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Iterated posterior linearisation smoother
Ángel F. García-Fernández, Lennart Svensson, Simo Särkkä

Abstract—This paper considers the problem of Bayesian
smoothing in nonlinear state-space models with additive noise
using Gaussian approximations. Sigma-point approximations to
the general Gaussian Rauch–Tung–Striebel smoother are widely
used methods to tackle this problem. These algorithms perform
statistical linear regression (SLR) of the nonlinear functions
considering only the previous measurements. We argue that SLR
should be done taking all measurements into account. We propose
the iterated posterior linearisation smoother (IPLS), which is an
iterated algorithm that performs SLR of the nonlinear func-
tions with respect to the current posterior approximation. The
algorithm is demonstrated to outperform conventional Gaussian
nonlinear smoothers in two numerical examples.

Index Terms—Bayesian smoothing, Rauch–Tung–Striebel
smoothing, iterated smoothing, sigma-points, statistical linear
regression.

I. INTRODUCTION

Smoothing consists of estimating past states of a process
that evolves with time from a sequence of noisy measurements
[1]. It has applications in different fields, such as target
tracking, audio signal processing or navigation [2]–[4]. In
the Bayesian framework, all information of interest about the
process is given by the probability density function (PDF) of
the sequence of states given all measurements. We refer to
this PDF as the posterior PDF. From the posterior PDF, we
can also obtain the marginal PDF of the state at a certain time
step, which contains all information about the process at this
particular time step.

If the system is linear and Gaussian, the posterior PDF ad-
mits a closed-form Gaussian expression and marginals can be
computed by the Rauch–Tung–Striebel (RTS) or the two-filter
smoothers [5], [6]. In contrast, if the system is nonlinear/non-
Gaussian, there is no closed-form equation and we need
approximations. In a general system, we can use sequential
Monte Carlo methods for this purpose [7]. If the posterior PDF
is unimodal, Gaussian PDFs can instead be used to obtain a
relatively accurate approximation to the posterior with a much
lower computational complexity than sequential Monte Carlo
methods. This is the focus of this paper in which we propose
an iterative Gaussian smoother for systems with additive noise.

General Gaussian RTS smoothers are a family of algorithms
that obtain Gaussian approximations of the marginals by
first performing filtering and then smoothing [1], [8]. While
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filtering, these algorithms calculate/approximate the same mo-
ments as the (non-linear) Kalman filter (KF) [9] plus the
cross-covariance between the states at the current and next
time steps. Based on these moments and the filtering PDFs,
we can obtain the marginal posterior PDFs by a backward
recursion. Depending on the method for approximating the
moments, we obtain different smoothers, for instance, ex-
tended RTS smoother (analytical linearisation) [1], unscented
RTS smoother (unscented transform) [10] or cubature RTS
smoother (cubature rule) [11].

As we indicate in this paper, Gaussian RTS smoothers
implicitly perform an enabling approximation: all nonlinear
functions are approximated by an affine function plus Gaussian
noise. Once this enabling approximation is made, we obtain
the PDFs of interest in closed-form. Sigma-point Gaussian
RTS smoothers perform the enabling approximation while
filtering using statistical linear regression (SLR). Given a
function and a PDF, SLR provides the affine function that
minimises the mean square error and the covariance matrix
of the linearisation error [12]. However, the above-mentioned
smoothers perform SLR with respect to PDFs that do not take
into account future measurements. The fact that all available
measurements are not employed in the enabling approximation
indicates that performance can be improved.

One algorithm that takes into account all measurements in
the enabling approximation is the iterated extended Kalman
smoother (IEKS) [13]. It uses analytical linearisation of the
nonlinear functions at the maximum a posteriori (MAP) es-
timate of all states of the process, obtained by a Gauss–
Newton method. Consequently, it does not use SLR and sets
the Gaussian noise of the enabling approximation to zero,
which is not necessary. Moreover, IEKS requires the gradients
of the functions and makes use of the extended KF (EKF) or
iterated EKF [14], which are usually outperformed by sigma-
point Kalman filters [9]. Another iterated algorithm that can be
used for smoothing is expectation-propagation [15]. However,
the integrals needed in expectation-propagation for nonlinear
systems cannot be accurately approximated by sigma-points
and Monte Carlo methods should be used, which we aim to
avoid due to their higher computational burden.

