
1

Dynamic Control of Agents playing Aggregative
Games with Coupling Constraints

Sergio Grammatico

Abstract—We address the problem to control a population
of noncooperative heterogeneous agents, each with convex cost
function depending on the average population state, and all
sharing a convex constraint, towards an aggregative equilibrium.
We assume an information structure through which a central
coordinator has access to the average population state and can
broadcast control signals for steering the decentralized optimal
responses of the agents. We design a dynamic control law
that, based on operator theoretic arguments, ensures global
convergence to an equilibrium independently on the problem
data, that are the cost functions and the constraints, local and
global, of the agents. We illustrate the proposed method in two
application domains: network congestion control and demand
side management.

I. INTRODUCTION

Motivation: The problem to coordinate a population of
competitive agents arises in several application domains such
as the demand side management in the smart grid [1], [2],
[3], [4], [5], e.g. for thermostatically controlled loads [6], [7],
[8] and plug-in electric vehicles [9], [10], [11], [12], demand
response in competitive markets [13], congestion control for
networks with shared resources [14].

The typical challenge in such coordination problems is
that the agents are noncooperative, self-interested, yet coupled
together, and have local decision authority that if left uncon-
trolled can lead to undesired emerging population behavior.
From the control-theoretic perspective, the objective is to
design a coordination law for steering the strategies of the
agents towards a noncooperative game equilibrium.

Related literature: Whenever the behavior of each agent is
affected by some aggregate effect of all the agents, which is
a typical feature of the mentioned application domains, rather
than by agent-specific one-to-one effects, aggregative games
[15], [16], [17], [18] offer the fundamentals to analyze the
strategic interactions between each individual agent and the
entire population, although in the classic literature the analysis
is limited to agents with scalar decision variable.

For large, in fact in the limit of infinite, population size,
aggregative game setups have been considered as determin-
istic mean field games among agents with strongly convex
quadratic cost functions [19], [20].

In this paper, we are interested in generalized aggregative
games for a population of agents with general convex func-
tions, constrained vector decision variable, and in addition
with convex coupling (i.e., shared) constraints.

S. Grammatico is with the Control Systems group, Department of Electrical
Engineering, Eindhoven University of Technology, The Netherlands. E-mail
address: s.grammatico@tue.nl.

Generalized games, that is, games among agents with cou-
pling constraints have been intensively studied in the last
decade within the operations research community [21], [22]
and the control systems one [23], [24], [25], [26] in relation
with duality theory and variational inequalities.

Assessing the convergence of the dynamic interactions
among the noncooperative agents towards an equilibrium is
one main challenge that arises in (generalized) games. With
this aim, best response dynamics and fictitious play with
inertia, i.e., gradient update dynamics, have been analyzed
and designed, respectively, both in discrete [27], [28] and
continuous time setups [29], [30]. In particular, fictitious
play with inertia has been introduced to overcome the non-
convergence issue of the best response dynamics [29]. The
common feature of these methods is that the agents implement
sufficiently small gradient-type steps, each along the direction
of optimality for their local problem. Thus, the noncooperative
agents shall agree on the sequence of step sizes and exchange
truthful information, e.g. with neighboring players, to update
their local descent directions. Several distributed algorithms
have been proposed for computing the game equilibria, see
[31], [32], [33], [34], [35] and the references therein.

Originality: In this paper, we consider aggregative games
among noncooperative agents that do not exchange informa-
tion, nor agree on variables affecting their local behavior, with
the other (competing) agents.

Instead, we assume the presence of a central coordinator that
controls the decentralized optimal responses of the competitive
agents, via the broadcast of incentive signals common to
all of them. Specifically, we design a dynamic control law
computing incentives that affect linearly the cost functions
of all the agents, simply based on the average among their
decentralized optimal responses. The resulting information
structure determines the semi-decentralized control architec-
ture illustrated in Figure 1.

Technically, we wish to control the decentralized optimal
responses of the agents towards an aggregative equilibrium,
that is, a set of agent strategies that are feasible for both the
local and the shared constraints, and individually optimal for
each agent, given the strategies of all other agents and the
control vector associated with the potential violation of the
shared constraints.

Contribution: The main contributions and novelties of the
paper with respect to the literature are summarized next.
• We address the general problem to control a population

of competitive agents with convex cost functions and
constraints coupled together in aggregative form.
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Fig. 1: Semi-dentralized control architecture. The coordinator
κ can broadcast to all the agents incentive signals that are
designed based on the average among their decentralized
optimal responses (xi?)Ni=1.

• We discover a nontrivial multivariable mapping with the
following two fundamental properties:

1. its unique zero is the incentive signal that generates,
via the agents’ decentralized optimal responses, the
desired equilibrium;

2. there exists a Hilbert space in which the mapping
reads as the sum of two monotone operators.

Therefore, splitting methods are applicable for computing
the zero of such mapping in a semi-decentralized fashion.

• We design a dynamic control law with global convergence
guarantee for steering the agents’ decentralized optimal
responses to the desired equilibrium, with minimal infor-
mation structure, and with no assumption on the problem
data, other than convexity.

• We establish global logarithmic convergence rate under
an appropriate selection of the control parameters.

• We show that our approach is applicable to network
congestion control and demand side management.

To establish global convergence with minimal information
structure, we build upon mathematical tools from variational
and convex analysis [36], and monotone operator theory [37].

Equilibrium seeking in aggregative games with convex
cost functions, convex local constraints and convex coupling
constraints has been first studied in [38], with static control
law. In this paper, we enrich the technical setup and study
dynamic control laws. Preliminary versions of some technical
results in this paper are in [39] where no coupling constraint is
considered, and in [40] where the cost functions are assumed
to be strongly convex quadratic.

Paper organization: Section II define the aggregative game
setup. Section III presents the novel dynamic control law.
The main technical results are shown in Section IV and the
designed algorithm is discussed in Section V. Section VI
illustrates our approach via numerical simulations. Section VII

concludes the paper and points at several research avenues.
Some proofs are provided in the Appendix.

Notation

R, R>0, R≥0 respectively denote the set of real, posi-
tive, and non-negative real numbers; R := R ∪ {∞}; N
denotes the set of natural numbers; for a, b ∈ N, a ≤ b,
N[a, b] := [a, b] ∩ N. A> ∈ Rm×n denotes the transpose
of a matrix A ∈ Rn×m. Given vectors x1, . . . , xT ∈ Rn,
[x1; . . . ;xT ] ∈ RnT denotes

[
x>1 , · · · , x>T

]> ∈ RnT . Given
matrices A1, . . . , AM , diag (A1, . . . , AM ) denotes the block
diagonal matrix with A1, . . . , AM in block diagonal positions;
given scalars a1, . . . , aM , we use the notation vec

(
(ai)

M
i=1

)
:=

[a1, . . . , aM ]> ∈ RM . With Sn we denote the set of sym-
metric n × n matrices; for a given Q ∈ Sn, the notations
Q � 0 (Q < 0) and Q ∈ Sn�0 (Q ∈ Sn<0) denote that Q
is symmetric and has positive (non-negative) eigenvalues. I
denotes the identity matrix; 0 (1) denotes a matrix/vector with
all elements equal to 0 (1); to improve clarity, we may add
the dimension of these matrices/vectors as subscript. A ⊗ B
denotes the Kronecker product between matrices A and B.
Every mentioned set S ⊆ Rn is meant to be nonempty.
Given S ⊆ Rn, A ∈ Rn×n and b ∈ Rn, AS + b denotes
the set {Ax + b ∈ Rn | x ∈ S}; hence 1

N

∑N
i=1 Si :=

{ 1
N

∑N
i=1 x

i ∈ Rn | xi ∈ Si ∀i ∈ N[1, N ]}. The notation
dist (x,S) := infy∈S ‖x− y‖ denotes the distance of a vector
x ∈ Rn from a set S ⊆ Rn.

