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Stochastic Filtering of Max-plus Linear Systems
with Bounded Disturbances

Rafael Santos Mendes, Laurent Hardouin, and Mehdi Lhommeau,

Abstract—The objective of this work is to propose a filtering
strategy for max-plus linear systemswith bounded disturbances
without the direct calculation of the a posterioristate probability.
The strategy is based on the inversion of the expectation of
the measure with respect to the state variable. Among the
possible solutions, the closest to the prediction is chosen. An
algorithm based on Interval Propagation is proposed to solve
this problem. Simulations are performed to show the consistence
of the proposed methodology with other approaches in the
literature.

Index Terms—Discrete Event Dynamics Systems, Idempotent
Semirings, Max-Plus Algebra, Dioid, Observer, StochasticFilter-
ing, State Estimation.

I. I NTRODUCTION

Discrete Event Dynamic Systems (DEDS) [1] constitute
a class of systems whose dynamics are event driveni.e.
the state is modified exclusively by the occurrence of an
event. The study of this class of system is important in many
engineering areas like computer networks, transport systems,
logistic planning, manufacturing systems and many others.
Many typical control problems that arise in the theory of
Continuous Dynamic Systems have an analogous statement
in DEDS theory, like optimal control synthesis [2], [3], model
predictive control [4], [5], robustness [6], [7], observerdesign
[8], [9], stochastic filtering [10], [11] etc..

Among the many models developed for the study of DEDS,
the approach based on idempotent semirings is the one adopted
in this work. Idempotent semiring (or dioids) are algebraic
structures whose fundamental operations are appropriate for
the modeling of crucial aspects of DEDS, leading to simpler
expressions if compared to those obtained by the traditional
algebra (i.e. linear algebra and the field of real numbers). The
max-plus algebra is an instance of this algebraic structureand
gives rise to the class of DEDS known as max-plus linear
(MPL) sytems1 that are the focus of this work. In section II
this approach is further detailed.

For every dynamic system, the knowledge of the state (in
real time or not) is of paramount importance for its analysis
and control. For this reason, the problems related to the design
of state observers and of stochastic filters (in the presence
of stochastic perturbations) are particularly relevant, as well
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1MPL systems can also be described in other instances of the idempotent
semirings.

for continuous system as for DEDS. In the case of MPL
systems, the works of DiLoreto et al. [9] and of Hardouin
et al. [8], [12] introduce alternatives for the observer design.
In both cases, uncertainty with respect to model parameters
areadmittedin the form of intervals. The former is based on
the study of semimodules2 and the authors consider a duality
principle and the characterization of invariant subsemimodule
to compute the observer matrices. The disturbances are given
thanks to an implicit system depicting the delay assumed
to be in a known interval. The estimated state can then
be computed thanks to the available measure. An example
introduced in this work and revisited in [12] isanalyzedin
section V. The observer introduced in [8] is founded on the
residuation theory [13] with strategies very similar to those of
the classical Luenberger observer [14] for systems described
by differential equations and leads to an estimation of the state
as close as possible, from below, to the real state. The result
is the greatest lower bound based exclusively on structural
assumptions,i.e. without taking into account the statistical
properties of the perturbations. For this reason, this approach
is used as reference in section V of this paper.

The filtering problem arises when the dynamic relations
within the system (i.e. its state equations) and/or the directly
observed outputs of the system are influenced by random
variables. The obtention of estimates for the state constitutes
the problem of stochastic filtering. In general, the solution
for the stochastic filtering problem is the mathematical ex-
pectation of thea posterioriprobability density of the system
state given the measures. In the case of linear systems with
additive gaussian noise the exact recursive solution of the
problem is the very well known Kalman Filter [15], [16].
For non-linear problems for which the linearized model is a
good approximation, the Extended Kalman Filter [17] or the
Unscented Kalman Filter [18] can be considered. This is not
the case for the MPL systems, due to their discrete character
and consequent discontinuities.

The Particle Filter [19], [20] uses a particle representation
of the probability density of the system state to perform a
Monte-Carlo sequential estimation3 of the state. A particle
representation is a set of samples of the variable to be
estimated, sampled according to an “importance density”i.e.
according to a density similar tof(xk|xk−1) (for more details,
see [19]). The approach proposed in [21] and [10] uses this
filtering technique to produce state estimates for MPL systems.
This approach is limited by the numerical difficulties due

2The semimodules are a generalization of linear spaces for idempotent
semirings.

3A Monte-Carlo sequential estimation is a technique for the implementation
of a Bayesian filter through Monte-Carlo simulations.
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to the generation of the particles and by the fact that the
lower dimensionality of the measures with respect to the state,
introduces an imprecise generation of particles in the state
space.

The approach based on stochastic Max-min-plus-scaling
(MMPS) systems [22] constitutes a general framework, that
encompasses MPL systems, in which the dynamics of dis-
crete event and hybrid systems can be properly described.
In [11] this approach is described and it is shown that a
number of optimization stochastic problems can be treated
by this methodology, including a particular stochastic filtering
problem. The problem of determining the mathematical ex-
pectation of MMPS functions is central in this approach and
in [23] an approximation method is proposed to determine
the mathematical expectation of max-affine functions (thatare
particular cases of MMPS functions). The functions treatedin
the appendix of this work are max-affine functions and, as will
be stated in the Conclusions, the results proposed in [23] can
be combined with those presented in this work to obtain more
general filtering schemas.

The classical approach for the stochastic filtering problem
is briefly reviewed in section II, where the intrinsic difficulties
related to the calculation of thea posteriori state probability
given the measures are stressed. The non-linearities, resulting
from the use of themax operator, turn the recursive calculation
of the involved probabilities an intractable problem. The ob-
jective of this work is therefore to propose a filtering strategy
for MPL systemswith bounded disturbanceswithout the direct
calculation of thea posterioristate probability. As detailed in
the next sections, this approach is based on the inversion of
of the functionE[z|x] with respect tox, and an algorithm for
this is proposed in section III. The filtering proposition isthen
presented in section IV followed by some simulation results
in section V. In section VI some conclusions aredrawn.

