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Stochastic Filtering of Max-plus Linear Systems
with Bounded Disturbances

Rafael Santos Mendes, Laurent Hardouin, and Mehdi Lhommeau

Abstract—The objective of this work is to propose a filtering for continuous system as for DEDS. In the case of MPL
strategy for max-plus linear systemswith bounded disturbances gystems, the works of DilLoreto et al. [9] and of Hardouin
without the direct calculation of the a posterioristate probability. et al. [8], [12] introduce alternatives for the observeriges
The strategy is based on the inversion of the expectation of ' . .
the measure with respect to the state variable. Among the In both _casgs, uncertalnty_ with respect to mOd_el parameters
possible solutions, the closest to the prediction is chosewn areadmittedin the form of intervals. The former is based on
algorithm based on Interval Propagation is proposed to sole the study of semimodulésind the authors consider a duality
this problem. Simulations are performed to show the consisince principle and the characterization of invariant subsentioie
of the proposed methodology with other approaches in the o compute the observer matrices. The disturbances are give
literature. . - .

thanks to an implicit system depicting the delay assumed

Index Terms—Discrete Event Dynamics Systems, Idempotent to pe in a known interval. The estimated state can then
Semirings, Max-Plus Algebra, Dioid, Observer, Stochasti¢ilter- ) computed thanks to the available measure. An example
ing, State Estimation. . . . - . . .

introduced in this work and revisited in [12] snalyzedin
section V. The observer introduced in [8] is founded on the
I. INTRODUCTION residuation theory [13] with strategies very similar tothmf

Discrete Event Dynamic Systems (DEDS) [1] constitutthe classical Luenberger observer [14] for systems destrib
a class of systems whose dynamics are event driven by differential equations and leads to an estimation of tates
the state is modified exclusively by the occurrence of & close as possible, from below, to the regl state. Thetresul
event. The study of this class of system is important in maty the greatest lower bound based exclusively on structural
engineering areas like computer networks, transport syste assumptionsj.e. without taking into account the statistical
logistic planning, manufacturing systems and many othefJoperties of the perturbations. For this reason, this egupr
Many typical control problems that arise in the theory df used as reference in section V of this paper.
Continuous Dynamic Systems have an analogous statementh€ filtering problem arises when the dynamic relations
in DEDS theory, like optimal control synthesis [2], [3], meid within the system(e. its state equatlong) and/or the directly
predictive control [4], [5], robustness [6], [7], obsendssign observed outputs of the system are influenced by random
[8], [9], stochastic filtering [10], [11] etc.. variables. The obtention of estimates for the state cantetit

Among the many models developed for the study of DED#€ problem of _sto<_:ha_stic filtering. In general, the §0hutio
the approach based on idempotent semirings is the one adof®é the stochastic filtering problem is the mathematical ex-
in this work. Idempotent semiring (or dioids) are aIgebraiEeCtat'Q” of thea posterioriprobability densny of the system .
structures whose fundamental operations are appropate §tate given the measures. In the case of linear systems with
the modeling of crucial aspects of DEDS, leading to Simp@ddmve gaussian noise the exact recursive solution of the
expressions if compared to those obtained by the traditio{oblem is the very well known Kalman Filter [15], [16].
algebra {.e. linear algebra and the field of real numbers). ThEOr non-linear problems for which the linearized model is a
max-plus algebra is an instance of this algebraic struetnce 900d approximation, the Extended Kalman Filter [17] or the
gives rise to the class of DEDS known as max-plus lineifhscented Kalman Filter [18] can be considered. This is not
(MPL) sytems that are the focus of this work. In section IIthe case for the MPL systems, due to their discrete character
this approach is further detailed. and consequent _dlscontmumes. _ _

For every dynamic system, the knowledge of the state (inThe Partlcle_ _Fllter [19], [20] uses a particle representati
real time or not) is of paramount importance for its analys@ the probability density of the system state to perform a
and control. For this reason, the problems related to thigesMonte-Carlo sequential estimatibrof the state. A particle
of state observers and of stochastic filters (in the preserf§@resentation is a set of samples of the variable to be

of stochastic perturbations) are particularly relevastyall €stimated, sampled according to an “importance density”
according to a density similar to(xy| xx—1) (for more details,

R. Santos Mendes is with DCA/FEEC/University of CampinaslCAMP,  see [19]). The approach proposed in [21] and [10] uses this
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to the generation of the particles and by the fact that the= 0. For matricesA and B € R..,.." it is usual to define:
lower dimensionality of the measures with respect to thesta(A @ B),; = a,; @ b;; and for matricesd € R...." and

introduces an imprecise generation of particles in theestat c ®"'"": (4 @ B);; = & (ag ® by).

max *

Space. _ . _ Typically, DEDS presensynchronizatiorand concurrence
The approach based on .stochastlc Max-mm-plus—scallggpects and according to [24$yhchronization requires the
(MMPS) systems [22] constitutes a general framework, thafailapility of several resources or users at the same time,
encompasses MPL systems, in which the dynamics of dignereas concurrency appears for instance when, at a certain

crete event and hybrid systems can be properly describgthe some user must choose among several resdufeesn

In [11] this approach is described and it is shown that s gefinition, it is clear that theax operator arises naturally
number of optimization stochastic problems can be treatﬁpsynchronization modeling. Taking into account the inst

by this methodology, including a particular stochastiefitg  events occurrence leads to “timed models” whereas “logical
problem. The problem of determining the mathematical egyogels” ([26]) are concerned exclusively with the possible
pectation of MMPS functions is central in this approach angqyences of events and with the conditions that may giee ris
in [23] an approximation method is proposed to determing them. Hence, idempotent semirings are useful to model the

the mathematical expectation of max-affine functions (et 1555 of Discrete Event Dynamic Systems (DEDS) in which
particular cases of MMPS functions). The functions treated synchronization and delay phenomena are involved.