Operator theoretic notations and definitions: HQ, with
Q ∈ Sn�0, denotes the Hilbert space Rn with inner product
〈x, y〉Q := x>Qy and induced norm ‖x‖Q :=

√
x>Qx, for

all x, y ∈ Rn; we refer to the Hilbert space HI whenever
not specified otherwise. Given a function f : Rn → R,
dom(f) := {x ∈ Rn | f(x) < ∞}. f : Rn → R is `-
strongly convex, where ` ∈ R>0, if f(·) − 1

2` ‖·‖
2 is convex.

Id : Rn → Rn denotes the identity operator. A mapping
f : Rn → Rn is `-Lipschitz continuous relative to HQ,
where ` ∈ R>0, if ‖f(x)− f(y)‖Q ≤ ` ‖x− y‖Q for all
x, y ∈ dom(f); f is a contraction (nonexpansive) mapping
in HQ if it is `-Lipschitz relative to HQ with ` ∈ [0, 1)
(` ∈ [0, 1]). Given a function f : Rn → R, ∂f : dom(f)⇒ Rn
denotes its subdifferential set-valued mapping [36], defined as
∂f(x) := {v ∈ Rn | f(z) ≥ f(x) + v>(z − x) for all z ∈
dom(f)}. A mapping T : Rn → Rn is (strictly) monotone in
HQ if (T (x)− T (y))

>
Q (x− y) ≥ 0 (> 0) for all x 6= y ∈

dom(T ); it is `-strongly monotone, where ` ∈ R>0, HQ if
(T (x)− T (y))

>
Q (x− y) ≥ ` ‖x− y‖2Q for all x, y ∈ Rn;

it is β-averaged, with β ∈ (0, 1), if ‖T (x)− T (y)‖2Q ≤
‖x− y‖2Q −

1−β
β ‖T (x)− T (y)− (x− y)‖2Q for all x, y ∈

Rn; it is firmly nonexpansive (hence strictly monotone and
nonexpansive) if it is 1

2 -averaged; it is β-cocoercive (hence
strictly monotone), with β ∈ R>0, if the mapping β T (·) is
firmly nonexpansive.

II. AGGREGATIVE GAMES WITH COUPLING CONSTRAINTS

We consider a population of N agents, where each agent
i ∈ N[1, N ] has strategy (i.e., decision variable) xi ∈ X i ⊂
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Rn, and all share the constraint

1
N

∑N
i=1 x

i ∈ S, (1)

for some set S ⊆ 1
N

∑N
i=1 X i ⊂ Rn.

We assume that each agent i ∈ N[1, N ] aims at minimizing
its local cost function J i, which depends on the average among
the strategies of all other agents, and in particular at seeking
a strategy xi such that

xi ∈ arg min
y∈X i

J i
(
y, 1

N

∑N
j=1 x

j , λ
)
, (2)

where the argument λ ∈ Rn represents a control vector that
the coordinator agent, introduced later on, can impose on the
agents to avoid the violation of the coupling constraint in
(1). Equations (1)–(2) define a competitive aggregative game.
We have an aggregative game since the optimal strategy of
each agent depends on the average among the strategies of
all agents; the game is competitive aggregative since the cost
functions of the agents all depend on a common vector λ
associated with the coupling constraint in aggregative form.

Throughout the paper, we assume compactness, convexity
and Slater’s qualification [41, §5.2.3] of both the individual and
the shared constraints, and strong convexity of the cost func-
tions, with linear dependence on the global coupling variable.
Such basic assumptions ensure existence of an equilibrium,
and that the agents’ optimal responses, defined formally in
Section III-A, are single-valued and continuous.

Standing Assumption 1: Compactness, convexity,
constraint qualification. The sets {X i}Ni=1 and
S ⊆ 1

N

∑N
i=1 X i are compact and convex subsets of

Rn, and satisfy the Slater’s constraint qualification. �

Standing Assumption 2: Strongly convex cost functions. For
all i ∈ N[1, N ], the cost function J i : Rn ×Rn → R in (2) is
defined as

J i(y, σ, λ) := f i(y) + (Cσ +Kλ)
>
y, (3)

for some function f i : Rn → R continuous and `-strongly
convex, with ` ∈ R>0, C ∈ Sn, and invertible K ∈ Sn. �

In (3), the matrix C in (3) weights the influence of the
average among the agents’ strategies on each cost function
J i, whereas the matrix K in (3) weights the effect of the
vector λ. In the remainder of the paper, we consider C as part
of the given problem data, while K as design choice for the
coordinator of the game.

Our goal is to control the strategies of the agents to an
aggregative equilibrium, that is, a set of strategies and control
vector such that: the coupling constraint in (1) is satisfied, and
each agent’s strategy is optimal given the strategies of all other
agents and the control vector.

Definition 1: Aggregative equilibrium. A pair
(
(x̄i)Ni=1, λ̄

)
is an aggregative equilibrium for the game in (2) with coupling
constraint in (1) if 1

N

∑N
i=1 x̄

i ∈ S, for all i ∈ N[1, N ],

x̄i ∈ arg min
y∈X i

J i
(
y, 1

N

∑N
j=1 x̄

j , λ̄
)
.

�

We formalize next that an aggregative equilibrium exists
under the postulated standing assumptions.

Proposition 1: Existence of an aggregative equilibrium.
There exists an aggregative equilibrium for the game in (2)
with coupling constraint in (1). �

Proof: See Appendix A.

Remark 1: Non-uniqueness of aggregative equilibria.
Uniqueness of the aggregative equilibrium does not necessarily
hold. For instance, consider the game with following problem
data: n = 1, N = 2, f1(·) = f2(·) = 1

2 ‖·‖
2, C = −1,

X 1 = X 2 = S = [−1, 1]. The pairs ((1, 1), 0) and
((−1,−1), 0) are aggregative equilibria, independently on
the choice of K in (3). Selecting the best aggregative
equilibrium from a global optimization perspective goes
beyond the purpose of this paper. �

To conclude the section, we note that in the limit of
infinite population size, an aggregative equilibrium is a Nash
equilibrium with fixed control vector.

Theorem 1: Aggregative equilibrium versus Nash equilib-
rium. Let the pair

(
(x̄i)Ni=1, λ̄

)
be an aggregative equilibrium,

and define

εN := max
i∈N[1,N ]

dist
(
x̄i ,

arg min
y∈X i

J i
(
y, 1

N

(
y +

∑N
j 6=i x̄

j
)
, λ̄
))

.

Assume that there exists a compact set X ⊂ Rn such that
X i ⊆ X for all i ∈ N[1, N ] and N ∈ N. Then, there exists
c ∈ R>0 such that εN ≤ c/N for all N ∈ N. �

Proof: See Appendix B.