II. M AX -PLUS L INEAR SYSTEMS AND FILTERING THEORY

An idempotent semiringS is an algebraic structure with two
internal operations denoted by⊕ and⊗. The operation⊕ is
associative, commutative and idempotent,i.e. a⊕ a = a. The
operation⊗ is associative (but not necessarily commutative)
and is right and left distributive with respect to⊕. The neutral
elements of⊕ and⊗ are represented byε ande respectively,
and ε is absorbing with respect to⊗ (∀a ∈ S, ε ⊗ a =
a ⊗ ε = ε). As in classical algebra, the operator⊗ will be
usually omitted in expressions,ai = a ⊗ ai−1 and a0 = e.
In this algebraic structure, a partial ordering is defined by
a � b ⇔ a = a ⊕ b ⇔ b = a ∧ b (where a ∧ b is the
greatest lower bound fora and b). Therefore an idempotent
semiringS is a partially ordered set (see [24], [25] for an
exhaustiveapproach). An idempotent semiringS is complete
if it is closed with respect to the addition of an infinite number
of elements and distributive with respect to the addition of
an infinite number of elements. Particularly,⊤ =

⊕

x∈S x
is the greatest element ofS (⊤ is called top ofS). The set
Rmax = R ∪ {−∞,+∞} equipped with themax operator as
addition and the usual addition (+) as product is a complete
idempotent semiring denoted byRmax, with ε = −∞ and

e = 0. For matricesA andB ∈ R
n×m

max it is usual to define:
(A ⊕ B)ij = aij ⊕ bij and for matricesA ∈ R

n×m

max and
B ∈ R

m×p

max : (A⊗B)ij = ⊕
m
k=1(aik ⊗ bkj).

Typically, DEDS presentsynchronizationand concurrence
aspects and according to [24] “synchronization requires the
availability of several resources or users at the same time,
whereas concurrency appears for instance when, at a certain
time, some user must choose among several resources”. From
this definition, it is clear that themax operator arises naturally
in synchronization modeling. Taking into account the instant of
events occurrence leads to “timed models” whereas “logical
models” ([26]) are concerned exclusively with the possible
sequences of events and with the conditions that may give rise
to them. Hence, idempotent semirings are useful to model the
class of Discrete Event Dynamic Systems (DEDS) in which
synchronization and delay phenomena are involved.

Consider now the class of timed models in which only
synchronization aspects appear (no concurrence aspects).A
system trajectory is defined as the sequence of the time
instants of the events occurrences. Let an event be labeled
as i ∈ {1, . . . , n}, and let xi(k) represent the instant of
the k-th occurrence of this event.Through the appropriate
algebraic manipulation and transformation it is possible to
model a significant class of DEDS (referred to as max-plus
linear systems) as follows:

x(k) = Ax(k − 1)⊕Bu(k)

z(k) = Cx(k), (1)

where u ∈ (Rmax)
p, z ∈ (Rmax)

q and x ∈ (Rmax)
n are

respectively the input (or control variable), the output (or
measure) and the state vector. The involved matrices have di-
mensionsA ∈ (Rmax)

n×n, B ∈ (Rmax)
n×p, C ∈ (Rmax)

q×n,
and all matricial operations are inRmax. Applications of
Equation (1) to the modeling and controling of DEDS are
found in many engineering areas like manufacturing systems
[24], transport systems [27], computer networks [28] and many
others.

In many applications the entries of matricesA, B andC are
associated to processing or activity times and in a more general
framework they must be considered as random variables. It
should be remarked that if one does not take this into account,
significant tracking error or even unstable behavior of the
system may occur [29]. In this work the entries of matricesA,
B andC are taken asindependent bounded random variables
distributed according to piecewise polynomial cumulativedis-
tribution functions respectively given byF (A), F (B) and
F (C). These distributions are considered known.

The objective of this paper is to propose an algorithm
for the stochastic filtering of the perturbed linear max-plus
systems described above. Thestochasticfiltering problem is
conceptually very similar to the one concerning continuous
dynamic systems [15], [30], [17] and can be formulated as
follows. Given a sequence of observations (or measures)Zk =
{z(1), . . . , z(k)} an estimate for the state variablex(k) is
desired (the sequencex(0), . . . , x(k) is not directly measured).
In the classical approach the estimate is the mathematical
expectation of the random variablex(k) conditioned to the
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observationsZk i.e. x̂(k|k) = E[xk| Zk]. This estimate
can be recursively calculated ([15], section 6.6) as follows.
The probability densityf (xk−1| Zk−1) is assumed to be
known andf (xk| Zk) is obtained from it. This calculation is
performed in two phases. The first one, known as “prediction”
calculatesf (xk| Zk−1) from f (xk−1| Zk−1).

f (xk| Zk−1) =

∫

f (xk| xk−1) f (xk−1| Zk−1) dxk−1 (2)

The second phase, referredto as “update” uses the Bayes
formula to calculate the probability densityf (xk| Zk) from
f (xk| Zk−1).

f (xk| Zk) = f (xk| zk, Zk−1)

=
f (zk| xk, Zk−1) f (xk| Zk−1)

f (zk| Zk−1)
(3)

=
f (zk| xk) f (xk| Zk−1)

∫

f (zk| ξ) f (ξ| Zk−1) dξ

The above recursions depend essentially on the knowledge
of the conditional probability densitiesf (xk| xk−1) and
f (zk| xk) that depend on the dynamical model of the system
(Equation (1)) and on the probability densitiesf (A), f (B)
andf (C). Briefly, givenx′, u, f (A), f (B) and the relation
x = Ax′ ⊕ Bu one important step of the problem is to
obtain f (x) (f (x) corresponds tof (xk| xk−1) in Equation
2). Similarly, givenx, f (C) and the relationz = Cx another
important step is the calculation off (z) (f (z) corresponds
to f (zk| xk) in Equation 3). Although these calculations are
numerically feasible, to obtain an analytical form for these
probabilitydensities is not trivial, because they involve a very
large number of possibilities. This fact turns the calculation
of the integrals in Equations (2) and (3) intractable because
the mathematical form of the involved probabilities does not
remain the same ask evolves. Moreover the results are very
sensible to the form of initial probability densityf(x0). In the
remaining sections of this paper an alternative method for the
state estimation of perturbed max-plus linear systems is pro-
posed, based on the inversion, with respect to the state, of the
mathematical expectation of the measure. The methodology is
presented in section IV; in section III important preliminary
results are developed.

