)

M
∑

m=1

ã2(tm)P2(tm)△t ≥ B (33c)

0 ≤ P2(tm) ≤ ã3(tm), ∀m. (33d)

The linear problem is obtained by sampling the time period

t ∈ (0, T ] as the discrete time points {t1, t2, · · · , tM} with the

adjacent sampling point interval given by △t. It is noted that

△t is sufficiently small; thus, we can obtain an approximately

optimal solution via (33).

Now, by combining the solutions of Case 1-Case 4, we

obtain the final optimal solution. This completes the proof of

Theorem 1.

Consider a special case where the train is assisted by only

RRH 1 over the time period (0, T ], i.e., N = {1}. Theorem

1 can be reduced to the following lemma.

LEMMA 1. If T
τmax

≥ Q and N = {1}, we have C(t) = 1
τmax

at the optimal solution, and the optimal solution to (13) can

be denoted as

P1(t) =
(

2
1

Bτmax − 1
) dα1 (t)σ

2

G
. (34)
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Proof: When N = {1}, problem (13) can be written as

min
P1(t)

∫ T

0

(

k1P1(t)

)

dt (35a)

s.t.
1

T

∫ T

0

P1(t)dt ≤ P1,avg (35b)

C(t) =
1

τmax
(35c)

P1(t) ≥ 0. (35d)

If the problem is feasible, the solution is determined by

constraint (35c), which completes the proof of Lemma 1.

If condition T
τmax

≥ Q is not satisfied, the conclusions

shown in Theorem 1 and Lemma 1 will not be applicable.

To propose an efficient way to address this problem, we first

give the following lemma.

LEMMA 2. If T
τmax

< Q, the optimal solution to (13) can be

represented as

Pn(t) = Pn,1(t) + Pn,2(t), (36)

where Pn,1(t) is the optimal solution obtained by solving (16)

and Pn,2(t) is the solution to

min
Pn,2(t)

∫ T

0

(

∑

n∈N
knPn,2(t)

)

dt (37a)

s.t.
1

T

∫ T

0

Pn,2(t)dt ≤ bn ∀n ∈ N (37b)

∑

n∈N
κn(t)Pn,2(t) ≥ 0 (37c)

∫ T

0

B log2

(

cn(t) +
∑

n∈N
κn(t)Pn,2(t)

)

dt ≥ Q (37d)

Pn,2(t) ≥ −P ∗
n,1(t), (37e)

where bn = Pn,avg − 1
T

∫ T

0 P ∗
n,1(t)dt,

G
dα
n(t)σ

2 = κn(t) and

cn(t) = 1 +
∑N

n=1 κn(t)P
∗
n,1(t), with P ∗

n,1(t) being the

optimal solution to Pn,1(t).

Proof: It is noted that for any feasible Pn(t) of (13), we

can always decompose it into a sum of Pn,1(t) and Pn,2(t).
Basically, the choice of Pn,1(t) and Pn,2(t) can be arbitrary

as long as their sum is equal to Pn(t). Without reduction of

generality, we assume that the term Pn,1(t) is chosen as the

optimal solution to (16), denoted by P ∗
n,1(t). Then, problem

(13) changes to

min
Pn,2(t)

∫ T

0

(

∑

n∈N
kn(P

∗
n,1(t) + Pn,2(t))

)

dt (38a)

s.t.
1

T

∫ T

0

(

P ∗
n,1(t) + Pn,2(t)

)

dt ≤ Pn,avg ∀n ∈ N (38b)

B log2

(

1 +
∑

n∈N
κn(t)P

∗
n,1(t)+

∑

n∈N
κn(t)Pn,2(t)

)

dt ≥
1

τmax
(38c)

∫ T

0

B log2

(

1 +
∑

n∈N
κn(t)P

∗
n,1(t)+

∑

n∈N
κn(t)Pn,2(t)

)

dt ≥ Q (38d)

P ∗
n,1(t) + Pn,2(t) ≥ 0. (38e)

Problem (38) involves only solving variable Pn,2(t). We next

rewrite the constraints in (38) by analyzing the value range

of Pn,2(t). Because we set B log2

(

1 +
∑

n∈N
GP∗

n,1(t)

dα
n(t)σ2

)

=
1

τmax
, it is observed that

∑

n∈N κn(t)Pn,2(t) ≥ 0 must be

satisfied; otherwise, the delay constraint (38c) is violated.

Then, by rewriting constraints (38c) and (38e) as (37c) and

(37e), respectively, we have Problem (37). This completes the

proof of Lemma 2.