III. DYNAMIC CONTROL OF THE AGENTS’
DECENTRALIZED OPTIMAL RESPONSES

A. Fixed points of the aggregation mapping

For seeking an aggregative equilibrium, we assume that an
agent i cannot exchange information, nor has prior knowledge,
on the strategies of all other (competing) agents. Instead,
we assume that each individual agent responds optimally
to incentive signals u ∈ Rn according to the information
structure in Figure 1. Formally, for all i ∈ N[1, N ], we define
the agent optimal response mapping xi? : Rn → X i as

xi?(u) := arg min
y∈X i

f i(y) + u>y, (4)

and the aggregation mapping A : Rn × Rn → 1
N

∑N
i=1 X i

as the average among the optimal responses of agents to the
incentive signal u(σ, λ) = Cσ +Kλ, i.e.,

A(σ, λ) := 1
N

∑N
i=1 x

i?(Cσ +Kλ). (5)

Note that if σ̄ = A
(
σ̄, λ̄

)
for some λ̄ ∈ Rn, then σ̄ =

1
N

∑N
i=1 x̄

i, with shorthand notation x̄i := xi?(Cσ̄ + Kλ̄).
It follows immediately from Proposition 1 that such a pair
(σ̄, λ̄) exists; uniqueness depends however on the choice of
K as established later in Proposition 2, Section IV.
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[
σ(t+1)

λ(t+1)

]
= κ

(
t,

[
σ(t)

λ(t)

])
:= (1− αt)

[
σ(t)

λ(t)

]
+ αt (I + εM)

−1

([
σ(t)

λ(t)

]
− εΓ

([
σ(t)

λ(t)

]))
(∗)

Therefore, if σ̄ = A
(
σ̄, λ̄

)
, then the pair

(
(x̄i)Ni=1, λ̄

)
is in

fact an aggregative equilibrium. It follows that we can control
the agents’ optimal responses, e.g. via dynamic updates of
their argument, to a set of strategies whose average is a fixed
point of the aggregation mapping (with respect to the first
argument) within the coupling constraint set.

B. From fixed points to zeros
Informally speaking, the objective is to find a pair (σ̄, λ̄)

such that σ̄ = A(σ̄, λ̄) = x0, for some x0 ∈ S. Since A
depends on two arguments, it follows naturally that x0 is
designed as a mapping that depends on the same arguments.
With this aim, we translate the problem into that of finding
a zero of an appropriate multivariable mapping via semi-
decentralized iterations.

Among all possible design choices, let us define the map-
ping x0? : Rn × Rn → S as

x0?(σ, λ) := arg min
y∈S

1
2y
>y + (K(σ − λ))

>
y. (6)

Remarkably, we notice that a pair
(
σ̄, λ̄

)
satisfies σ̄ =

A
(
σ̄, λ̄

)
= x0?(σ̄, λ̄) ∈ S if

[
σ̄ ; λ̄

]
is a zero of the mapping

Θ : R2n → R2n defined as

Θ

([
σ
λ

])
:=

[
σ −A(σ,Kλ)

σ − 2A(σ,Kλ) + x0?(σ, λ)

]
=

[
In 0
In 0

] [
σ
λ

]
−
[

A(σ,Kλ)
2A(σ,Kλ)− x0?(σ, λ)

]
=: (M + Γ)

([
σ
λ

])
,

(7)

where the matrix gain K is to be chosen, and we defined the
matrix M ∈ R2n×2n and the mapping Γ : R2n → R2n as

M :=

[
In 0
In 0

]
, (8)

Γ

([
σ
λ

])
:= −

[
A(σ,Kλ)

2A(σ,Kλ)− x0?(σ, λ)

]
. (9)

C. Dynamic control as zero finding algorithm
In general, computing a zero of a multivariable nonlinear

mapping such as Θ = M + Γ in (7) is a challenging task.
However, for the sum of monotone mappings there exist
iterative algorithms with global convergence guarantee [37,
Chapter 25]. Inspired by the forward-backward algorithm [37,
Equation 25.26], we propose the dynamic control law κ in (∗)
for computing a zero of Θ = M + Γ in (7), where ε > 0
is sufficiently small and the averaging step sizes (αt)

∞
t=0 are

chosen as follows.
Design choice 1: The sequence (αt)

∞
t=0 in (∗) is such that

αt ∈ (0, 3/2) for all t ∈ N and
∑∞
t=0 αt

(
3
2 − αt

)
=∞. �

Suitable choices for the sequence (αt)t∈N that satisfy the
design condition stated above are αt = 1 and αt = 1/(t +
1), for all t ∈ N. The proposed dynamic control scheme is
summarized in Algorithm 1.

Algorithm 1: Dynamic control of the decentralized opti-
mal responses by the competitive agents.

Initialization: t← 0;
• The coordinator chooses (σ(0), λ(0)) ∈ S × Rn.

Iterate until convergence:
• The coordinator broadcasts

u(t) := Cσ(t) +Kλ(t)

to all agents, and computes x0?
(
σ(t), λ(t)

)
from (6).

◦ The agents compute in parallel xi?
(
u(t)

)
from (4), for

all i ∈ N[1, N ].
• The coordinator receives A

(
σ(t), λ(t)

)
as in (5),

computes Γ
(
[σ(t) ; λ(t)]

)
from (9), and from (∗)[

σ(t+1) ; λ(t+1)

]
= κ

(
t,
[
σ(t) ; λ(t)

])
.

t← t+ 1.

IV. GLOBAL CONVERGENCE

A. Statement of the main results

The mapping Θ in (7) reads as the sum of the linear, hence
continuous, mapping M · and the mapping Γ(·) in (9). With
the aim of applying [37, Theorem 25.8], in the following we
show that by choosing the matrix gain K in (4) appropriately,
M is monotone and Γ is β-cocoercive, that is, β Γ(·) is firmly
nonexpansive, in some Hilbert space. Consequently, we derive
a dynamic control law that ensures global convergence of the
controlled decentralized optimal responses to a set of strategies
whose average is a fixed point of the aggregation mapping with
respect to its first argument.

Design choice 2: The matrix K in (7) is chosen such that
K � 0 and C +K � 0. �

Theorem 2: Monotonicity. Under design choice 2, the linear
mapping M in (8) is monotone in HP , and the mapping Γ in
(9) is β-cocoercive, hence strictly monotone, in HP , where

P :=

[
C + 2K −K
−K K

]
� 0, β :=

`

6 ‖P‖
> 0. (10)

�

Proof: See Section IV-B.

Proposition 2: Existence and uniqueness. Under design
choice 2, ∃!

[
σ̄ ; λ̄

]
∈ zer (Θ), with Θ as in (7). �

Proof: Existence follows immediately from Proposition 1.
The mapping Θ is the sum of monotone and strictly monotone
mappings by Theorem 2, hence it is strictly monotone in HP
[36, Exercise 12.4 (c)], with P in (10), hence uniqueness holds
[37, Proposition 23.35].
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Design choice 3: The constant ε in (∗) is such that ε ∈
(0, β), with β in (10). �

Theorem 3: Global convergence. Under design choices 1–
3, the sequence

([
σ(t) ; λ(t)

])∞
t=0

defined in (∗) converges, for
any initial condition, to the zero of Θ in (7), with A as in (5)
and xi? as in (4) for all i ∈ N[1, N ]. �

Proof: The assumptions of [37, Theorem 25.8 (A :=
M ⇒ JεA = (I + εM)−1)] are verified as follows. M is
continuous and monotone in HP due to Theorem 2, hence
maximally monotone [37, Corollary 20.25]. Γ(·) in (9) is β-
cocoercive in HP according to Theorem 2. The sequence
(αt)

∞
t=0 is chosen as in [37, Theorem 25.8 (γ ≤ β)], and

the existence of a zero of Θ holds by Proposition 2.