III. PRELIMINARY RESULTS

Consider the functionz = Cx written in max-plus algebra,
with C ∈ R

q×n

max, x ∈ R
n

max andz ∈ R
q

max, whereC is a matrix
of independent random variables with finite support. Each
random variablecij is assumed to be distributed according to a
piecewise polynomial cumulative distribution function (c.d.f.)
Fij(·) and matricesC andC denote respectively their lower
and upper bounds. In the following, the expectationE[z|x] is
calculated.

Recall first that, ifX is a random variable with cumulative
distribution function (c.d.f.)FX(x) ≡ 0 for all x ≤ x0

then4 E[X ] = x0 +
∫∞

x0

(1 − FX(x)) dx. Based on this, it
is straightforwardthat for two random variablesX1 andX2

such that, for allx, FX1
(x) ≤ FX2

(x), E[X1] ≥ E[X2].
Moreover, if Z = maxnj=1{Xj} and Xj are independent
random variables, thenFZ(z) = P [Z ≤ z] = P [X1 ≤
z, and X2 ≤ z, and . . . , and Xn ≤ z] =

∏n

j=1
P [Xj ≤

z] =
∏n

j=1
FXj

(z).
For a givenx, let zi, i = 1, . . . , q be a component ofz =

Cx. Then,zi = maxnj=1{yij}, whereyij = cij + xj and cij
is distributed according toFij(·). The c.d.f. of eachyij is
therefore given byHij(z) = Fij(z − xj). In the particular
case in whichcij is uniformly distributed:

Hij(z) =











0 if z ≤ cij + xj
z−xj−cij
cij−cij

if cij + xj < z ≤ cij + xj

1 if z > cij + xj .

(4)

The generalization of the above expression for the case in
which cij is distributed according to any other piecewise
polynomial functionFij(·) is straightforward.Therefore, in
view of the previous results, the c.d.f ofzi is:

Gi(z) =

n
∏

j=1

Hij(z), (5)

which is also a piecewise polynomial function that can be
directly calculated and integrated resulting in:

E[zi|x] = zi0 +

∫ ∞

zi0

(1−Gi(z)) dz, (6)

zi0 being the inferior bound forzi.
In the following, two important properties related toE[z|x]

are proved.
Lemma 1:E[z|x] is a continuous and isotonic function of

x.
Proof: Continuity with respect tox is immediately deduced
from Equations (4), (5) and (6). To prove isotony, ifx1 ≥
x2 then for all j = 1, . . . , n, x1

j ≥ x2
j , therefore in view of

Equations (4) and (5), for alli ∈ {1, . . . , p}, H1
ij ≤ H2

ij and
consequentlyG1

i (z) ≤ G2
i (z) leading toE[zi|x

1] ≥ E[zi|x
2].

�

Remarks:

• A large class of random variables can be properly
approximated by random variables with piecewise
polynomial c.d.f.’s, including those without an upper
bound (infinite support). For the max-plus applications,
the exigence of a finite lower bound is not in general
restrictive.

• The hypothesis of statistical independence between the
entries of the matricesA, B and C (Equation 1) is
applicable to practical problems in which each one of
these random variables typically represent the delay time
of a single and independent process. This is the case
in many problems in the areas of planning, production,

4if fX(x) is the p.d.f. ofX, then
∫

∞

x0
(1 − FX(x)) dx =

∫

∞

x0
P [X >

x] dx =
∫

∞

x0

∫

∞

x
fX(t) dt dx =

∫

∞

x0

∫ t

x0
fX(t) dx dt =

∫

∞

x0
fX(t)(t −

x0) dt = E[X]− x0
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communication and traffic systems (see for example
section 1.2 of [24]). In many other applications, however,
to obtain the model expressed by Equation (1), algebraic
operations must be performed over the delay times of
the independent processes, resulting in matricesA, B
andC whose entries are not mutually independent. This
question is adressed in the Appendix of this article,
where an approximative method to obtainE[z|x] is
proposed.

• The results presented in the remaining of this paper
depend only on the properties proved in Lemma 1.
Therefore any other technique to calculateE[z|x] in a
different statistical scenario, but keeping the properties of
continuity and isotony with respect tox, can be adapted
to the methodology hereafter presented. Particularly,
the results presented in [23] allow the approximation
of E[z|x] in the case in which the random variables
involved are max-affine functions of a set of independent
random variables whose distributions are not constrained
to be bounded.

The inverse of the functionE[z|x]
Consider the problem: givenz∗, find x∗ such thatz∗ =
E[z|x∗]. Letχ ⊂ R

n

max be the set of all solutions of this prob-
lem inside a given region[x x] = {x ∈ R

n

max/ x ≤ x ≤ x}. It
is assumed that:H1)χ is not empty;H2)E[z|x] ≤ z∗; H3) for
all j ∈ {1, . . . , n}, E[z| (x1, x2, . . . , xj , . . . , xn−1, xn)

T ] ≥
z∗. Of course5, H3 implies E[z|x] ≥ z∗. Given that the
solution for the above problem is not in general unique, we
will look for the one that is the closest to a given pointx0. The
meaning of the pointx0 will be clarified in the next section.

To approach this problem, the technique known as Interval
Propagation [31] is used. According to this theory, given
an interval containing a set of solutions of the problem, a
“contraction operator”C must satisfy the following properties.