the appendix of this work are max-affine functions and, ak wil
be stated in the Conclusions, the results proposed in [23] c%

be combined with those presented in this work to obtain MOLBstem trajectory is defined as the sequence of the time

general f||ter.|ng schemas. o instants of the events occurrences. Let an event be labeled
The classical approach for the stochastic filtering problegy, ; e {1 n}, and letz;(k) represent the instant of
] sy}, x;(k

is briefly reviewed in section Il, where the intrinsic diffilies .o ._th occurrence of this evenThrough the appropriate
related to the calculation of the posterioristate probability algebraic manipulation and transformation it is possitde t

given the measures are stressed. The non-linearitiestingsu .1 4q| 4 significant class of DEDS (referred to as max-plus
from the use of thenax operator, turn the recursive calculationj, o, systems) as follows:

of the involved probabilities an intractable problem. THe o

jective of this work is therefore to propose a filtering stpt x(k) = Ax(k—-1)® Bu(k)

for MPL systemswith bounded disturbancegthout the direct 2(k) = Cux(k), (1)
calculation of thea posterioristate probability. As detailed in _ _ _ .

the next sections, this approach is based on the inversion§teré ¢ € (Rmax)”, 2 € (Rmax)? and z € (Rpay)" are

of the function E[z| ] with respect taz, and an algorithm for r€Spectively the input (or control variable), the output (0
this is proposed in section Ill. The filtering propositiortfien Measure) and the stgtxe;vector._The |D¥olved mgtncesxrllave di
presented in section IV followed by some simulation resulf§€nsionsd € (Riax)™*", B € (Rimax)" ", €' € (Rinax) ",

in section V. In section VI some conclusions atewn and all matricial operations are iR,... Applications of
Equation (1) to the modeling and controling of DEDS are

found in many engineering areas like manufacturing systems
[I. MAX-PLUSLINEAR SYSTEMS AND FILTERING THEORY [24], transport systems [27], computer networks [28] andyna

An idempotent semiring is an algebraic structure with two Others.
internal operations denoted oy and ®. The operation® is In many applications the entries of matricésB andC are
associative, commutative and idempotent, « & a = a. The associated to processing or activity times and in a morergéne
operation® is associative (but not necessarily commutativéjamework they must be considered as random variables. It
and is right and left distributive with respect4a The neutral should be remarked that if one does not take this into account
elements ofp and® are represented by ande respectively, significant tracking error or even unstable behavior of the
and ¢ is absorbing with respect t® (Va € S,e ® a = System may occur [29]. In this work the entries of matriges
a® e = ¢). As in classical algebra, the operaterwill be B andC' are taken asndependent bounded random variables
usually omitted in expressions! = a ® '~ anda’ = e. distributed according to piecewise polynomial cumulathe
In this algebraic structure, a partial ordering is defined Byibution functions respectively given by'(A), F(B) and
a>-beoa=a®b< b=aAb (wherea Abis the F(C). These distributions are considered known.
greatest lower bound fo# and b). Therefore an idempotent The objective of this paper is to propose an algorithm
semiring S is a partially ordered set (see [24], [25] for arfor the stochastic filtering of the perturbed linear maxsplu
exhaustiveapproach). An idempotent semiriiffjis complete systems described above. Th®chasticfiltering problem is
if it is closed with respect to the addition of an infinite nuenb conceptually very similar to the one concerning continuous
of elements and distributive with respect to the addition afynamic systems [15], [30], [17] and can be formulated as
an infinite number of elements. Particularly, = @, s> follows. Given a sequence of observations (or measufgsy
is the greatest element & (T is called top ofS). The set {z(1),...,z(k)} an estimate for the state variahi€k) is
Ruax = RU {—00, +00} equipped with themax operator as desired (the sequenag0), . .., z(k) is not directly measured).
addition and the usual additioa-{ as product is a completeIn the classical approach the estimate is the mathematical
idempotent semiring denoted ®,..., With ¢ = —oo and expectation of the random variablgk) conditioned to the

Consider now the class of timed models in which only
nchronization aspects appear (no concurrence aspécts).
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observationsZj, i.e. @(klk) = Elzy| Zx|. This estimate therf E[X] = xo + [ (1 — Fx(z))dx. Based on this, it
can be recursively calculated ([15], section 6.6) as fadlowis straightforwardthat for two random variableX’; and X,
The probability densityf (zx—1| Zk—1) IS assumed to be such that, for allz, Fx,(z) < Fx,(z), E[X1] > E[X3].
known andf (zx| Zx) is obtained from it. This calculation is Moreover, if Z = max?_,{X;} and X; are independent
performed in two phases. The first one, known as “predictionAndom variables, theit’z(z) = P[Z < z] = P[X; <
calculatesf (x| Zix—1) from f (vx—1| Zr—1). z, and Xy < z, and ..., and X,, < z] = H;;lP[Xj <
z] = H?:l Fx,(z).
I (@] Zr-1) = /f(wkl wp—1) f(wp—1] Zrp—1) dvg—1 (2) For a givenz, let z;, i = 1,...,q be a component of =
Cz. Then,z; = max?zl{yij}, Whereyij = ¢ + x5 and Cij
The second phase, referred as “update” uses the Bayesis gistributed according td;(-). The c.d.f. of eachy,; is
formula to calculate the probability densiffy(xy| Zx) from  i,erefore given byH,;(z) = Fi;(z — z;). In the particular