We conclude the subsection by quantifying the global con-
vergence rate. Since in general this might depend on the cho-
sen sequence (αt)t∈N, let us focus on the case αt = ᾱ ∈ (0, 1)
for all t ∈ N, for which we establish global logarithmic
convergence rate.

Design choice 4: The sequence (αt)
∞
t=0 in (∗) is such that

αt = ᾱ ∈ (0, 1] for all t ∈ N . �

Theorem 4: Global logarithmic convergence rate. Under
design choices 2–4, the sequence

(
σ(t), λ(t)

)∞
t=0

defined in
(∗) is such that, for all t ∈ N and any initial condition,∥∥∥[ σ(t+1)

λ(t+1)

]
−
[
σ(t)

λ(t)

]∥∥∥2

P
≤

3
ᾱ − 1

t+ 1

∥∥∥[ σ(0)

λ(0)

]
− zer (Θ)

∥∥∥2

P
,

(11)
where Θ is as in (7), P as in (10), A as in (5) and xi? as in
(4) for all i ∈ N[1, N ]. �

Proof: See Section IV-C.

Corollary 1: Global convergence to an aggregative equilib-
rium. Under design choices 2–4, for any initial condition, the
sequence

(
(xi?(Cσ(t) +Kλ(t)))

N
i=1, λ(t)

)∞
t=0

defined from
(4) and (∗) converges with the logarithmic rate in (11) to
an aggregative equilibrium for the game in (2) with coupling
constraint in (1). �

Proof: It follows immediately from Theorems 3–4.

B. Proof of Theorem 2 (Monotonicity)

First, M in (8) is monotone in HP as [20, Lemma 3][
I 0
I 0

]> [
C + 2K −K
−K K

]
+

[
C + 2K −K
−K K

] [
I 0
I 0

]
< 0.

We proceed with two statements that are exploited later on.

Lemma 1: If a function f : Rn → R is `-strongly convex,
` ∈ R>0, then: ∂f is `-strongly monotone, and (∂f)

−1 is ev-
erywhere single-valued, globally (1/`)-Lipschitz continuous,
`-cocoercive, and strictly monotone. �

Proof: ∂f is `-strongly monotone by [36, Exercise 12.59],
and equivalently (∂f)

−1 is `-cocoercive [42, p. 1021, Equation
(18)]. (∂f)

−1 is everywhere single-valued, globally (1/`)-
Lipschitz continuous by [36, Proposition 12.54]. Finally,
we show that (∂f)

−1 is strictly monotone. For all ξ, ζ ∈
dom (∂f) such that ξ 6= ζ, we have (v − w)> (ξ − ζ) ≥

` ‖ξ − ζ‖2 > 0 for all v ∈ ∂f(ξ), w ∈ ∂f(ζ). In par-
ticular, since (∂f)

−1 is everywhere single-valued, for all
x, y ∈ rge (∂f) = dom((∂f)

−1
) there exist ξ = (∂f)

−1
(x),

ζ = (∂f)
−1

(y), such that x ∈ ∂f(ξ), y ∈ ∂f(ζ), and hence
(x− y)

>
(

(∂f)
−1

(x)− (∂f)
−1

(y)
)
≥ ` ‖ξ − ζ‖2 > 0.

Lemma 2: Let the function f : Rn → R be `-strongly
convex, ` ∈ R>0. Then for any A ∈ Rn×m, the mapping

x?(·) := arg min
y∈Rn

f(y) + (A ·)> y = (∂f)−1 (−A ·) (12)

is (‖A‖ /`)-Lipschitz continuous. �

Proof: By Lemma 1 the mapping (∂f)
−1 is

(1/`)-Lipschitz continuous. The affine mapping −A ·
is ‖A‖-Lipschitz continuous, hence the composed
mapping (∂f)

−1
(−A ·) is (‖A‖ /`)-Lipschitz

continuous. Equation (12) follows from the Fermat’s
rule [37, Theorem 16.2, Proposition 26.1], i.e.,
0 ∈ ∂

(
f(·) + (A z)

> ·
)

(x?(z)) ∈ ∂f(x?(z)) + Az,
hence −Az ∈ ∂f (x?(z)) for all z ∈ Rn. The second
equation in (12) follows by applying (∂f)

−1 to both sides of
the last inclusion.

It follows from Lemma 2 that, for all i ∈ N[1, N ], the
optimal response from (4) reads as

xi?(Cσ +Kλ) = (∂f i)−1

(
[−C, −K]

[
σ
λ

])
,

and analogously, the mapping x0? in (6) reads as

x0?(σ, λ) = (∂f0)−1

(
[−K, K]

[
σ
λ

])
,

where f0(y) := 1
2y
>y + δS(y).

In view of Γ in (9), for all i ∈ N[1, N ], let us define the
mapping Γi : R2n → R2n as

Γi([σ ; λ]) := −
[

xi?(Cσ +Kλ)
2xi?(Cσ +Kλ)− x0?(σ, λ)

]
=

−
[
In 0
2In −In

] [
(∂f i)−1 0

0 (∂f0)−1

]([
−C −K
−K K

] [
σ
λ

])
(13)

so that Γ(·) = 1
N

∑N
i=1 Γi(·). Note that the mapping

diag
(
∂f i, ∂f0

)
is γ-strongly monotone with γ := min{`, 1},

thus the mapping diag
(
(∂f i)−1, (∂f0)−1

)
in (13) is γ-

cocoercive and (1/γ)-Lipschitz continuous due to Lemma 1
and [37, Proposition 20.23]. In the rest of the proof, we exploit
the following result, which is a variant of [37, Proposition 4.5].

Lemma 3: LetM : Rm → Rm be a γ-cocoercive mapping,
γ ∈ R>0, and A,B ∈ Rm×m be invertible matrices. If
A−>B ∈ Sm�0, then the mapping AM (B ·) is η-cocoercive
in HA−>B with η := γ/(‖A‖2

∥∥A−>B∥∥). �



6

Proof: Since M is γ-cocoercive, for all x, y ∈ Rm:

(AM(Bx)−AM(By))
>
A−>B(x− y)

= (M(Bx)−M(By))
>
B(x− y)

≥ γ ‖M(Bx)−M(By)‖2

≥ γ

‖A‖2
‖AM(Bx)−AM(By)‖2

≥ γ

‖A‖2 ‖A−>B‖
‖AM(Bx)−AM(By)‖2A−>B .

We now apply Lemma 3 to the mapping Γi(·) in (13).
Namely, we consider m = 2n and the matrices

A := −
[
In 0n×n
2In −In

]
, B :=

[
−C −K
−K K

]
,

and derive

P := A−>B = −
[
I 0
2I −I

]−> [−C −K
−K K

]
=

[
I 2I
0 −I

] [
C K
K −K

]
=

[
C + 2K −K
−K K

]
=

[
C + (1− ε)K 0

0 0

]
+

[
1 + ε −1
−1 1

]
⊗K,

where ε > 0 is chosen such that C + (1− ε)K < 0.
Since

[
1+ε −1
−1 1

]
� 0 and C ∈ Sn, K � 0 and C + K � 0

ensure that B is invertible and A−>B � 0. By Lemma 3,
this implies that, for all i ∈ N[1, N ], Γi(·) is β-cocoercive
in HA−>B , where A−>B = P and `/(‖A‖2 ‖P‖) =
`/((3 + 2

√
2) ‖P‖) ≥ `/(6 ‖P‖) =: β in (10). In turn,

Γ(·) = 1
N

∑N
i=1 Γi(·) is also β-cocoercive [37, Example 4.31].