Contractance Property:

C([x x]) ⊂ [x x]

Completeness Property:

C([x x]) ∩ χ = [x x] ∩ χ,

with χ defined as before. In particular, by definition,
[x x] ∩ χ = χ.

Two contraction operators are proposed for the inversion of
the functionE[z|x], respectively to contract the lower and the
upper bound of an interval. The above properties are proved
in the sequel. Consider first the following conditions:

Condition L: ∃ i,j such that E[zi| ξ] < z∗i , with
ξ = (x1, x2, . . . , xj , . . . , xn−1, xn)

T

Condition U: ∃ i,j such that E[zi| η] > z∗i , with
η = (x1, x2, . . . , xj , . . . , xn−1, xn)

T

5HypothesisH3 is necessary to prove lemma 3. It should be noted that,
if a solution exists it is straightforward to increase eachxj such thatH3 be
satisfied.

If “condition L” is satisfied then there exists at least one
point
x′′ = (x1, x2, . . . , x

′′
j , . . . , xn−1, xn)

T , with xj ≤ x′′
j ≤ xj ,

such thatE[z|x′′] = z∗i , therefore thiscondition is sufficient
to perform the contraction defined by the following operator:

Lower Contractor:

CLij([x x]) = [x′ x] (7)

with:

x′ = (x1, x2, . . . , x
′
j , . . . , xn−1, xn)

T

x′
j = sup{xj ∈ [xj xj ]} s.t.:E[zi|x

′′] < z∗i

x′′ = (x1, x2, . . . , xj , . . . , xn−1, xn)
T

Analogously, if “condition U” is satisfied then there exists
at least one point
x′′ = (x1, x2, . . . , x

′′
j , . . . , xn−1, xn)

T , with xj ≤ x′′
j ≤ xj ,

such thatE[z|x′′] = z∗i , therefore thiscondition is sufficient
to perform the contraction defined by the following operator:

Upper Contractor:

CUij ([x x]) = [x x′] (8)

with:

x′ = (x1, x2, . . . , x
′
j , . . . , xn−1, xn)

T

x′
j = inf{xj ∈ [xj xj ]} s.t.:E[zi|x

′′] > z∗i

x′′ = (x1, x2, . . . , xj , . . . , xn−1, xn)
T

The calculation ofx′
j in Equations (7) and (8)is an one-

dimensional search thatcan be efficiently performed by the
dichotomy method [32]as follows. At each step, the search
interval (initialized with [xj xj ]) is divided into two equal
intervals (producing a dichotomy). The half containing the
solution will be the search interval at the next step6. The
algorithm stops when the search interval is sufficiently small.

Lemma 2:The operators defined by Equations (7) and (8)
satisfy the contractance and completeness properties. More-
over they are monotonic,i.e. :

If [x1 x1] ⊂ [x2 x2] then C([x1 x1]) ⊂ C([x2 x2]).

Proof: The contractance property is a direct consequence
of the definitions. To prove completeness, considerx′′, as
defined in Equation (7), withxj = x′

j . Clearly x′ ≤ x′′

and therefore, from lemma 1,E[z|x′] ≤ E[z|x′′]. But
E[z|x′′] < z∗i , thenx′ /∈ χ and, sinceE[z|x] is a continuous
function of x (lemma 1), [x x′] ∩ χ = ∅. Therefore
[x′ x] ∩ χ = [x x] ∩ χ. A completely symmetrical argument
shows that in Equation (8),[x′ x] ∩ χ = ∅ and therefore,
[x x′] ∩ χ = [x x] ∩ χ. To prove monotonicity, consider the
intervals [xB xB] ⊂ [xA xA], i.e. xA ≤ xB ≤ xB ≤ xA.
Let x′′A = (xA

1 , x
A
2 , . . . , x

′A
j , . . . , xA

n−1, x
A
n )

T and
x′′B = (xB

1 , x
B
2 , . . . , x

′B
j , . . . , xB

n−1, x
B
n )

T be, as defined in
Equation 7, such thatE[zi|x

′′A] = E[zi|x
′′B ] = 0. Let

x′′C = (xB
1 , x

B
2 , . . . , x

′A
j , . . . , xB

n−1, x
B
n )

T . Sincex′′A ≥ x′′C ,

6In the case of the lower contractor, letxj be the middle point of the
search interval and letx′′ be defined as in Equation (7). IfE[zi|x′′] ≥ z∗i
then the solution is on the lower half. For the upper contractor the procedure
is symmetrical.
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E[zi|x
′′B ] = E[zi|x

′′A] = 0 ≥ E[zi|x
′′C ] and therefore

x′′B ≥ x′′C , leading tox′B
j ≥ x′A

j andx′B ≥ x′A. This proves
that CLij([x

B xB]) = [x′B xB] ⊂ CLij([x
A xA]) = [x′A xA].

A completely symmetrical argument proves also that
CUij([x

B xB]) = [xB x′B] ⊂ CUij([x
A xA]) = [xA x′A]. �

Consider now a generalization of the preceding operators as
follows. If conditionsL or U are not satisfied, operatorsCLij
andCUij are simply taken as the identity operator (Id([x x]) =
[x x]). Define the operator:

Ω([x x]) = CL11◦C
U
11◦C

L
12◦C

U
12◦. . .C

L
ij◦C

U
ij ◦. . .C

L
qn◦C

U
qn([x x])

(9)
This operator is the composition of2 × n × q previously

defined operators and clearly preserves the contractance,
completeness and monotonicity properties. Letℑ be the
set of all boxes contained by the initial interval[x x] and
containingχ, i.e. , if I ∈ ℑ then χ ⊂ I ⊂ [x x]. Thanks
to the properties derived above,ℑ constitutes a complete
lattice andΩ : ℑ → ℑ is an order preserving function.
The Knaster-Tarski theorem [33] can therefore be applied
to conclude that the iterative application of operatorΩ will
converge to a fixed point, that is, to an intervalI∗ such that
Ω(I∗) = I∗. In the sequel it is proved thatI∗ is the minimal
element ofℑ.

Lemma 3:I∗ = Ω(I∗) is the minimal interval that contains
χ.