In this paper, we develop a Gaussian smoother that selects
the enabling approximation by performing SLR of the nonlin-
ear functions with respect to the posterior PDF, which depends
on all measurements. By doing so, we combine the strengths of
the approximation techniques used in sigma-point Gaussian fil-
ters with the ability to incorporate all the available information,
as in iterated algorithms. The proposed algorithm can be seen
as an extension of the ideas of the posterior linearisation filter
(PLF) [16] to a smoothing context. The resulting posterior
linearisation smoother (PLS) is intractable so, we approximate



it by the iterated PLS (IPLS), which performs iterated SLR
with respect to the latest posterior approximation. This idea is
similar to the iterated approximation of the PLF: the iterated
PLF (IPLF) [16]. An important difference between the IPLF
and IPLS is that the IPLS relinearises both the dynamic and
measurement functions whereas the IPLF only relinerisases
the measurement functions. As the IPLF, the IPLS can be
seen, under certain approximations, as a minimisation of the
Kullback–Leibler divergence (KLD) of the joint density of the
states and the variables obtained by passing the states through
the dynamic and measurement functions.

Interestingly, the IPLS also differs from RTS smoothers be-
cause the approximation of the filtering posterior can improve
with the iterations. Therefore, we can use the ideas behind the
IPLS to design a new filter: the L-scan IPLF. It consists of
relinearising the dynamic and measurement functions in the
last L time steps with the objective of improving the filtering
posterior approximation.

The remainder of the paper is organised as follows. The
problem formulation and some background work are given
in Section II. Section III describes the PLS, the IPLS and
the L-scan IPLF. A derivation of the IPLS based on an
approximate KLD minimisation is provided in Section IV.
Simulation results are shown in Section V. Finally, conclusions
are drawn in Section VI.

II. PROBLEM FORMULATION

We seek to estimate the state sequence x0:N = (x0, . . . , xN )
of a process given a sequence of N measurements z1:N , where
xk ∈ Rnx and zk ∈ Rnz . The relations between the states at
different time steps and the measurements are given by the
dynamic and measurement equations

xk+1 = fk (xk) + qk (1)
zk = hk (xk) + rk (2)

where fk (·) and hk (·) are possibly nonlinear functions, qk and
rk are independent zero-mean Gausian noises with covariance
matrices Qk and Rk, respectively. The prior PDF of x0 is
p (x0) = N (x0;x0, P0), which denotes a Gaussian PDF
evaluated at x0 with mean x0 and covariance matrix P0.

After observing z1:N , all information of interest about the
sequence x0:N of states is given by the posterior PDF

p (x0:N | z1:N ) ∝
N∏

k=1

[p (zk | xk) p (xk | xk−1)] p (x0) (3)

where ∝ means “is proportional to” and, according to (1)-(2),

p (xk | xk−1) = N (xk; fk−1 (xk−1) , Qk−1)

p (zk | xk) = N (zk;hk (xk) , Rk) .

In practice, the posterior does not admit a closed-form
expression so it must be approximated. In this paper, we seek
the best possible enabling approximations

fk (xk) ≈ Fkxk + ak + ek (4)
hk (xk) ≈ Hkxk + bk + gk (5)

where Fk ∈ Rnx×nx , ak ∈ Rnx , Hk ∈ Rnz×nx , bk ∈ Rnz

and, ek ∈ Rnx and gk ∈ Rnz , which are zero-mean in-
dependent Gaussian noises with covariance matrices Λk and
Ωk, respectively. That is, nonlinear dynamic and measurement
functions are approximated as affine functions with additive
Gaussian noise, where the noise can be viewed as a term
that captures approximation errors. This kind of approximation
is commonly used in the literature, as will be explained in
Section II-B.