Since all the mappings {Γi}Ni=1 are strictly monotone
in HP , it follows that Γ is strictly monotone as well
[36, Exercise 12.4 (c)]; in fact, for all i ∈ N[1, N ],
diag

(
(∂f i)−1, (∂f0)−1

)
in (13) is strictly monotone by

Lemma 1 and [37, Proposition 20.23]. Finally, strict mono-
tonicity of Γi = A diag

(
(∂f i)−1, (∂f0)−1

)
◦B follows from

the next result, which is a variant of [37, Proposition 28.2].

Lemma 4: Let M : Rm → Rm be a (strictly) monotone
mapping, and A,B ∈ Rm×m. If A is invertible and A−>B ∈
Sm�0, then the mapping AM (B ·) is (strictly) monotone in
HA−>B . �

Proof: Since M is (strictly) monotone, for all x 6= y ∈
Rm, we have:

0 ≤ (<) (M(Bx)−M(By))
>

(Bx−By)

= (M(Bx)−M(By))
>
A>A−>B (x− y)

= (AM(Bx)−AM(By))
>
A−>B (x− y) .

C. Dynamic control as fixed point iteration: Proof of Theorem
4 (Global logarithmic convergence rate)

The iteration in (∗) can be written as the fixed point iteration[
σ(t+1)

λ(t+1)

]
= (1− αt)

[
σ(t)

λ(t)

]
+ αt T

([
σ(t)

λ(t)

])
where the mapping T : R2n → R2n is defined as

T (·) := (I + εM)
−1

(Id− εΓ) (·). (14)

In fact, a vector z̄ ∈ R2n is a fixed point of T if and only if,
for all α > 0, it is fixed point of the mapping (1−α)Id+αT ,
and if and only if it is a zero of M + Γ [38, Lemma 1]: if
z̄ = T (z̄) = (I + εM)

−1
(Id− εΓ) (z̄), then (I + εM) z̄ =

z̄ − εΓ(z̄), which is equivalent to Mz̄ + Γ(z̄) = 0.
To establish the convergence rate of the iteration in (∗) with

αt = ᾱ ∈ (0, 1] for all t ∈ N, we show that the mappings T
in (14) and

K(·) := (1− ᾱ)Id(·) + ᾱT (·) (15)

are averaged operators.
Lemma 5: The mapping T in (14) is 2

3 -averaged in HP ,
and the mapping K in (15) is (1− ᾱ

3 )-averaged in HP , with
P as in (10). �

Proof: It follows from the proof of Theorem 3 that
M in (8) is monotone in HP , thus (I + εM)−1 is firmly
nonexpansive [37, Corollary 23.10 (i)]. According to Theorem
2, εΓ is firmly nonexpansive, hence also the mapping Id− εΓ
is firmly nonexpansive [37, Proposition 4.2]. Therefore, T
is the composition of two firmly nonexpansive mappings, or
equivalently the composition of two 1

2 -averaged operators. In
particular, T is 2

3 -averaged in HP [43, Proposition 2.4]. Fi-
nally, K is the convex combination of two averaged operators,
hence it is averaged with parameter 1− ᾱ+ ᾱ 2

3 = 1− ᾱ
3 [43,

Proposition 2.2].
We can now prove Theorem 4.

Proof: By the definition of averaged operator,
we have that ‖K(x)−K(y)‖2P ≤ ‖x− y‖2P −
1−β
β ‖K(x)−K(y)− (x− y)‖2P for all x, y ∈ R2n, where
β = 2/3 in view of Lemma 5. Let us take x = z(τ) :=[
σ(τ);λ(τ)

]
, and y = z̄ = K(z̄). By substituting, we obtain∥∥K (z(τ)

)
− z̄
∥∥2

P
≤
∥∥z(τ) − z̄

∥∥2

P
− 1−β

β

∥∥K (z(τ)

)
− z(τ)

∥∥2

P
,

and equivalently
∥∥K (z(τ)

)
− z(τ)

∥∥2

P
≤
(

β
1−β

)∥∥z(τ) − z̄
∥∥2

P
−∥∥K (z(τ)

)
− z̄
∥∥2

P
. In particular, note that

∥∥K (z(τ)

)
− z̄
∥∥2

P
≤∥∥z(τ) − z̄

∥∥2

P
. Now, we sum up over τ ∈ N[0, t] and derive

(t+ 1)
∥∥z(t+1) − z(t)

∥∥2

P

≤
∑t
τ=0

∥∥z(τ) − z(τ)

∥∥2

≤ β
1−β

∑t
τ=0

∥∥z(τ) − z̄
∥∥2

P
−
∥∥K (z(τ)

)
− z̄
∥∥2

P

≤ β
1−β

∥∥z(0) − z̄
∥∥2

P
.

Since β = 1 − ᾱ
3 , we have that

∥∥z(t+1) − z(t)

∥∥2

P
≤

1
t+1

(
3
ᾱ − 1

) ∥∥z(0) − z̄
∥∥2

P
, which completes the proof.

Finally, we note that the mapping T is nonexpansive ac-
cording to Lemma 5, hence several fixed point iterations have
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global convergence guarantee. The design choice αt := ᾱ ∈
(0, 1) for all t ∈ N is known as Krasnoselskij iteration [20,
Equation (18)]. Among other iterations, we mention the Mann
iteration [20, Equation (20)], which corresponds to choosing
the sequence (αt)t∈N such that αt ∈ [0, 1] for all t ∈ N,
limt→∞ αt =∞, and

∑∞
t=0 αt =∞, e.g. αt := 1/(t+ 1) for

all t ∈ N.

V. DISCUSSION

A. Features of the dynamic control scheme

One computational feature of the iteration in (∗) is that
it only requires one-to-all coordination between a central
computer and the decentralized, hence parallelizable, optimal
responses (xi?)Ni=1 in (4) of the agents, as summarized in Al-
gorithm 1. Each decentralized computation consists in solving
a finite dimensional strongly convex optimization problem,
for which efficient algorithms are available. Note that at each
iteration t only one vector in Rn is broadcast, independently on
the population size N , which can be arbitrarily large. Also note
that the coordinator needs access to the aggregate information
A only, not necessarily to the entire set of optimal responses.

The main distinctive feature of the proposed semi-
decentralized architecture is that the central coordinator can
decide on the step sizes (αt)

∞
t=0 and ε, on the gain K, and on

the stopping criterion for the iteration in (∗). Therefore, the
agents can simply behave as fully noncooperative, in the sense
that in addition to being self-interested, they do not have to
exchange information with each other, nor to agree on the step
sizes associated with the control signals, nor on the stopping
criterion. Each of these agreement points would be in fact
exposed to malicious agent behavior. Also, for the convergence
of the dynamic iterations, neither the central coordinator nor
the agents need to know the population size N .

In summary, Algorithm 1 is such that:
• the central coordinator keeps the information on the

chosen incentive mechanism and on the global coupling
constraint private;

◦ the noncooperative agents keep information on their cost
functions and local constraints private.