[ (@] Zi-1). case in whiche;; is uniformly distributed:
0 if 2< Cij +xj
[zl Zr) = f (] 2k Zr-1) Hy(z)={ 2225 f ¢ tay<z2<ty+a;  (4)
Gl ok, Zia) f (r] Zia) 3) WG B
e f (zk| Zkfl) 1 if 2> Cij —|—Ij.
[k w) f(wk] Ze—a) The generalization of the above expression for the case in
P Zi_1) d which ¢;; is distributed according to any other piecewise
Jf Gl €) f (€] Zr—) dg hich ¢;; is distributed ding y other piecewi

) ) olynomial functionF;;(-) is straightforward.Therefore, in
The above recursions depend essentially on the knowlecﬁ;gw of the previous results, the c.d.f of is:
of the conditional probability densitieg (x| xr—1) and

f (zk| zx) that depend on the dynamical model of the system N B

(Equation (1)) and on the probability densitig$A), f (B) Gilz) = 1_[1H” (2), ©®)

and f (C). Briefly, givena’, u, f (A), f(B) and the relation o ) _ - ) )

x = Az & Bu one important step of the problem is tow_hlch is also a piecewise polynomial f_uncpon that can be

obtain f (z) (f (z) corresponds tof (zx| z4_1) in Equation directly calculated and integrated resulting in:

2). Similarly, givenz, f (C) and the relatiorr = C'z another &0

important step is the calculation ¢f(z) (f (z) corresponds Blzi|a] = zio + / (1-Gi(2)) dz, (6)

to f (zk| x) in Equation 3). Although these calculations are o

numerically feasible, to obtain an analytical form for thes”

probability densities is not trivial, because they involve a verg

large number of possibilities. This fact turns the caldolat r

of the integrals in Equations (2) and (3) intractable beeaus

the mathematical form of the involved probabilities doe$ nd" o _ o )

remain the same a evolves. Moreover the results are very "00f: Continuity with respect tar is immediately deduced

sensible to the form of initial probability densiff(z). In the fr;)m Equations (4), (5) and gG)' T(2) prove isotony,aif >

remaining sections of this paper an alternative methodHer t©~ then for allj = 1,....n, z; > a7, therefolre n View of

state estimation of perturbed max-plus linear systemsds pFauations (4) f‘nd ®). 2for alle {1,...,p}, Ifij < Hj; a;d

posed, based on the inversion, with respect to the statégof €onsequentlys; (z) < G7(z) leading toE |z z'] > Elz;| +7].

mathematical expectation of the measure. The methodotogy®i

presented in section IV in section Ill important prelimipa ~ Remarks

results are developed. o A large class of random variables can be properly
approximated by random variables with piecewise
polynomial c.d.f’s, including those without an upper
bound (infinite support). For the max-plus applications,

I1l. PRELIMINARY RESULTS the exigence of a finite lower bound is not in general

restrictive.

0 being the inferior bound fog;.

In the following, two important properties related Ejz| x]

e proved.

Lemma 1:E|z|z] is a continuous and isotonic function of

Consider the function = Cx written in max-plus algebra,
withC e RV 2 e Rl andz € R. ., whereC is a matrix
of independent random variables with finite support. Each
random variable;; is assumed to be distributed according to a
piecewise polynomial cumulative distribution functiondd.)
Fi;(+) and matrice” and C' denote respectively their lower

and upper bounds. In the following, the expectatiop| x| is

calculated. §it fx(x) is the p.df. of X, then [(1 — Fx(2))dz = [ P[X >
Recall first that, ifX is a random variable with cumulative ;) g — [0 [ fx(tydtde = [°° [T fx () dudt = [ fx(t)(t —
x x xg JTo o

distribution function (c.d.f)Fx(z) = 0 for all x < zy x0)dt = E[X] — 0

« The hypothesis of statistical independence between the
entries of the matricesA, B and C' (Equation 1) is
applicable to practical problems in which each one of
these random variables typically represent the delay time
of a single and independent process. This is the case
in many problems in the areas of planning, production,
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communication and traffic systems (see for examplelf “condition L” is satisfied then there exists at least one
section 1.2 of [24]). In many other applications, howevepoint

to obtain the model expressed by Equation (1), algebrait = (T, %2, . .. ,3:;-’, ey Tn1,Tn) T, with z; < 3:;-’ < 7,
operations must be performed over the delay times sifich thatE[z| 2] = 2}, therefore thisconditionis sufficient
the independent processes, resulting in matridesB  to perform the contraction defined by the following operator
and C whose entries are not mutually independent. This Lower Contractor:

question is adressed in the Appendix of this article,

L =1\ — [+ ==
where an approximative method to obtaifiz|z] is Cij([z 7)) = 2" 7] )
proposed. with:
— T
« The results presented in the remaining of this paper o= (@ Zy T2y 10 T)
depend only on the prop_erties proved in Lemma 1. af = sup{z; € [z; T;]} stiE[z]a"] <z
Therefore any other technique to calculdg:| x] in a @ = (T1, Tz T, Tne1,Tn) L

different statistical scenario, but keeping the propertie

Continuity and isotony with respect tg can be adapted Analogously, if “condition U” is satisfied then there exists
to the methodology hereafter presented. ParticularBt least one point