Proof: From Equation (9), the intervalI∗ is such
that for all i and j the conditions L and U are
not satisfied. Let I∗ = [x∗ x∗]. From hypothesis
H3, the initial interval is such that, for all j,
E[z| (x1, x2, . . . , xj , . . . , xn−1, xn)

T ] ≥ z∗. Then, it is true
that for all i and j, E[zi| (x1, x2, . . . , xj , . . . , xn−1, xn)

T ] ≥
z∗i . From Equation (8) it is clear that this condition is
preserved in all upper contractions, therefore, for alli andj,
E[zi| (x

∗
1, x

∗
2, . . . , x

∗
j , . . . , x

∗
n−1, x

∗
n)

T ] ≥ z∗i . However, since
condition U is not satisfied for the intervalI∗, it is true that
for all i and j, E[zi| (x

∗
1, x

∗
2, . . . , x

∗
j , . . . , x

∗
n−1, x

∗
n)

T ] ≤ z∗i
(see the definition of the condition U). Therefore, for alli
and j, E[zi| (x

∗
1, x

∗
2, . . . , x

∗
j , . . . , x

∗
n−1, x

∗
n)

T ] = z∗i , i.e. , for
all j, (x∗

1, x
∗
2, . . . , x

∗
j , . . . , x

∗
n−1, x

∗
n)

T ∈ χ. Consider now,
two different indicesj andk ∈ {1, . . . , n}. Given thatχ is a
continuous variety inR

n

max,
(x∗

1, x
∗
2, . . . , x

∗
j , . . . , x

∗
k, . . . , x

∗
n−1, x

∗
n)

T ∈ χ, and
(x∗

1, x
∗
2, . . . , x

∗
j , . . . , x

∗
k, . . . , x

∗
n−1, x

∗
n)

T ∈ χ, then for an
arbitraryxj ∈ [x∗

j x∗
j ] it must exist a valuexk ∈ [x∗

k x∗
k] such

that (x∗
1, x

∗
2, . . . , xj , . . . , xk, . . . , x

∗
n−1, x

∗
n)

T ∈ χ, i.e, every
arbitrary hyperplanexj = constant intersectsχ. This fact
shows that ifΩ(I∗) = I∗ andI1 andI2 are disjoint intervals
such thatI1 ∪ I2 = I∗ then, I1 ∩ χ 6= ∅ and I2 ∩ χ 6= ∅.
ThereforeI∗ is minimal. �

Summing up, Algorithm 1 presented below can be used to
determine the minimal interval that contains all the solutions
(setχ) contained in the initial interval[x x].

Algorithm 1: Contraction Algorithm

Data: F (C) (c.d.f. of matrixC), z∗

Result: [x x] = Contract(x, x)
1 continue← 1 ;
2 while continuedo
3 x′ ← x;
4 x′ ← x;
5 for i = 1 : q do
6 for j = 1 : n do
7 if cond L then
8 xj ← CL

ij([x x]) (Equation 7);
9 end

10 if cond U then
11 xj ← CU

ij ([x x]) (Equation 8);
12 end
13 end
14 end
15 continue← (x 6= x′ or x 6= x′);
16 end

As discussed before, among all the possible solutionsx ∈ χ,
we are looking for the one that is the closest to a given point
x0, that isx∗ = argminx∈χ ‖x − x0‖∞. In the following, a
suboptimal procedure, based on the iterative fixation of the
components ofx is proposed. To approach this, it must be
observed that, thanks to lemma 3, if conditions U and L can not
be verified, then for allj ∈ {1, . . . , n} the intersection between
thehyperplanexj = constant (∈ [xj xj ]) andχ is not empty.
Let χ′ ⊂ χ be this intersection. Once fixed the value ofxj

(making xj = xj = xj), the preceding algorithm can be
restarted and, after convergence of the new run, the smallest
interval containingχ′ will be obtained. This procedure can be
repeated until all the components ofx are fixed. The remaining
question is: which component should be fixed and to which
value. To answer this, letI∗ = [x∗

j x∗
j ] be the interval resulting

from the “contraction algorithm” previously presented and
definex′ as follows:

x′ = arg min
x∈I∗

‖x− x0‖∞.

A solution7 for x′ is:

x′
j =











x∗
j if x0

j < x∗
j

x0
j if x∗

j ≤ x0
j ≤ x∗

j

x∗
j if x0

j > x∗
j

(10)

Given thatχ ⊂ I∗, it is clear that:

min
x∈χ
‖x− x0‖∞ ≥ min

x∈I∗

‖x− x0‖∞

‖x∗ − x0‖∞ ≥ ‖x′ − x0‖∞

After each run of the contraction algorithm, in general, both
sides of the preceding inequality increase. At the end of the
procedure,χ = I∗ becauseI∗ converges to a point, therefore
equality is verified. As a consequence, if after each run the
right hand side of the above equation remains unchanged, then

7There exist multiple solutions forx′, butminx∈I∗ ‖x−x0‖∞ is unique.
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an optimal solution is obtained.
Let j∗ be such that|x′

j∗ − x0
j∗ | = ‖x

′ − x0‖∞. If the
jth component is fixed withj 6= j∗, after the next run
of the contraction algorithm the componentx′

j∗ will be in
general modified by the algorithm and this will lead to a
value xj∗ 6= x′

j∗ and therefore will increase‖x′ − x0‖∞.
For this reason, after eachrun of the contraction algorithm,
j∗ is determined andxj∗ is fixed to x′

j∗ . The contraction
algorithm is thenrun again and so on until a single value of
x∗ is obtained. As remarked before, ifj∗ is the same after
each run of the contraction algorithm then‖x′ − x0‖∞ is
also the same (i.e. it does not increase) and asa result the
obtainedx∗ is optimal. If j∗ is not preserved, the strategy is
in general suboptimal.The initial interval must contain at least
one solution of the problem. A simple rule to obtain this is to
chosex such thatCx < z∗ andx such thatCx > z∗. If H3
is not satisfied,x must be properly modified. The proposed
procedure is summarized in Algorithm 2.