B. Generalized Nash aggregative games

The game setup in (1)–(2) can be related to the generalized
Nash equilibrium problem (GNEP) with best responses

xi ∈ arg min
yi∈Rn

ϕi
(
yi, x−i

)
s.t. yi ∈ X i ∩ Si

(
x−i

)
,

(16)

for all i ∈ N[1, N ], where

ϕi
(
yi, x−i

)
:= f i

(
yi
)

+
(
C 1

N

(
yi +

∑N
j 6=i x

j
))>

yi,

and the shared constraint set for agent i reads as

Si
(
x−i

)
:=
{
yi ∈ Rn | 1

N (yi +
∑N
j 6=i x

j) ∈ S
}
.

Due to the aggregative structure of both the cost functions and
the shared constraint, let us label such a game as generalized
Nash aggregative game.

Since there is one unique shared constraint that is convex,
the game is called jointly convex [22, §3.2]. Several methods
are available for solving a jointly convex GNEP, e.g. the
decomposition approach outlined in [44, Part II, §3, p. 166]
and summarized next. First, we shall assume that the shared
constraint 1

N

∑N
i=1 x

i ∈ S can be written as

g(x) := 1
N

∑N
i=1 g

i(xi) ≤ 0

for some convex, differentiable functions g and {gi}Ni=1. Then,
we introduce an additional agent that controls the dual variable
λ ∈ Rm associated with the shared constraint, and let each
agent minimize its own Lagrangian function. Specifically, we
derive the following (non-generalized) NEP among N + 1
agents with no coupling constraint [44, Part II, Equation (3.2)]:

xi ∈ arg min
yi∈X i

ϕi
(
yi, x−i

)
+ 1

N λ> gi
(
yi
)

λ ∈ arg min
ζ∈Rm

≥0

−ζ>g(x).
(17)

It then follows from [22, Theorem 8] that, under basic regular-
ity assumptions, an NE (x, λ) for the game without coupling
constraint (17) is such that x is a GNE for the game with
coupling constraint in (16). We note that in (17) the best
response for xi is similar to that in (2), while the best response
for λ has no clear counterpart in (∗).

For the computation of an NE for (17) several distributed
algorithms are available, see e.g. [44, Part II, §2], or follow
from solution algorithms for monotone variational inequalities
[21, §12]. We note that all such computational algorithms
require differentiable cost and coupling constraint functions
and that the so-called game (or pseudo gradient) mapping

F (x, λ) :=


∂x1ϕ1

(
x1, x−1

)
+ 1

N ∂g1
(
x1
)
λ

...
∂xNϕN

(
xN , x−N

)
+ 1

N ∂gN
(
xN
)
λ

−g(x)


for (17) is (strongly) monotone in some Hilbert space. How-
ever, monotonicity of the game mapping does not hold in
general [22, §5.2], not even with convex problem data. Even
in the aggregative game setup in (1)–(2), or in (16), Standing
Assumptions 1–2 do not imply that the game mapping is
monotone either.

We finally mention that, since C ∈ Sn, it can be shown that
the GNEP in (16) is a generalized potential game (GPG) [45,
Definition 2.1]. Thus, regularized Gauss–Siedel algorithms are
applicable for computing a GNE, e.g. [45, Algorithms 2, 3],
as monotonicity of the game mapping is not required.

C. Generalized projected dynamical systems

The problem to control the decentralized optimal responses
of the agents to an equilibrium in Section II can be interpreted
as the design of a dynamic output-feedback control law u(t) =
[C, K]κ(t, y(t)) for the following discrete-time system:

xi(t+ 1) = arg min
ξ∈X i

f i (ξ) + ξ>u(t), ∀i ∈ N[1, N ], (18a)

y(t) = 1
N

∑N
i=1 x

i(t). (18b)
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In particular, the control objective is to drive the output y to
some ȳ ∈ S and the states to an equilibrium x̄ ∈ (X 1× . . .×
XN ) such that, for all i ∈ N[1, N ], x̄i = arg minξ∈X i f i (ξ)+
ū>ξ, for some ū ∈ Rn.

Whenever the functions {f i}Ni=1 are strongly convex
quadratic, the arg min dynamics in (18a) read as projec-
tion dynamics. Precisely, if f i(ξ) := 1

2ξ
>Qiξ + ci

>
ξ for

some Qi � 0 and ci ∈ Rn, then we have xi(t + 1) =

projQ
i

X i(−Qi
−1

(ci + u(t))), where the projection operator
is defined as projQ

i

X i(·) := arg minξ∈X i ‖ξ − ·‖Qi . Conse-
quently, (18a) is a discrete-time projected dynamical system
[46], [47] where we wish to close the feedback loop with some
u(t) = [C, K]κ

(
t, 1
N

∑N
i=1 x

i(t)
)

. For general strongly
convex functions as in Standing Assumption 2, it follows from
Lemma 2 that in (18a) we have xi(t+ 1) = (∂f i)−1(−u(t)),
where (∂f i)−1 is strictly monotone and Lipschitz continu-
ous according to Lemma 1. Since the stability analysis for
projected dynamical systems builds upon the fact that the
projection onto a convex set is a firmly nonexpansive (hence
strictly monotone and 1-Lipschitz continuous) mapping, our
analysis based on monotone operator theory is applicable to
generalized projected dynamical systems with strongly convex
non-quadratic functions.

VI. APPLICATIONS

The considered aggregative game setup with coupling con-
straints is applicable to the dynamic management of nonco-
operative agents coupled in aggregative form. Applications
include network congestion control [14], demand response
in competitive markets [13] and demand side management
for prosumers in the smart grid, e.g. residential loads with
coupling constraints [3], [48], and smart homes with shared
renewable energy sources [49]. The common feature of all
these setups is in fact the presence of a population of competi-
tive agents with convex cost functions, convex local and shared
constraints, coupled together in aggregative form as in (1)–(2).
In the next subsections, we focus on two such applications.

A. Network congestion control with capacity constraints

We consider the problem faced by a network manager to
control the flow demands of a large set of noncooperative users
by dynamically pricing the network capacity [14].

General problem setup: The network is characterized by a
set of edges E := N[1, n], with capacity c := [c1; . . . ; cn] ∈
Rn>0. Each user i ∈ N[1, N ] aims at selecting its flow profile
xi ∈ Rn that minimizes its disutility function, that is coupled
in aggregative form to the flow profiles of all other agents.
Specifically, each user i aims at minimizing the cost function

f i
(
xi
)

+
(
c
(

1
N

∑N
j=1 x

j
)

+ λ
)>

xi, (19)

where [14, Sections III-IV] the function f i, that is continuous
and convex, represents the intrinsic disutility, the function
c(·) = [c1(·); . . . ; cn(·)]> represents the flow-unit delay cost
(disutility) experienced by the users over the edges, λ ∈ Rn

is the congestion price, that is, the penalty vector associated
with the coupling network-capacity constraint

0 ≤ 1
N

∑N
i=1 x

i ≤ c. (20)

Each user i also has a local constraint set X i that represents
its individual routing policy per flow unit.

Illustrative scenario with fixed routing policy: In the follow-
ing, we simulate the scenario illustrated in [14, Section IV.B],
where fixed routing policies are considered. Namely, each
agent i has a routing policy xi = aiξi, for some scalar ξi ≥ 0,
and some fixed vector ai ∈ Rn≥0 such that 1>ai = 1. As in
[14, Section IV.B], for each user i, we use the convex, non-
quadratic, intrinsic disutility function f i(ξi) := −20 ln(1+ξi).

Affine approximation of the delay cost: Next we derive an
affine approximation for the delay mapping c(·), based on the
function ce(·) = 1/(βe − ·) from [14], for each edge e ∈
N[1, N ]. We use the first order Taylor approximation around
the origin, hence in (19) we consider the delay cost mapping

c (·) :=
[
diag

((
1/β2

e

)n
e=1

)]
(·) + vec ((1/βe)

n
e=1) .