the results presented in [23] allow the approximation’ = (Z1,Zg,-- -, 2}, ..., 2, q,2,)", with z; < 27 < T,

of E[z|z] in the case in which the random variablesuch thatE[z| z"] = =7, therefore thisconditionis sufficient
involved are max-affine functions of a set of independeff perform the contraction defined by the following operator
random variables whose distributions are not constrainedJpper Contractor:

to be bounded. —
Cii([z ) = [z '] (8
The inverse of the function E[z| z] with:
Consider the problem: giver*, find z* such thatz* = , (1,7 " z 7,7
E|z|z*]. Lety C R .. be the set of all solutions of this prob- ) N A "__1’ " .
lem inside a given regiofx 7] = {z € R,,,,./z < = < T}. It v; = inf{a; € [z; 7))} s.tiElz|a"] >
is assumed thatil) x is not emptyH2) E[z| z] < z*; H3) for 2" = (2, Ty Ty Xy 1, 2,) T
all j € {1,...,n}, Elz|(zy,29,...,%j,...,2,_ ,gnT > . . .
 of c{oursé, |_}|3 irLrllEeé E2[z|f] 3 en tf?at] the The calculation ofz} in Equations (7) and (8)s an one-

imensional search thaan be efficiently performed by the
ichotomy method [32phs follows. At each step, the search
interval (initialized with [z, 7;]) is divided into two equal

meaning of the point® will be clarified in the next section. . | duci dieh The half L h
To approach this problem, the technique known as Inter\}gfer\./as (pro ucing a dic o?omy). e nall containing the
olution will be the search interval at the next $teffhe

Propagation [31] is used. According to this theory, giveﬁI ithim st hen th hint i ficiently Ik
an interval containing a set of solutions of the problem, gorithm stops when he search interval IS sutliciently lsma

“contraction operatorC must satisfy the following properties. L_emma 2:The operators defined by Equations (7)_ and (8)
Contractance Property: satisfy the contractance and completeness propertiese-Mor

over they are monotonic,e. :
C(lz 7)) C [z 7]

Completeness Property:

solution for the above problem is not in general unique,
will look for the one that is the closest to a given paifit The

If [z, 71] C [z, T2] then C([z; 71]) C C([zy T2)).

Proof: The contractance property is a direct consequence
Clzz)Nx=[zZ]NX, of the definitions. To prove completeness, considér as
. ' . . ... defined in Equation (7), withe; = z/. Clearly 2/ < z”
th defined before. | ticular, by definition, J ]
\[’;I E]ri( :e ned as belore. In partictiar, by detinition, g therefore, from lemma 1E[z|2'] < FE[z|z"]. But
- X=X E[z]2"] < 2}, thenz’ ¢ x and, sinceE[z| x] is a continuous

1 / —
Two contraction operators are proposed for the inversionff?cuon of z (lemma 1), [z 2] N x = @. Therefore
T

the functionE|z| z], respectively to contract the lower and th ] N x = [z 7] N x. A completely symmetrical argument

. : S a
upper bound of an interval. The above properties are pro l?JOV,VS that_ln E_quatlorjr (B’ 7] N x : g _?nd ther;for;er],
in the sequel. Consider first the following conditions: z /| Nx = [z 7] Nx. To prove monotonicity, consider the

; B —B A=Al i oA B — =B — —A
Condition L: 3 4,j such that E[z|& < zf, with intervals [z° 77] C [z 77, de. 2® < 2” <T° <77

i A _ =A =A 1A =A  =A\T
€= (F1,Tare s Ts oo T 1, )" Let =z = (1, T8, T T, Ty) and
- B = @PE), . 2Pzl 70T be, as defined in
. . H 1A — "B —
Condition U: 3 4 such that E[z|n] > =z, with Equation 7, such thaf[z|z""] = Elz|2""] = 0. Let
_ T CL‘”C _ (EB EB x'A EB EB)T Sincex”A > CL‘”C
77:(gl,gz,...,fﬂj,...,gn_l,gn) 1oF2 %5 s r¥n—-1r%n . = ,

8In the case of the lower contractor, let; be the middle point of the
SHypothesisH3 is necessary to prove lemma 3. It should be noted thatearch interval and let” be defined as in Equation (7). E[z;| "] > =}
if a solution exists it is straightforward to increase eaghsuch thatH3 be then the solution is on the lower half. For the upper contrattie procedure
satisfied. is symmetrical.
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Elzi|2"P] = Elz|2"4] = 0 > E[z|2"¢] and therefore Algorithm 1: Contraction Algorithm
2B > 279, leading tor’? > 2/ andz’® > 2’4, This proves ~ paia: F(C) (c.df. of matrixC), =~
that ¢/5([«” 7)) = [o'% 7] C cfi([z* 7)) = [+ 7). Result: [z ] = Contractg, T)
A completely symmetrical argument proves also that continue « 1 :
co([zP zP]) = [P o'B] C cl([z* T4)) = [z* o4, B, while continuedo
3 | 2/

Consider now a generalization of the preceding operatorsas| 7z’ « 7;
follows. If conditionsZ or U are not satisfied, operatoﬂ% 5 fori=1:¢do
andcg are simply taken as the identity operator(({dz]) = for j=1:ndo
[z T]). Define the operator: if cond Lthen
| z; + C[(lz 7)) (Equation 7);
end
if cond Uthen
| z; « C{([z 7]) (Equation 8);