With Lemma 2, solving Pn(t) from (13) under the condition
T

τmax
< Q reduces to finding Pn,2(t) from (37). The result in

Lemma 2 will be useful in the performance tradeoff analysis

in Section IV.

We can easily observe that problem (37) is a convex

problem. Then, to obtain the optimal solution, we construct

an algorithm based on the Karush-Kuhn-Tucker (KKT) condi-

tions. To proceed, firstly, the Lagrangian function is presented

as

L =

∫ T

0

(

∑

n∈N

(

knPn,2(t) + µ1,n(Pn,2(t)− Tbn)
)

− µ2

(

B log2(cn(t) +
∑

n∈N
κn(t)Pn,2(t)) −Q

)

)

dt

− µ3(t)
N
∑

n=1

κn(t)Pn,2(t),

(39)

where µ1,n, µ2 and µ3(t) are non-negative multipliers related

to the constraints (37b), (37d) and (37c), respectively. To min-

imize the Lagrangian function, it is necessary to differentiate

the Lagrangian function with respect to Pn,2(t) and set the

derivative to zero for each time t, which is,

∂L

∂Pn,2(t)
=kn + µ1,n − µ3(t)κn(t)−

µ2B

log 2

κn(t)

cn(t) +
∑

n∈N κn(t)Pn,2(t)
= 0.

(40)
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Through combining with constraint (37e), the solution can be

obtained given by

Pn,2(t) =

[(

µ2GB

log 2dn(t)ασ2(kn + µ1 − µ3(t)κn(t))
− cn(t)−

∑

m 6=n

GPm,2(t)

dm(t)ασ2



×
dn(t)

ασ2

G
,−P ∗

n,1(t)





+

.

(41)

(41) shows that Pn,2(t) values with different n are coupled

with each other, and the final solution of Pn,2(t) can be ob-

tained by iteratively updating them until convergence. During

the iteration, Lagrangian multipliers µ1,n, µ2 and µ3(t) can

be obtained via the subgradient technique.

Another way to solve (37) is to sample the time period

to generate certain discrete time points. If the time interval

between two adjacent discrete points is small enough, the

obtained result can approximately be considered as a solution

to (37). Denote the discrete time points as {t1, t2, · · · , tM} and

the adjacent sampling point interval as △t; the power Pn,2(tm)
can be efficiently obtained through solving the following

problem:

min
Pn,2(tm)

M
∑

m=1

∑

n∈N
knPn,2(tm)△t (42a)

s.t.

M
∑

m=1

Pn,2(tm)△t ≤ Tbn ∀n ∈ N (42b)

N
∑

n=1

κn(tm)Pn,2(tm) ≥ 0 ∀m (42c)

M
∑

m=1

B log2

(

cn(tm) +
N
∑

n=1

κn(tm) (42d)

×Pn,2(tm)

)

△t ≥ Q

Pn,2(tm) ≥ −P ∗
n,1(tm) ∀m. (42e)

It is noted that problem (42) has only one nonlinear convex

constraint (42d), and thus can be efficiently solved by an

interior point algorithm using the software CVX [28].

To summarize, the algorithm we proposed to solve (13) is

as follows:

IV. COST, DELAY AND DELIVERY CONTENT SIZE

TRADEOFF ANALYSIS

In our system design, our target is to minimize the total

network cost subject to the delay constraint and total content

delivery constraint. Both constraints actually determine the

total cost consumed by the system. In fact, there is inherently

a tradeoff between the total network cost, delay and delivery

content size. In this section, we present the tradeoff analysis of

the system, which may help simplify the design of the system.

We first present the tradeoff between the total network cost

and the delay requirement for a given delivery content size.

PROPOSITION 1. In the considered system design problem

(13), for a given delivery content size Q, we have

Algorithm 1 Dynamic power optimization in problem (13)

• Input: BS interval d, speed v0, BS height h0, time inter-

val (0, T ], BS coordinate (ln, d0), content size Q, local

storage size Fn, cache placement matrix C, bandwidth

B, noise power σ2, backhaul cost ratio β, backhaul rate

Rn(t), delay requirement τmax, average power of BS

Pn,avg.

• Initialization: Basis point of the Taylor expansion of

Pn(t), that is, P 0
n(t).

• Output: Dynamic power allocation Pn(t).
• While not convergence do

– Update power Pn(t);

1) Update Pn(t) using Theorem 1 if T
τmax

≥ Q;

2) Update Pn(t) using KKT conditions or solving

(42) if T
τmax

< Q;

– Update P 0
n(t) using Pn(t);

• End while

• when T
τmax

≥ Q, the total network cost increases as the

delay requirement becomes strict.