Note that the matrix diag
((

1/β2
e

)n
e=1

)
� 0 corresponds to

the matrix C in the cost-function structure in (3), hence any
matrix gain K � 0 satisfies the design choice 2.

Numerical simulations: We use some numerical parameters
from [14, Tables I, II], namely n = 5, β1 = . . . = βn = 20,
together with capacities c2 = . . . = c4 = 4, c1 = c5 = 2,
and stochastic vectors a1, . . . , aN sampled with uniform dis-
tribution. The local constraints are set as 0 ≤ xi ≤ 10 · 1
for all i ∈ N[1, N ]. We tune the gains of the dynamic control
law κ in (∗) as α = 1, K = I , and choose ε that satisfy
the design choice 3. We take as initial condition λ(0) = 0
and random σ(0), uniformly distributed within the coupling
constraint set. Finally, as convergence criteria, we consider that∥∥Θ
(
[σ(t);λ(t)]

)∥∥ must be less than certain tolerance values.
We run several numerical experiments, each with randomly
selected routing policies {ai}Ni=1 and initial condition σ(0).
Figure 2 shows the convergence scenario for 103 experiments,
with N = 104 agents. Figure 3 shows the convergence scenar-
ios parametric on the population size, where 102 experiments
are run for each value of N . We conclude that the population
size does not affect the convergence speed.

B. Charging coordination for plug-in electric vehicles with
transmission line constraints

We consider the problem to control the charging schedule of
a population of plug-in electric vehicles subject to transmission
line constraints [50], [51].

Problem setup: Each user i aims at charging its vehicle with
energy injections [xi1, x

i
2, . . . , x

i
n] =: xi, while minimizing its

individual disutility, subject to individual and shared charging
constraints, over a charging horizon that is here discretized
into n = 14 time intervals. The nominal values of the numer-
ical parameters defining the cost functions and the charging
constraints are taken from [52], and then are randomized as
in [12] to emulate the population variability. For each PEV
agent i ∈ N[1, N ], we consider the quadratic cost function
J i(xi, σ) = qi xi

>
xi+ci

>
xi+(a σ+b1n)>xi that represents
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)∥∥ to be
less than 10−2 (green), 10−3 (blue), 10−4 (red), as a function
of the population size N . The shaded areas represent the
number of iterations for the whole set of experiments; the
solid lines represent the average number of iterations.

the battery degradation cost qi xi>xi + ci
>
xi [52, Section

II.C], plus the electricity pricing (a (σ+ d) + b1n)>xi, where
a > 0 represents the inverse of the price elasticity of demand,
b > 0 represents the baseline price, and the vector d ∈ Rn the
normalized average inflexible demand.

Numerical parameters: With uniform distribution, we sam-
ple qi ∼ {0.004} + [−0.002, 0.002] and ci ∼ {0.075} +
[−0.02, 0.02]. Further, we consider the normalized charging
constraints xi ∈ X i := [0n, x

i]∩
{
y ∈ Rn | 1>n y = γi

}
, where

with uniform distribution we sample γi ∼ {0.8}+[−0.2, 0.2],
and the vector xi ∈ Rn is such that, for all j ∈ N[1, n],
xij ∼ {0, 0.25}, with xij = 0 (that is, no charging at the
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Fig. 4: Sum between the normalized average inflexible de-
mand d and the average among the charging strategies
1
N

∑N
i=1 x

i?(σ̄, λ̄) at the equilibrium. The shaded area rep-
resents the union over all the experiments.

time interval j) with probability 20%. In addition, for 20%
of the overall population, we consider the vehicle-to-grid
option, namely by substituting the lower and upper bounds
[0n, x

i] with [− 1
2x

i, xi]. Next, we scale the parameters in [52,
Section IV] with respect to the population size, and derive the
parameters a = 0.038, b = 0.06 and d empirically from [9,
Figure 1], [52, Figure 1].

Coupling constraints: We extend the setup in [12]
with time-varying transmission line constraints, i.e., 0n ≤
1
N

∑N
i=1 x

i ≤ c as in (20) [50, Equation (13)], [51, Equation
(1)], for some vector c ∈ Rn≥0. We illustrate the proposed al-
gorithm with capacities cj = 0.04 if j ∈ {1, 2, 12, 13, 14}, 0.1
otherwise, to represent more restrictive charging limitations
during the day time.

Numerical simulations: We tune the gains of the dynamic
control law in (∗) as α = 1, K = 0.05I , and then choose ε
according to the design choice 3. We take as initial condition
λ(0) = 0 and random σ(0), uniformly distributed within
the shared constraint set. Finally, as convergence criteria
we consider that

∥∥Θ
(
[σ(t);λ(t)]

)∥∥ shall be less than certain
tolerance values. We run several numerical experiments, each
with the mentioned randomly selected parameters and initial
condition. Figure 4 shows the sum between the normalized
average inflexible demand and the average among the charging
strategies at the equilibrium, i.e., the optimal responses in (4),
for 102 experiments with N = 104 agents; Figure 5 shows
the convergence scenario for 103 experiments. Figure 6 shows
the convergence scenarios parametric on the population size,
where 102 experiments are run for each value of N . Also for
this application, we conclude that the population size does not
affect the convergence speed of the proposed algorithm.

VII. CONCLUSION AND OUTLOOK

We have addressed the problem to control a population
of competitive agents, with convex cost functions coupled
together via the average population state, convex local and
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of the population size N . The shaded areas represent the
number of iterations for the whole set of the experiments;
the solid lines represent the average number of iterations.

coupling constraints, towards an aggregative equilibrium. Our
technical results allow us to design a model-free dynamic
control law with global convergence guarantee, with no as-
sumption on the problem data, other than strong convexity
and compactness. The numerical simulations show that the
proposed algorithm achieves an aggregative equilibrium within
a reasonable number of iterations independently on the popu-
lation size.

This paper can be extended in several directions, including
those outlined next.

• Stochasticity: We have not considered agents with proba-
bilistic constraints. Such an extension would be valuable

for the analysis and control of decentralized optimal deci-
sions under stochastic uncertainty. One possible approach
is to solve a deterministic approximation of the stochastic
game, and then conclude about the computed solution in
probabilistic terms.

• Dynamic games: We have considered agents that update
their decision vector based on the signals received from
the coordinator, but not on their decision history. More
generally, it would be valuable to analyze the dynamics
of agents with memory and cumulative cost functions.

• Asynchronous updates: A framework with agents that
update their strategies asynchronously would be more
general and practically relevant in networked applica-
tions.

• Optimal parameter selection: We have presented feasible
design choices for the control parameters. To maximize
the convergence speed, the parameters shall be appro-
priately selected, e.g. optimally with respect to some
convergence rate estimate.

The connection with multi-agent dynamics in cooperative
optimization is currently an active area of research [53], [54].