© 0 N o

Q([z 7)) = Cf40CT; oCp0CH0. . .CloClo. . .CL oC ([27]) .
9)
This operator is the composition @f x n x ¢ previously

defined operators and clearly preserves the contractarice, end
2 . 13 end
completeness and monotonicity properties. Letbe the end
set of all boxes contained by the initial interval z| and continue (z # 2 or T # 7
containingy, i.e. , if I € S theny C I C [z Z]. Thanks 12 end L7 L Ohr 7o)

to the properties derived abov& constitutes a complete1
lattice andQ2 : & — < is an order preserving function.
The Knaster-Tarski theorem [33] can therefore be applied
to conclude that the iterative application of operafowill ~ As discussed before, among all the possible solutioasy,
converge to a fixed point, that is, to an interval such that we are looking for the one that is the closest to a given point
Q(I*) = I*. In the sequel it is proved thdt is the minimal 2°, that isz* = argmin,c, ||z — 2°]|«. In the following, a
element ofS3. suboptimal procedure, based on the iterative fixation of the
components ofr is proposed. To approach this, it must be
Lemma 3:I* = Q(I*) is the minimal interval that contains observed that, thanks to lemma 3, if conditions U and L can not
X. be verified, then for alf € {1, ..., n} the intersection between

Proof: From Equation (9), the intervall* is such thehyperplaner; = constant (€ [z; 7;]) andx is not empty.
that for all i and j the conditons L and U are Let X' C x be this intersection. Once fixed the value aof

not satisfied. Let/* = [z* 7*]. From hypothesis (Makingz; = 7; = =;), the preceding algorithm can be
H3, the initial interval is such that, for allj, restarted and, after convergence of the new run, the srnalles
Elz| (2, 2o, ... Tj, ...z, 1,2,)T] > z*. Then, it is true interval contginingx’ will be obtained. This procedure can be
that for alli andj, Elz] (21, 2o, -, Tjy- - or @y 1, 2,) 7] > repeated until all the componentsoére fixed. The remaining

z*. From Equation (8) it is clear that this condition igquestion is: which component should be fixed and to which

7" . * —% . .
preserved in all upper contractions, therefore, foriahd;, Vvalue.To answer this, et = [z} 73] be the interval resulting
Elz| (a2}, 23,....T cxr_,x)T] > zF. However, since from the “contraction algorithm” previously presented and

*
VEREE Ly

condition U is not satisfied for the intervdl, it is true that definez’ as follows:

. - * * —% * *\T *
for all ¢ and_j,. E[zz| (x5, 25,... (T sk )] < % o' = argmin ||z — 2% oc.
(see the definition of the condition U). Therefore, for all zel*
andj, Elz| (z}, 25, ..., %5,z zh)"] = 27, i.e., for A solution for ' is:
all 7, _(g’{,g;‘,_. . ._j;., oozt o,z ey _ConS|der now, A .
two different indicesj andk € {1,...,n}. Given thaty is a / z; Wory<z;
. . . =n . * —x
continuous variety iR, ., ay=qa9 if zF <af <7 (10)
(gy{azSaaT;77£277£:1—17£2)T6X1 and f; |f x?>§;
Epe * =k * *\T
S S N , € x, then for an _. .
@1.£2 Ljoeoo T Ln-1 zn) o Given thaty C I*, it is clear that:
arbitraryz; € [z} T;] it must exist a value, € [z} 7;] such
thaF (g{,gs,...,a:j,...,xk,...,gz_l,.gfL)T € X, i.e,_ every mein”a:—xoﬂoo > milg|\x—x0||m
arbitrary hyperplanez; = constant intersectsy. This fact TeX . 0 ””6/ 0
shows that ifQ(I*) = I* andI; and I, are disjoint intervals [2" —2%le = [l2" = 27|
such thatl; Ul = I* then, [y N x # @ and I, N x # &. After each run of the contraction algorithm, in general fbot
Thereforel* is minimal. ]

sides of the preceding inequality increase. At the end of the

. ] procedurey = I* becausd* converges to a point, therefore
Summing up, Algorithm 1 presented below can be used &uality is verified. As a consequence, if after each run the

determine the minimal interval that contains all the solusi jght hand side of the above equation remains unchanged, the
(setx) contained in the initial intervale .

"There exist multiple solutions fa¥’, but min, ¢ 7« ||z — 2°||« is unique.
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an optimal solution is obtained. #(k), supposing that an estimat&0) is known atk = 0.
Let j* be such thaz}. — 2%.| = |2’ — 2°||«. If the Traditional methods to obtair(k), however, do not lead

jt" component is fixed withj # j*, after the next run to computationally feasible solutions for this problem.eTh

of the contraction algorithm the componerff. will be in determination of the density of probabilify(x(k)| Z(k)), the

general modified by the algorithm and this will lead to #asis of the bayesian approach, is very difficult to perform

value z;- # 2. and therefore will increasgz’ — 2°||. in this case, due to the multiplicity of conditions that must

For this reason, after eaahin of the contraction algorithm, be considered. In the following, an alternative approach is

j* is determined andc;- is fixed to :173 The contraction proposed.

algorithm is thenrun again and so on until a single value of For the state trajectorX (k) = {z(0),...,z(k)} and a

x* is obtained. As remarked before, jf is the same after given measure sequenc¢gk) = {z*(1)...z*(k)}, consider

each run of the contraction algorithm thén’ — 2°|| is first the sequencé(k) satisfying:

cbrained- 1 opimal. 1 - 4 not preserved, the Suategy is (k) = Bla(k)|a(k ~ 1) (13)

in general suboptimalhe initial interval must contain at least z*(k) = Elz(k)|2(k)] (14)

one solution of the problem. A_simple rule tci obtain thisist0 5 gne hand,

chosez such thatCz < z* andz such thatCz > z*. If H3

is not satisfiedz must be properly modifiedThe proposed

procedure is summarized in Algorithm 2.