• when T
τmax

< Q, if we denote the optimal solution

to (13) as P ∗
n(t), which is decomposed into the sum

P ∗
n,1(t) + P ∗

n,2(t), with P ∗
n,1(t) being the optimal power

term obtained by solving (16), there exists a delay re-

quirement region

τ
reg
max =

[

1

τ
, τmax

]

, (43)

where τ = B log2(1 +
∑

n∈N
GP∗

n,1(t)

dα
n(t)σ2 +

mint
∑

n∈N
GP∗

n,2(t)

dα
n(t)σ

2 ) such that the total network

cost does not increase with the decrease in delay.

Proof: Under the condition T
τmax

≥ Q, the original system

design problem (13) is equivalent to problem (16), where we

have only the power constraint and the delay constraint . At the

optimal solution, the delay constraint is always active. Hence,

if we decrease the value of τmax to achieve a strict delay

requirement, the total network cost must be increased.

If under the condition T
τmax

< Q, for a given delay

requirement τmax, the optimal solution is P ∗
n(t), which is

decomposed into the sum P ∗
n,1(t) + P ∗

n,2(t), with P ∗
n,1(t).

We first prove that the solution P ∗
n(t) with its decomposition

P ∗
n,1(t) and P ∗

n,2(t) is also the solution to (13) for a smaller

given delay requirement τ ′max ∈ τ
reg
max. Then, we prove that

this solution is the optimal solution.

It is noted that as B log2

(

1 +
∑

n∈N
P∗

n,1(t)|hn(t)|2
σ2

)

=

τmax, we have
∑

n∈N
P∗

n,2(t)|hn(t)|2
σ2 ≥ 0, as claimed in

Lemma 2. This further produces

B log2

(

1 +
∑

n∈N

P ∗
n(t)|hn(t)|2

σ2

)

≥B log2

(

1 +
∑

n∈N

GP ∗
n,1(t)

dαn(t)σ
2

+min
t

∑

n∈N

GP ∗
n,2(t)

dαn(t)σ
2

)

≥
1

τmax
.

(44)
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Thus, if we change the delay requirement τmax to any smaller

value τ ′max in region τ
reg
max, P ∗

n(t) can still be a solution to the

design problem (13), and they have the same total network

cost.

In the following, we prove that P ∗
n(t) is the optimal solution

to the design problem (13) with a smaller delay requirement

τ ′max ∈ τ
reg
max, P ∗

n(t). It is noted that if we decrease the delay

requirement τmax to τ ′max, the design problem (13) with delay

requirement τmax has a smaller feasible region than that of the

design problem with delay requirement τ ′max. Then, the value

of the objective function, i.e., the total network cost, of the

former cannot be smaller than that of the latter. This indicates

that P ∗
n(t) is still the optimal solution to the design problem

with delay requirement τ ′max, which completes the proof of

Proposition .

Next, we discuss the tradeoff between the total network cost

and delivery content size for a given delay requirement.

PROPOSITION 2. In the considered system design problem

(13), for a given delay requirement τmax, we have

• when Q ≤ T
τmax

, increasing the delivery content size will

not lead to an increase in the total network cost.

• when Q > T
τmax

, increasing the delivery content size must

also increase the total network cost.

Proof: Under the condition Q ≤ T
τmax

, because constraint

(13d) is the same as (13), the system cost is determined only

by the delay requirement. Therefore, increasing the delivery

content size will not lead the total network cost to increase.

Under the condition Q > T
τmax

, based on the result presented

in Lemma 2, with a constant power P ∗
n,1(t), we have to

increase the value of
∑

n∈N
P∗

n,2(t)|hn(t)|2
σ2 to meet constraint

(13d) with larger Q. This leads to a larger total network cost.

It is noted that when increasing the size of delivery content

in (13), we cannot find a solution to P ∗
n,2(t) that satisfies

constraint (13d) while not increasing the value of the objective

function in (13). We prove this conclusion by using a contra-

diction statement. Assume that with a delivery content size Q′,
the optimal solution to (13) is P ′∗

n(t) = P ′∗
n,1(t) + P ′∗

n,2(t).
Now, assume that with a larger delivery content size Q′′, the

optimal solution to (13) is P ′′∗
n(t) = P ′∗

n,1(t) + P ′′∗
n,2(t). If

P ′∗
n(t) and P ′′∗

n(t) have the same objective function value in

(13), we can always obtain a new solution to (13) with a deliv-

ery content size Q′ as P̃ ′∗
n(t) = P ′∗

n,1(t) +αP ′′∗
n,2(t), where

α is a positive value smaller than 1. This new solution P̃ ′∗
n(t)

produces a smaller objective function value than P ′∗
n(t). This

contradicts the fact that P ′∗
n(t) is the optimal solution, which

completes the proof of Proposition 2.