APPENDIX

A. Proof of Proposition 1
For all σ :=

[
σ1; . . . ;σN

]
∈ RnN , we consider the

optimization problem

P(σ) :

 min
y0,y

J̃0(y0) +
∑N
i=1 J̃

i
(
yi,σ

)
s.t. K

(
N y0 −

∑N
j=1 y

j
)

= 0
(21)

where y0 ∈ Rn, y := [y1; . . . ; yN ] ∈ RnN , J̃0 : Rn → R is a
strongly convex function such that dom(J̃0) = S, and for all
i ∈ N[1, N ], J̃ i : Rn × RnN → R is defined as J̃ i

(
yi,σ

)
:=

J i(yi, 1
N

∑N
j=1 σ

j , 0).
Let

[
x?0(σ); x?(σ)

]
=
[
x?0(σ);x?1(σ); . . . ; x?N (σ)

]
be

the optimizer of P(σ) in (21). Since the mapping x?(·) takes
values in the compact set X := X 1 × . . . × XN and is
(Lipschitz) continuous by Lemma 2, it has at least one fixed
point [55, Theorem 4.1.5 (b)]. In the remainder of the proof,
let σ̄ = x?(σ̄) ∈ X be a fixed point of x?.

Since P(σ̄) from (21) has a separable convex cost function
and the linear coupling constraint y0 = 1

N

∑N
i=1 y

i, see [56,
Equation 2.1], it can be solved via the dual decomposition
method [56, Section 2]. Specifically, the Lagrangian function

L (y, λ) := J̃(y0) +
∑N
i=1{J̃ i

(
yi, σ̄

)
}

+ λ>K
(
−Ny0 +

∑N
j=1 y

j
)

= J̃(y0)−Nλ>Ky0 +
∑N
i=1 J̃

i
(
yi, σ̄

)
+ λ>Kyi

is separable, therefore, due to Standing Assumption 1 [41,
Section 5.2.3], the iteration [56, Equations 2.4, 2.5]

x0
(t+1) := arg min

y∈Rn

J̃0 (y)−Nλ>(t)Ky, (22a)

xi(t+1) := arg min
y∈Rn

J̃ i (y, σ̄) + λ>(t)Ky, ∀i ∈ N[1, N ],

(22b)

λ(t+1) :=λ(t) + εtK
(
−Nx0

(t+1) +
∑N
i=1 x

i
(t+1)

)
(22c)
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converges to
(
x?0(σ̄),x?(σ̄), λ?σ̄

)
, for an opportune choice

of the sequence (εt)
∞
t=0, where

[
x? 0(σ̄); x?(σ̄)

]
denotes the

optimal solution to P(σ̄). Moreover, by Slater’s constraint
qualification in Standing Assumption 1, there exists a unique
optimal dual multiplier λ?σ̄ ∈ Rn [41, Section 5.2.3, p. 227].

We now define
[
x̄1 ; . . . ; x̄N

]
:= x?(σ̄) and λ̄ := λ?σ̄ ,

so that at convergence (i.e., as t → ∞) by (22b) we have
x̄i = arg miny∈X i J i

(
y, 1

N

∑
j=1 x̄

j , λ̄
)

for all i ∈ N[1, N ]

by Equation (22b), and 1
N

∑N
i=1 x̄

i = x0?(σ̄) ∈ S by (22c).
Thus, by Definition 1, the pair

(
{x̄i}Ni=1, λ̄

)
is an aggregative

equilibrium for the game in (2) with shared constraint in (1).
�

B. Proof of Theorem 1

Let, for all i ∈ N[1, N ], x̄i := xi?(Cσ̄ + Kλ̄) as in (4),
where σ̄ := 1

N

∑N
i=1 x̄

i and λ̄ is fixed. Since, for all i, the
function f i is strongly convex, let N̄ ∈ N be such that the
function f̃ i := f i+ 1

2 ‖·‖
2
(C+C>)/2 is strongly convex as well,

for all i and for all N ≥ N̄ . Thus, we define the single-valued
best response

x̄i,Nbest := arg min
y∈X i

J i
(
y, 1

N y + 1
N

∑N
j 6=i x̄

j , λ̄
)
.

It follows from Lemma 2 that x̄i =
(
∂f i
)−1 (−Cσ̄ −Kλ̄),

and x̄i,Nbest =
(
∂f̃ i
)−1 (

−C(σ̄ − 1
N x̄

i)−Kλ̄
)
. Next, we ex-

ploit the following facts:
(
∂f i
)−1

is (1/`)-Lipschitz contin-
uous by Lemma 1; rge((∂f̃ i)−1) ⊆ X i ⊆ X and cX :=

maxx∈X ‖x‖ <∞;
∥∥∥∂f i − ∂f̃ i∥∥∥ ≤ 1

N

∥∥(C + C>)/2
∥∥:∥∥∥(∂f i)−1 − (∂f̃ i)−1

∥∥∥
=
∥∥∥((∂f i)−1 − (∂f̃ i)−1

)
◦ (∂f̃ i) ◦ (∂f̃ i)−1

∥∥∥
≤
∥∥∥(∂f i)−1 ◦ ∂f̃ i − Id

∥∥∥ · ∥∥∥(∂f̃ i)−1
∥∥∥

≤ cX
∥∥∥(∂f i)−1 ◦ (∂f̃ i)− (∂f i)−1 ◦ (∂f i)

∥∥∥
≤ cX

`

∥∥∥∂f̃ i − ∂f i∥∥∥
≤ 1

N
cX
`

∥∥(C + C>)/2
∥∥ .

To conclude the proof, we introduce the shorthand notation
v := −Cσ̄ − Kλ̄ and vi := −C(σ̄ − 1

N x̄
i) − Kλ̄, where∥∥v − vi∥∥ =

∥∥ 1
NCx̄

i
∥∥ ≤ 1

N ‖C‖ cX . For all i, we derive that∥∥∥x̄i − x̄i,Nbest

∥∥∥ =
∥∥∥(∂f i)−1(v)− (∂f̃ i)−1(vi)

∥∥∥
≤
∥∥(∂f i)−1 (v)− (∂f i)−1

(
vi
)∥∥

+
∥∥∥(∂f i)−1 (

vi
)
− (∂f̃)−1

(
vi
)∥∥∥

≤ c/N ,

where c := 3 ‖C‖ cX /`. �

Remark 2: Theorem 1 immediately implies that the differ-
ence between the optimal cost at an aggregative equilibrium
and that at a Nash equilibrium vanishes in the limit of

infinite population size, that is, whenever
(
(x̄i)Ni=1, λ̄

)
is an

aggregative equilibrium, we have that

lim
N→∞

max
i∈N[1,N ]

∣∣∣J i (x̄i, 1
N

∑N
j=1 x̄

j , λ̄
)

− inf
y∈X i

J i
(
y, 1

N

(
y +

∑N
j 6=i x̄

j
)
, λ̄
)∣∣∣∣ = 0.

In addition, if the functions {f i}Ni=1 are Lipschitz contin-
uous, then {J i}Ni=1 in (2) are Lipschitz continuous as well,
hence Theorem 1 implies that there exists d ∈ R>0 such that

max
i∈N[1,N ]

∣∣∣J i (x̄i, 1
N

∑N
j=1 x̄

j , λ̄
)

− inf
y∈X i

J i
(
y, 1

N

(
y +

∑N
j 6=i x̄

j
)
, λ̄
)∣∣∣∣ ≤ d/N

for all N ∈ N. �

REFERENCES

[1] A.-H. Mohsenian-Rad, V. Wong, J. Jatskevich, R. Schober, and
A. Leon-Garcia, “Autonomous demand-side management based on
game-theoretic energy consumption scheduling for the future smart
grid,” IEEE Trans. on Smart Grid, vol. 1, no. 3, pp. 320–331, 2010.

[2] W. Saad, Z. Han, H. Poor, and T. Başar, “Game theoretic methods for
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