if matriced, B andC are deterministic, the
preceding equations are also deterministic and if theainiti
conditions are exact then, trivially, the estimate will dde
with the real trajectory. On the other hand, the sequence
{z(k)} is similar to the classical maximurikelihood esti-

Algorithm 2: Inversion Algorithm mator in the sense that it is based on ftielihood function
Data: F'(C) (c.d.f. of matrixC) l(zr) = f(2zx|xr). The main difference is that instead of
Result: z* = Inv(z*, zV) taking the maximum of this function with respect to the state

1 initialize z, 7 ; xk, the estimatei(k) (see Equation 1l4fhoosesthe value

2 continue < 1 ; of x; such that the mean value of the measufegiven xy,

3 while continuedo is the actual measure. According to [15] estimators based

4 [z T] = Contractz, T); exclusively on the conditional probability density furcti

5 continue < (z # T); f(zi| z1) are non-bayesian since they do not take into account

6 if continuethen any prior information about the state. Estimators based on

7 x’ « (Equation 10); the pdf f(zk|2r) = (1/¢) f(zk|zk) f(xk) (c IS a constant,

8 J* = argmaxjeqy, . ny |7 — :v? ; see Equation 3)clearly consider the prior probabilitgensity

9 Tju T f(xg). It is important to note that the schema summarized

10 Tje 4= Thu; above effectively takes into account the prior data, sirice i
11 end demands the value af(k) to be the same in both equations.
12 end Although conceptually useful, Equations (13) and (14) are
13 2% <1 ; not adequate for the direct implementation of a filter, beeau

the existence of an unique solutigrik) for both equations

is not guaranteed. In the following, an alternative solutio

that approaches the preceding one is proposed. As usugl ([17
IV. STOCHASTICFILTERING [30], [15]), the filtering procedure is divided into two psirt

In this section a Stochastic Filter for linear max-pluprediction and measure update.

systems, based on the results of the preceding section, i€rediction Equation:

propos_ed. Consid.er the dynamic equations proposed irogecti Bk k — 1) = Bla(k)| #(k — 1|k — 1)] (15)

[l rewritten below:

w(k+1) = Ax(k) ® Bu(k) (11)
z(k) = Cux(k) (12) &(k| k) = argmin || x — &(k[k = 1) [[ (16)

Update Equation:

As stated before, the independent variablés the event
counter and each of the system variables £ and u) are s.t. 2"(k) = Elz(k)| =]
time instances of the event occurrencéectorsz, z andu  can pe noted that if:(k| k — 1) — 2(k| k), the schema

are respectiveln, ¢ and p—dimensionaliA, B and C are h proposed by Equations (15) and (16) is the same as the one

respectivelyn x n, n x p and ¢ x n random matrices suc - :
; . . _ C oposed by Equations (13) and (14). From the computational
that its entriesare independent random variables d|str|buteg P Yy £q (13) (14) P

) . . . . .__point of view, the predictionz(k|k — 1) can be obtained
accprdmg t(.) known piecewise polynomial cumulative CI"Strdirectly from Equation (6) and the update equation can be
bution fgncFlonsF(A), F(B) and F'(C). solved by the use of Algorithm 2. At each iteration, the

The filtering problem can be stated as follows. After event

k, given a sequence (_)f measure_d values ,iorZ(k) = 8The dependence on the past mesut&s ; has been ommited for
{z*(1)...2*(k)} determine an estimate far(k) noted by simplicity
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filtering procedure can be summarized as in Agorithm 3 belothas no influence or*(k). In general, this fact constitutes
a difference between the approach herein presented and the
classical approach based on thposterioriprobabilitydensity

Algorithm 3: Filtering Algorithm f (x| z*). As well, it must be noted that the third column
Data: F(A), F(B), F(C) (c.d.f’s of syst. matrices) of matrix A is greater than the other two columns, making
Result: #(k| k) = Filt(z* (k), &(k — 1|k — 1)) z1 (k) andz2 (k) dependent oms(k — 1) which is not directly

1 #(k|k — 1) « Elz(k)| #(k — 1| k — 1)] (Equation 6); observed. However, although expressive, the RMSE values

2 &(k| k) < Inv(z*(k), 2(k|k — 1)) (Algorithm 2); observed foti; (k| k) andi, (k| k) are significantly reduced if

the combined range of variation of the entries of the madrice
A andC are taken into account

In the next section some simulations are presented. Example 2 Ninth Order Flow Shop SystenConsider now
the Flow Shop system presented in [9] and also analysed in
V. SIMULATION RESULTS [12], modeled as an autonomouosith order linear max-plus

In this section two different systems are studied by meaf¥Stem with three directly measured states, (v and xs).
of simulations. The first one is a third order system with high*cepted the elements, as> andas, all inputs of matrix
level noise and such that its dynamic matexhas no null A are deterministic. The model for th|s system is given by
element (for alli and j, a;; # ¢). As analyzedlater, the EQuations (11) and (12) with the matrices:
main point in this simulation is the comparison between the
predicted state and the state estimate. The sesondlation [ e ]
concerns ainth order Flow Shop system, formerly considered [1, 7]
by [9]. The main point in this simulation is the comparison
between the herein proposed state estimate and the observer
proposed by [8]. In both cases onlyniformly distributed A
random variables and only autonomdsystems B = ¢) are
considered.