V. INVARIANT POWER OPTIMIZATION WITH QOS

CONSTRAINTS

As another simple power allocation scheme, we consider a

constant power optimization design where power does not vary

with the channel. Under this situation, the overall optimization

problem can be modified as

min
Pn

T
∑

n∈N
Pn + (45a)

∫ T

0

∑

n∈N
β||Pn||0(1− cn,f )Rn(t)dt

s.t. 0 ≤ Pn ≤ Pn,avg ∀n ∈ N (45b)

1

C(t)
≤ τmax (45c)

∫ T

0

C(t)dt ≥ Q (45d)

Pn(t) ≥ 0 ∀n ∈ N , (45e)

where C(t) = B log2

(

1 +
∑

n∈N
GPn

dn(t)ασ2

)

. Similar to the

solution we presented in Section III, we determine Pn by

solving the following problem:

min
Pn

∑

n∈N
k′nPn (46a)

s.t. 0 ≤ Pn ≤ Pn,avg ∀n ∈ N (46b)

1

C(t)
≤ τmax (46c)

∫ T

0

C(t)dt ≥ Q, (46d)

where k′n = T+ 1
log(1/θ+1)

β(1−cn,f)
∫

T

0
Rn(t)dt

θ+P 0
n

, with P 0
n being

a basis point of the Taylor expansion.

To solve (46), two specific cases are considered. If T
τmax

≥

Q, we have C(t) = 1
τmax

. Then, constraint (46d) is redundant.

Pn can be found by solving

min
Pn

∑

n∈N
k′nPn (47a)

s.t. 0 ≤ Pn ≤ Pn,avg ∀n ∈ N (47b)
∑

n∈N

GPn

dn(t)ασ2
≥ 2

1
τmaxB − 1. (47c)

It is noted in (47) that constraint (47c) should be satisfied

for any arbitrary t, and thus causes (47) to contain infinite

constraints. We next solve (47) as problem (42) by sampling

the time period at certain discrete time points. Denote the dis-

crete time points {t1, t2, · · · , tM} and the adjacent sampling

point interval as △t; the power Pn can be efficiently obtained

through solving the following linear programming problem:

min
Pn,1

∑

n∈N
k′nPn (48a)

s.t. 0 ≤ Pn ≤ Pn,avg ∀n ∈ N (48b)
∑

n∈N

GPn

dn(tm)ασ2
≥ 2

1
τmaxB − 1, ∀i. (48c)

If T
τmax

< Q, similar to its dynamic counterpart, the power

can be denoted as Pn = Pn,1 + Pn,2 where Pn,1 is used

to activate the constraint (48c) in (48). Then, Pn,2 can be

obtained by using the Lagrangian method or time period

sampling approach.



10

VI. NUMERICAL RESULTS

In the following, we provide numerical results to show

the superiority of using dynamic power allocation in a high-

speed moving transmission scenario. In particular, we compare

the performance of dynamic power allocation and invariant

power optimization with respect to different caching schemes.

The parameter settings for our simulation are summarized in

TABLE I. Moreover, we consider three caching strategies to

illustrate the effect of caching on the performance, that is,

PopC, RndC and the noncaching scheme (NonC). Because

the PopC caching strategy asks each RRH to cache the

most popular contents until its storage is full, based on our

parameter settings, RRH 1 and RRH 2 both cache contents

{1, 2, 3, 4, 5}. NonC assumes that the RRH has no storage

resources and that no content is cached at the RRH.

TABLE I
PARAMETER SETTINGS IN SIMULATIONS

Parameter Notation Value

Height of RRH antennas h 20 m

Interval between two RRHs d 1000 m

Distance between RRH and road d0 100 m

Coordinates of RRH 1 (l1, d0) (−200 m, 100 m)
Coordinates of RRH 2 (l2, d0) (800 m, 100 m)
Path-loss exponent α 0.8
Channel gain G 2
Train speed v0 200 Km/h
Ratio of backhaul power cost and rate β 2.8

Noise power σ2 1
Content number L 15
Content size Q 1
RRH storage size Fn 5
Shaping parameter of content popularity η 1

In Fig. 2, the convergence behavior of the proposed al-

gorithm is illustrated. We can observe that the proposed

algorithm converges fast in no more than five iterations. Three

curves with different delay requirements also demonstrate that

a decrease in delay can significantly increase the total network

power cost.