Algorithm 2: Inversion Algorithm

Data: F (C) (c.d.f. of matrixC)
Result: x∗ = Inv(z∗, x0)

1 initialize x, x ;
2 continue← 1 ;
3 while continuedo
4 [x x] = Contract(x, x);
5 continue← (x 6= x);
6 if continuethen
7 x′ ← (Equation 10);
8 j∗ = argmaxj∈{1,...,n} |x

′
j − x0

j | ;
9 xj∗ ← x′

j∗ ;
10 xj∗ ← x′

j∗ ;
11 end
12 end
13 x∗ ← x ;

IV. STOCHASTIC FILTERING

In this section a Stochastic Filter for linear max-plus
systems, based on the results of the preceding section, is
proposed. Consider the dynamic equations proposed in section
II rewritten below:

x(k + 1) = Ax(k)⊕Bu(k) (11)

z(k) = Cx(k) (12)

As stated before, the independent variablek is the event
counter and each of the system variables (x, z and u) are
time instances of the event occurrences. Vectorsx, z and u
are respectivelyn, q and p−dimensional;A, B and C are
respectivelyn × n, n × p and q × n random matrices such
that its entriesare independent random variables distributed
according to known piecewise polynomial cumulative distri-
bution functions:F (A), F (B) andF (C).

The filtering problem can be stated as follows. After event
k, given a sequence of measured values forz, Z(k) =
{z∗(1) . . . z∗(k)} determine an estimate forx(k) noted by

x̂(k), supposing that an estimatêx(0) is known atk = 0.
Traditional methods to obtain̂x(k), however, do not lead
to computationally feasible solutions for this problem. The
determination of the density of probabilityf(x(k)|Z(k)), the
basis of the bayesian approach, is very difficult to perform
in this case, due to the multiplicity of conditions that must
be considered. In the following, an alternative approach is
proposed.

For the state trajectoryX(k) = {x(0), . . . , x(k)} and a
given measure sequenceZ(k) = {z∗(1) . . . z∗(k)}, consider
first the sequencêx(k) satisfying:

x̂(k) = E[x(k)| x̂(k − 1)] (13)

z∗(k) = E[z(k)| x̂(k)] (14)

On one hand, if matricesA, B andC are deterministic, the
preceding equations are also deterministic and if the initial
conditions are exact then, trivially, the estimate will coincide
with the real trajectory. On the other hand, the sequence
{x̂(k)} is similar to the classical maximumlikelihood esti-
mator in the sense that it is based on thelikelihood function
l(xk) = f(zk|xk). The main difference is that instead of
taking the maximum of this function with respect to the state
xk, the estimatêx(k) (see Equation 14)choosesthe value
of xk such that the mean value of the measurezk given xk

is the actual measure. According to [15] estimators based
exclusively on the conditional probability density function
f(zk|xk) are non-bayesian since they do not take into account
any prior information about the state. Estimators based on
the pdf f(xk| zk) = (1/c) f(zk|xk) f(xk) (c is a constant,
see Equation 3)8 clearly consider the prior probabilitydensity
f(xk). It is important to note that the schema summarized
above effectively takes into account the prior data, since it
demands the value of̂x(k) to be the same in both equations.

Although conceptually useful, Equations (13) and (14) are
not adequate for the direct implementation of a filter, because
the existence of an unique solution̂x(k) for both equations
is not guaranteed. In the following, an alternative solution
that approaches the preceding one is proposed. As usual ([17],
[30], [15]), the filtering procedure is divided into two parts:
prediction and measure update.

Prediction Equation:

x̂(k| k − 1) = E[x(k)| x̂(k − 1| k − 1)] (15)

Update Equation:

x̂(k| k) = argmin
x
|| x− x̂(k| k − 1) ||∞ (16)

s.t. z∗(k) = E[z(k)| x ]

It can be noted that if̂x(k| k − 1) = x̂(k| k), the schema
proposed by Equations (15) and (16) is the same as the one
proposed by Equations (13) and (14). From the computational
point of view, the predictionx̂(k| k − 1) can be obtained
directly from Equation (6) and the update equation can be
solved by the use of Algorithm 2. At each iteration, the

8The dependence on the past mesuresZk−1 has been ommited for
simplicity
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filtering procedure can be summarized as in Agorithm 3 below.

Algorithm 3: Filtering Algorithm

Data: F (A), F (B), F (C) (c.d.f.’s of syst. matrices)
Result: x̂(k| k) = Filt(z∗(k), x̂(k − 1| k − 1))

1 x̂(k| k − 1)← E[x(k)| x̂(k − 1| k − 1)] (Equation 6);
2 x̂(k| k)← Inv(z∗(k), x̂(k| k − 1)) (Algorithm 2);

In the next section some simulations are presented.

V. SIMULATION RESULTS

In this section two different systems are studied by means
of simulations. The first one is a third order system with high
level noise and such that its dynamic matrixA has no null
element (for all i and j, aij 6= ε). As analyzedlater, the
main point in this simulation is the comparison between the
predicted state and the state estimate. The secondsimulation
concerns aninth order Flow Shop system, formerly considered
by [9]. The main point in this simulation is the comparison
between the herein proposed state estimate and the observer
proposed by [8]. In both cases onlyuniformly distributed
random variables and only autonomous9 systems (B = ε) are
considered.

Example 1 - Third Order System:Consider the third order
autonomous linear system given by Equations (11) and (12)
with the following matrices:

A =





[e 8] [e 8] [3 11]
[2 10] [e 8] [5 13]
[1 9] [1 9] [e 8]



 ;B =





ε
ε
ε



 ;C =





[e 1]
[e 1]
ε





′

(17)

Figure 1 presents a realization of this system obtained by
simulation up to the occurrence of 15 events, starting with the
exact estimate of the initial state.