Example 1 - Third Order SystenConsider the third order
autonomous linear system given by Equations (11) and (12)
with the following matrices:

e 8 [e8 [311] € [e 1]
A= 1210 [e8] [13]]|:B= || 0= |le1]| @7)
[19] [19] [e§] € € o

Figure 1 presents a realization of this system obtained by
simulation up to the occurrence of 15 events, starting with t
exact estimate of the initial state.

The analysis of realizations with a larger amount of even
indicate that theoot mean square err¢gRMSE)'° between the
predicted and the true value of the state is significantlaigre
than theroot mean square error between the estimate and t
true state. Table | shows the obtained results for simulatio
up to the occurrence of 400 events.
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The goal of this example is to compare the outcomes of the
herein proposed filter with those of the observer proposed in
fé] for linear max-plussystems. It is based on theenberger
observer for continuous linear systems and determines, for
achk, the greatest lower bound for the state allowed by the
Sirent measures. The observer is based strictly on stalctu
considerations (inferior and superior bounds for the roas)
and does not take into account the statistical properties of
RMSE(z; (k), Z; (k| ) | RMSE(z; (k). 7: (k| k — 1)) the uncertaintiesi.e. , it is a non-deterministic non-stochastic

7
I 3.6495 3.9115 approach. , _ o
2 2 8686 4.0529 A realization of this system has been obtained by simulation
3 3.9488 3.9488 up to the occurrence of 15 events, starting with the exact
Table T estimate of the initial statelhe observer proposed in [8] and
COMPARISON BETWEEN PREDICTIONS AND ESTIMATES the filter proposed herein have been simulated and resphctiv

generated the signais;’bs(k) andz; (k| k). The statescq, x3,

x4, Tg, L7, T3 andxzg, have been perfectly recovered by both
the observer and the filter, since they are not perturbed Py an
ioise. The noisy states,, andz; are depicted in the Figure

It is important to observe that foi = 3 the predicted
and estimated state are the same because the elemeot
matrix C' is null (c;3 = €). Indeed, in this case, the measur
z*(k) does not bring any new information to the estimate’

#5(k| k) since trivially, from Equations (12) and (17 (k) The analysis of realizations with a larger amount of events

indicate that the mean square error (RMSE) between the
9The presence of the terfiu in Equation (11) does not change the natur@Pserved and the true value of the state is significantlytgrea

of the problem and has a small effect on the involved caliriat than the mean square error betweenfther estimate and the
1ONotation: RMSEz, y) = \/% S (2(k) — y(k))2. true state. Table Il shows the obtained results for simurtati
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State x1 State x2 State x3
r T T T T 200F i T
200 200}
150} , 1501 150
i) ] L
& 100 8 100 8 100
50f 1 50| 50|
State State State
Prediction Prediction Prediction
— | — — — Estimate — — — Estimate — — — Estimate
0 5 : 0 5 : 0 5 :
0 5 10 15 0 10 15 0 5 10 15
Counter Counter Counter
Figure 1. State trajectory for Example 1
State x2 State x5
60
60
50t
50t
40
40
i) i)
< © |
O 30t o 30
20f 20¢
10l Sta_te | 10} Sta_te
— — — Estimate — — — Estimate
— — — Observer — — — Observer
0 - : 0 - :
0 5 10 15 0 5 10 15

Counter

Figure 2. State trajectory for Example 2

up to the occurrence of 400 events.

RMSE(z; (k), i (k[ k)) | RMSE(z;(k), 27" (k))
i=2 1.4317 2.5027
i=5 1.5348 3.2494
Table TI

COMPARISON BETWEEN THE OBSERVER AND THE FILTER

Counter

VI. CONCLUSIONS

This paper presents an algorithm for the stochastic filgerin
of max-pluslinear systems. The basis of the proposal are,
as usual in filtering theory, an equation for the predictién o
the next state given an actual estimate (Equation 15) and an
equation for the update of the estimate given a new measure
(Equation 16). The prediction, given Wy[xz(k)| z(k — 1| k —

1)], can be obtained by Equations (4) to (6) through direct
calculation. The update is performed by Algorithms 1 and 2,

This comparison allows us therefore to evaluate how the fikhose convergence is guaranteed by lemmas 2 and 3. It can
ter, based on the knowledge of the noise statistics, carowepr be seen as the inverse Bfz*| ] with respect tar. Since the
the state estimation beyond the structural considerations solution may not to be unique, the closest to the predicton i
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chosen. C, the preceding equations resultiitk) = Az(k—1)® Bu(k)
The recursive calculation of the posterioriprobability of and z(k) = C#(k).

the state given the measures for lingaax-plussystems is It should be noted that the entries of mattk are not

not known up to this time. This is due to multiplicity of mutually independent and therefore Equations (4), (5) &hd (

cases and the lack of regularity concerning the mathentatican not be straightforwardly used to obtdifz (k)| Z(k — 1)].

form of the probability densities that may occur. Althoudle t In the following, an approximate method for the calculation

proposed method is not based on the explicit calculation of these mathematical expectations is proposed, basedein on

the a posterioriprobability of the state given the measures, roperty of the matrix4d, (Equation 19). As shown in [24],

is argued its similarity with the classical maximuikelihood section 2.5.3, if the TEG associated to Equation (19) is live

estimator and the fact that it inverts, in some sense, tleetirthen, by a convenient permutation of the coordinatés,

estimation of the measure given the state. can always be put in a strictly lower triangular form. As a
The performed simulations show the consistency of th@nsequence, without loss of generality, the first expoessi

proposed method in the sense that the calculation(bfk) Equation (19) can be written as:

takes into account the prioinformation Z(k|k — 1) and

the measure*(k). Besides, a comparison with the observer wi(k) = y(k) (21)
proposed in [8] show how the consideration of the statiktica za(k) = a3 x1(k) ® ya(k)
aspects of the noise can improve the estimates if compared x3(k) = agﬂlxl(k:) @agygxz(k) ® y3(k)

with the lower bound calculated by the observer, based only
on structural assumptions. :