In Fig. 3, the dynamic power is illustrated with the time-

varying channel. As the train departs from RRH 1 and moves

closer to RRH 2, we see that the channel gain of h1(t)
decreases as time passes, while the channel gain of h2(t)
increases with time. To satisfy the QoS requirements, the

power at RRH 1 gradually increases to compensate for the

channel gain loss of h1(t) while the power at RRH 2 remains

zero. As the train moves closer to RRH 2, RRH 2 begins to

serve it, and the power at RRH 1 becomes zero to maintain

a lower network power cost. In particular, when the train

gets close to RRH 2, the required power at RRH 2 gradually

decreases as the quality of channel h1(t) improves.

In Fig. 4, we illustrate the effect of the delay requirements

on the total network power cost for different caching strategies.

It is observed that a stricter delay requirement enhances the

total network power cost and that the proposed dynamic

power allocation significantly outperforms the invariant power

allocation. Moreover, the PopC caching strategy has the lowest

total power cost. The RndC strategy performs worse than the

PopC strategy. The NonC scheme has the maximum total

power cost. The result implies that caching at the RRH is

Fig. 2. Convergence behavior of the proposed Algorithm 1 at an average

SNR
P1,avg

σ2 =
P2,avg

σ2 = 10 dB.

Fig. 3. Power variance with a dynamic channel.

Fig. 4. Total power cost for different delay requirements at an average SNR
P1,avg

σ2 =
P2,avg

σ2 = 10 dB.
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Fig. 5. Total power cost for different delay requirements and η at an average

SNR
P1,avg

σ2 =
P2,avg

σ2 = 10 dB.

Fig. 6. Total power cost for different train speeds at an average SNR
P1,avg

σ2 =
P2,avg

σ2 = 10 dB.

beneficial for reducing the network power consumption and

that caching popular contents is more helpful.

Fig. 5 further illustrates the effect of the shaping parameter

of popularity η. In general, a larger η implies a larger popu-

larity difference among the contents. We observe that a larger

η produces a lower total network power for the PopC caching

strategy. This observation is reasonable as the request contents

are very likely to be cached at the RRHs, which can reduce the

backhaul power consumption. However, for the RndC strategy,

we see that the change in η has little effect on the total network

power cost. The main reason is that the RndC strategy does

not consider the content popularity and caches all contents

with equal probabilities.

In Fig. 6, we show the effect of train speed on the total

network power consumption. It is observed that the total

network power cost increases with the speed, especially for

dynamic power allocation. In the given time period (0, T ], a

higher speed implies that a longer distance will be covered by

the train. This increases the total power consumption.

VII. CONCLUSIONS

In this paper, we studied the dynamic power allocation

of the Fog-RAN-assisted high-speed railway system. For a

given caching strategy, we optimized the instantaneous power

allocation at the RRHs with the aim to minimize the network

power consumption subject in total to several QoS constraints.

By analyzing the dynamic power optimization problem, we

derived the analytical power solution. Our results showed that

caching at the RRHs can significantly reduce the total network

power consumption. More so, the dynamic power allocation

is significantly superior to the invariant one, as it takes the

time-varying characteristic of the channel into consideration.

APPENDIX A

FEASIBILITY ANALYSIS OF PROBLEM (20)

LEMMA 3. For problem (20), if t̃′ > t′′, the optimization

problem is infeasible.

Proof: With an assumption t̃′ > t′′, we have
∫ T

t′′ ã3(t)dt > TP2,avg. Next, we prove the infeasibility of

problem (20) by contradiction analysis. Assume that we have

a feasible solution P ′
2(t) that satisfies P ′

2(t) < ã3(t) for

t ∈ (t′′, T ] and

∫ t′′

0

ã2(t)P
′
2(t)dt+

∫ T

t′′
ã2(t)P

′
2(t)dt =

∫ T

t′′
ã2(t)ã3(t)dt = B.

(49)

Because ã2(t) is an increasing function, when (49) is satisfied,

although
∫ T

t′′ P
′
2(t)dt < TP2,avg, we have

∫ t′′

0

P ′
2(t)dt >

∫ T

t′′
ã3(t)dt−

∫ T

t′′
P ′
2(t)dt

> TP2,avg −

∫ T

t′′
P ′
2(t)dt,

(50)

which implies that P ′
2(t) cannot be a feasible solution. We

thus complete the proof of Lemma 3.
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