The analysis of realizations with a larger amount of events
indicate that therootmean square error(RMSE)10 between the
predicted and the true value of the state is significantly greater
than theroot mean square error between the estimate and the
true state. Table I shows the obtained results for simulations
up to the occurrence of 400 events.

i RMSE(xi(k), x̂i(k| k)) RMSE(xi(k), x̂i(k| k − 1))
1 3.6495 3.9115
2 2.8686 4.0529
3 3.9488 3.9488

Table I
COMPARISON BETWEEN PREDICTIONS AND ESTIMATES

It is important to observe that fori = 3 the predicted
and estimated state are the same because the elementc13 of
matrix C is null (c13 = ε). Indeed, in this case, the measure
z∗(k) does not bring any new information to the estimate
x̂3(k| k) since trivially, from Equations (12) and (17),x3(k)

9The presence of the termBu in Equation (11) does not change the nature
of the problem and has a small effect on the involved calculations.

10Notation: RMSE(x, y) =
√

1

N

∑N
k=1

(x(k)− y(k))2 .

has no influence onz∗(k). In general, this fact constitutes
a difference between the approach herein presented and the
classical approach based on thea posterioriprobabilitydensity
f (x| z∗). As well, it must be noted that the third column
of matrix A is greater than the other two columns, making
x1(k) andx2(k) dependent onx3(k−1) which is not directly
observed. However, although expressive, the RMSE values
observed for̂x1(k| k) andx̂2(k| k) are significantly reduced if
the combined range of variation of the entries of the matrices
A andC are taken into account.

Example 2 -Ninth Order Flow Shop System:Consider now
the Flow Shop system presented in [9] and also analysed in
[12], modeled as an autonomousninth order linear max-plus
system with three directly measured states (x3, x6 and x8).
Excepted the elementsa21, a52 and a54 all inputs of matrix
A are deterministic. The model for this system is given by
Equations (11) and (12) with the matrices:

A =





























ε ε 4 ε ε ε 2 ε ε
[1, 7] ε ε ε ε ε ε 3 ε
ε 5 ε ε ε ε ε ε 1
4 ε ε ε ε 3 ε ε ε
ε [3, 5] ε [1, 3] ε ε ε ε ε
ε ε 5 ε 4 ε ε ε ε
ε ε ε 4 ε ε ε ε 3
ε ε ε ε 3 ε 5 ε ε
ε ε ε ε ε 2 ε 4 ε





























;(18)

B =
[

ε ε ε ε ε ε ε ε ε
]′
;

C =





ε ε e ε ε ε ε ε ε
ε ε ε ε ε e ε ε ε
ε ε ε ε ε ε ε e ε



 .

The goal of this example is to compare the outcomes of the
herein proposed filter with those of the observer proposed in
[8] for linear max-plussystems. It is based on theLuenberger
observer for continuous linear systems and determines, for
eachk, the greatest lower bound for the state allowed by the
current measures. The observer is based strictly on structural
considerations (inferior and superior bounds for the matrices)
and does not take into account the statistical properties of
the uncertainties,i.e. , it is a non-deterministic non-stochastic
approach.

A realization of this system has been obtained by simulation
up to the occurrence of 15 events, starting with the exact
estimate of the initial state.The observer proposed in [8] and
the filter proposed herein have been simulated and respectively
generated the signalsxobs

i (k) and x̂i(k| k). The statesx1, x3,
x4, x6, x7, x8 andx9, have been perfectly recovered by both
the observer and the filter, since they are not perturbed by any
noise. The noisy statesx2, andx5 are depicted in the Figure
2.

The analysis of realizations with a larger amount of events
indicate that the mean square error (RMSE) between the
observed and the true value of the state is significantly greater
than the mean square error between thefilter estimate and the
true state. Table II shows the obtained results for simulations
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Figure 1. State trajectory for Example 1
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Figure 2. State trajectory for Example 2

up to the occurrence of 400 events.

RMSE(xi(k), x̂i(k| k)) RMSE(xi(k), x
obs
i (k))

i = 2 1.4317 2.5027
i = 5 1.5348 3.2494

Table II
COMPARISON BETWEEN THE OBSERVER AND THE FILTER

This comparison allows us therefore to evaluate how the fil-
ter, based on the knowledge of the noise statistics, can improve
the state estimation beyond the structural considerations.

VI. CONCLUSIONS

This paper presents an algorithm for the stochastic filtering
of max-plus linear systems. The basis of the proposal are,
as usual in filtering theory, an equation for the prediction of
the next state given an actual estimate (Equation 15) and an
equation for the update of the estimate given a new measure
(Equation 16). The prediction, given byE[x(k)| x̂(k − 1| k−
1)], can be obtained by Equations (4) to (6) through direct
calculation. The update is performed by Algorithms 1 and 2,
whose convergence is guaranteed by lemmas 2 and 3. It can
be seen as the inverse ofE[z∗|x] with respect tox. Since the
solution may not to be unique, the closest to the prediction is
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chosen.
The recursive calculation of thea posterioriprobability of

the state given the measures for linearmax-plussystems is
not known up to this time. This is due to multiplicity of
cases and the lack of regularity concerning the mathematical
form of the probability densities that may occur. Although the
proposed method is not based on the explicit calculation of
the a posterioriprobability of the state given the measures, it
is argued its similarity with the classical maximumlikelihood
estimator and the fact that it inverts, in some sense, the direct
estimation of the measure given the state.

The performed simulations show the consistency of the
proposed method in the sense that the calculation ofx̂(k| k)
takes into account the priorinformation x̂(k| k − 1) and
the measurez∗(k). Besides, a comparison with the observer
proposed in [8] show how the consideration of the statistical
aspects of the noise can improve the estimates if compared
with the lower bound calculated by the observer, based only
on structural assumptions.

The filtering schema herein proposed can be further devel-
oped by the consideration of more general probability densities
for the entries of the matricesA, B andC than the bounded
disturbances considered here. Particularly the work [23] seems
to be promising in this sense. Moreover other optimization
strategies can be considered for the update equation (Equation
16), taking into account the trade off between the noise in the
measure versus the noise in the prediction.