The filtering sc_hema_ herein proposed can be fg_rthe_r de_vel- aa(k) = @?;11(&7[@(@) @ yn (k)
oped by the consideration of more general probability diessi
for the entries of the matriced, B and C' than the bounded wherea!; are the entries of the matrit, andy; () is thei'"
disturbances considered here. Particularly the work [28hes component of the vectdrp”"; Ajz(k — j)) © (®)_o Bju(k —
to be promising in this sense. Moreover other optimizatian). Given that the objective is the calculation of the condi-
strategies can be considered for the update equation (Eguational expectation of;(k), it should be noted that eagf(k)
16), taking into account the trade off between the noise én tis the max of terms of the formy,+x;(k—j) or b, +u; (k—j)),

measure versus the noise in the prediction. wherex;(k — j) andw;(k — j)) are fixed andz], and b/, are
independent random variables.
APPENDIX Starting from the equation:; (k) = (k) and assum-
SYSTEMS WITH INDEPENDENTTIME DELAYS ing that the valuesz(k — 1),...,2(k — m) and u(k —
Consider the following linear equation, written in maxd),...,u(k —r) are fixed, it is possible the direct calculation
plus algebra, typically obtained from a Timed Event Grdphof E[z, (k)| z(k — 1),...,z(k —m),u(k —1),...,u(k —r)]
([24],[25]): = Elz1(k)|Z(k — 1)] using Equations (4), (5) and (6). The

- Mmoo - o calculation of E[xz2(k)| Z(k — 1)] can not be performed in
(k) = (GiJ'ZOAJx(k _j)) ® (@0 Bjulk = j)) the same way, given that it depends onk). To calculate
(k) = &= Ciz(k —j), (19)  this and the subsequent mathematical expectations, the joi

where the dimensions of all matrices and vectors are the saffigioution of the vectorz(k) should be obtained which

as in Equation (1). In a large variety of applications, th# an intractable problem. To avoid i, the_foIIowmg strat-
entries of matricesd; (j = 0,...,m), B; (j = 0,...,r) €9y IS proposed. To calculate the expectation of the second
andC; (j =0, ..., s) correspond to time delays of single angomponent, the random variable(1) in the right hand of
independent processes and, in what follows, they are assuriduations (21) is simply replaced by the deterministic term

to be independent random variables with finite support afid (21 (k)| Z(k—1)] (the parameter, is discussed in the fol-

piecewise polynomial cumulative distribution functions.  |0wing) rendering the second equation to be of the same kind
Equation (19) can be transformed into Equation (1) b§Svi(k) and thus computable by Equations (4), (5) and (6). To

taking into account the solution of the equatior= Az @b  calculateE[zs(k)| #(k —1)], the random variables, (k) and

in max-plus algebra, given Bz = Ajb. Equation (19) then 2(k) are respectively replaced hy; Efx: (k)| Z(k — 1)] and

becomes: asElz2 (k)| Z(k — 1)], previously calculated. The calculation
of all subsequent expectations can be performed by a similar
z(k) = Aj(@jLAjz(k —j)) © Ag(@]_oBju(k — j))  procedure, thanks to the triangular structure of matkix This
z2(k) = @5-oCjx(k —j). (20) leads to the complete and computationally efficient evalnat
- , oo of E[#(k)| #(k — 1)].
Defining (k) = [z(k)',...,x(k —m + 1)) u(k)’,... u(k - To obtain a proper set of parametdrs;, ..., a,_;] and

"’ ™ nm-+pr i inad
r+ 1) € (Rinax) P" and, accordingly, matrices, B and to evaluate the quality of this approximation, Monte Carlo

11A Timed Event Graph (TEG) is a Petri Net whose p|aces have on@l SImU|atI0n teChanueS can be used as fO”OWS. |t ShOUld be
transition upstream and only one transition downstreanG$fre often used noted first that onIy a limited region for the variatﬂ@g — 1),
as a first step in the modeling of a Discrete Event Dynamice®ysbecause denoted byr is statistically relevant for evaluation purposes
max-plus equations are naturally derived from them. ’ .. . .

12The operator is known as the Kleene operator, defined Ay = £ @ thanks to the periodic behavior of max-plus linear systems.
Ao® AZ @ ..., whereE is the identity matrix. Therefore given the matriced,, ..., 4,, and a set of pa-
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rameterd) = [a, . .

the regionY, the mathematical expectations obtained by the
proposed approximation and those obtained by Monte Carlo
Simulation, and evaluate the quality of the approximationi]
through classical statistical parameters (as for instahee
mean and the standard deviation of the difference between
both means). Once more, thanks to the triangular structuze]
of the matrix Ag, it is possible to perform an uncoupled

search for eachy;, aiming the minimization of the difference
between both means. The mean, together with the standgsi

deviation associated to the optimalallow the evaluation of
the obtained approximation. Given the matricks ..., 4,
this optimization procedure must be performed only oncé (of

line) and therefore it does not increase the processing dime

the filtering algorithm previously described.
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