APPENDIX

SYSTEMS WITH INDEPENDENTTIME DELAYS

Consider the following linear equation, written in max-
plus algebra, typically obtained from a Timed Event Graph11

([24],[25]):

x(k) = (⊕m
j=0Ajx(k − j))⊕ (⊕r

j=0Bju(k − j))

z(k) = ⊕s
j=0Cjx(k − j), (19)

where the dimensions of all matrices and vectors are the same
as in Equation (1). In a large variety of applications, the
entries of matricesAj (j = 0, . . . ,m), Bj (j = 0, . . . , r)
andCj (j = 0, . . . , s) correspond to time delays of single and
independent processes and, in what follows, they are assumed
to be independent random variables with finite support and
piecewise polynomial cumulative distribution functions.

Equation (19) can be transformed into Equation (1) by
taking into account the solution of the equationx = A0x⊕ b
in max-plus algebra, given by12x = A∗

0b. Equation (19) then
becomes:

x(k) = A∗
0(⊕

m
j=1Ajx(k − j))⊕A∗

0(⊕
r
j=0Bju(k − j))

z(k) = ⊕s
j=0Cjx(k − j). (20)

Defining x̃(k) = [x(k)′, . . . , x(k −m+ 1)′, u(k)′, . . . , u(k −
r+1)′]′ ∈ (Rmax)

nm+pr and, accordingly, matrices̃A, B̃ and

11A Timed Event Graph (TEG) is a Petri Net whose places have onlyone
transition upstream and only one transition downstream. TEG’s are often used
as a first step in the modeling of a Discrete Event Dynamic System, because
max-plus equations are naturally derived from them.

12The operator∗ is known as the Kleene operator, defined byA∗

0
= E ⊕

A0 ⊕ A2

0
⊕ . . ., whereE is the identity matrix.

C̃, the preceding equations result inx̃(k) = Ãx̃(k−1)⊕B̃u(k)
andz(k) = C̃x̃(k).

It should be noted that the entries of matrix̃A are not
mutually independent and therefore Equations (4), (5) and (6)
can not be straightforwardly used to obtainE[x̃(k)| x̃(k− 1)].
In the following, an approximate method for the calculation
of these mathematical expectations is proposed, based in one
property of the matrixA0 (Equation 19). As shown in [24],
section 2.5.3, if the TEG associated to Equation (19) is live
then, by a convenient permutation of the coordinates,A0

can always be put in a strictly lower triangular form. As a
consequence, without loss of generality, the first expression in
Equation (19) can be written as:

x1(k) = y1(k) (21)

x2(k) = a02,1x1(k)⊕ y2(k)

x3(k) = a03,1x1(k)⊕ a03,2x2(k)⊕ y3(k)

...

xn(k) = ⊕n−1

l=1
(a0n,lxl(k))⊕ yn(k)

wherea0i,l are the entries of the matrixA0 andyi(k) is theith

component of the vector(⊕m
j=1Ajx(k− j))⊕ (⊕r

j=0Bju(k−
j)). Given that the objective is the calculation of the condi-
tional expectation ofxi(k), it should be noted that eachyi(k)
is the max of terms of the formajil+xl(k−j) or bjil+ul(k−j)),
wherexl(k − j) andul(k − j)) are fixed andajil and bjil are
independent random variables.

Starting from the equationx1(k) = y1(k) and assum-
ing that the valuesx(k − 1), . . . , x(k − m) and u(k −
1), . . . , u(k− r) are fixed, it is possible the direct calculation
of E[x1(k)|x(k − 1), . . . , x(k −m), u(k − 1), . . . , u(k − r)]
= E[x1(k)| x̃(k − 1)] using Equations (4), (5) and (6). The
calculation ofE[x2(k)| x̃(k − 1)] can not be performed in
the same way, given that it depends onx1(k). To calculate
this and the subsequent mathematical expectations, the joint
distribution of the vectorx(k) should be obtained which
is an intractable problem. To avoid it, the following strat-
egy is proposed. To calculate the expectation of the second
component, the random variablex(1) in the right hand of
Equations (21) is simply replaced by the deterministic term
α1E[x1(k)| x̃(k−1)] (the parameterα1 is discussed in the fol-
lowing) rendering the second equation to be of the same kind
asyi(k) and thus computable by Equations (4), (5) and (6). To
calculateE[x3(k)| x̃(k − 1)], the random variablesx1(k) and
x2(k) are respectively replaced byα1E[x1(k)| x̃(k − 1)] and
α2E[x2(k)| x̃(k − 1)], previously calculated. The calculation
of all subsequent expectations can be performed by a similar
procedure, thanks to the triangular structure of matrixA0. This
leads to the complete and computationally efficient evaluation
of E[x̃(k)| x̃(k − 1)].

To obtain a proper set of parameters[α1, . . . , αn−1] and
to evaluate the quality of this approximation, Monte Carlo
simulation techniques can be used as follows. It should be
noted first that only a limited region for the variablex̃(k−1),
denoted byΥ, is statistically relevant for evaluation purposes
thanks to the periodic behavior of max-plus linear systems.
Therefore given the matricesA0, . . . , Am and a set of pa-



IEEE TRANSACTION ON AUTOMATIC CONTROL, VOL. XX, NO. X, DECEMBER 20XX 10

rametersθ = [α1, . . . , αn−1], it is possible to compare, within
the regionΥ, the mathematical expectations obtained by the
proposed approximation and those obtained by Monte Carlo
Simulation, and evaluate the quality of the approximation
through classical statistical parameters (as for instancethe
mean and the standard deviation of the difference between
both means). Once more, thanks to the triangular structure
of the matrix A0, it is possible to perform an uncoupled
search for eachαi, aiming the minimization of the difference
between both means. The mean, together with the standard
deviation associated to the optimalθ allow the evaluation of
the obtained approximation. Given the matricesA0, . . . , Am

this optimization procedure must be performed only once (off
line) and therefore it does not increase the processing timeof
the filtering algorithm previously described.
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