We denote the parameters of the enabling approximation by

Θ = (F0:N−1, a0:N−1,Λ0:N−1, H1:N , b1:N ,Ω1:N ) . (6)

Then, once the enabling approximation in (4)-(5) is performed,
the posterior approximation becomes Gaussian with PDF

qΘ (x0:N | z1:N ) ∝
N∏

k=1

[
qΘ (zk | xk) qΘ (xk | xk−1)

]
p (x0)

(7)
where

qΘ (xk | xk−1) = N (xk;Fk−1xk−1 + ak−1,Λk−1 +Qk−1)

qΘ (zk | xk) = N (zk;Hkxk + bk,Ωk +Rk) .

We can also compute the marginal PDFs

qΘ (xk | z1:N ) = N (xk;uk,Wk) (8)

for k ∈ {0, ..., N} in closed-form using the affine RTS
smoother, which can be derived via the general Gaussian
smoother equations in [1], or an affine two-filter smoother. The
resulting steps for the forward-backward case are provided in
Algorithm 1.

It is important to realise that the accuracy of the posterior
approximation only depends on how we choose Θ. We are
interested in computing posterior moments so, ideally, we
want qΘ (x0:N | z1:N ) to match the first two moments of
p (x0:N | z1:N ). The objective of this paper is to develop
a computationally efficient technique to select Θ in a way
that improves widely-used choices of Θ in the literature and
compute marginal distributions based on it. First, we proceed
to review statistical linear regression and previous work on the
selection of Θ.

Algorithm 1 Affine RTS smoother
Input: Prior moments x0, P0 and SLR parameter Θ.
Output: Posterior moments uk, Wk for k = {0, . . . , N}.

for k = 1 to N do . Filtering
- x−

k = Fk−1xk−1 + ak−1. . KF prediction
- P−

k = Fk−1Pk−1F
T
k−1 + Λk−1 + Qk−1.

- zk = Hkx
−
k + bk. . KF update

- Sk = HkP
−
k HT

k + Ωk + Rk.
- Ψk = P−

k HT
k .

- xk = x−
k + ΨkS

−1
k (zk − zk).

- Pk = P−
k −ΨkS

−1
k ΨT

k .
end for
- uN = xN and WN = PN . . Smoothing
for k = N − 1 to 0 do

- Gk = PkF
T
k

(
P−
k+1

)−1.
- uk = xk + Gk

(
uk+1 − x−

k+1

)
.

- Wk = Pk + Gk

(
Wk+1 − P−

k+1

)
GT

k .
end for



A. Statistical linear regression

In this section we describe SLR, which plays an important
role in this paper.

Definition 1. Given a function h (·) and a PDF p (·), whose
first two moments are x and P , the SLR of h (·) with respect
to p (·) is given by [12]

H+ = ΨTP−1 (9)
b+ = z −H+x (10)

Ω+ = Φ−H+P
(
H+
)T

(11)

where

z =

ˆ
h (x) p (x) dx (12)

Ψ =

ˆ
(x− x) (h (x)− z)T p (x) dx (13)

Φ =

ˆ
(h (x)− z) (h (x)− z)T p (x) dx. (14)

The approximation h (x) ≈ H+x + b+ represents the best
affine approximation of h(·) in the sense of minimising its
mean square error (MSE) with respect to p (·) and Ω+ is its
MSE matrix [12]:(
H+, b+

)
= arg min

(H,b)

E
[
(h (x)−Hx− b)T (h(x)−Hx− b)

]
(15)

Ω+ = E
[(
h(x)−H+x− b+

) (
h (x)−H+x− b+

)T ]
(16)

where the expected values are taken with respect to p (·).
In practice, the required moments of SLR (12)-(14) cannot

be computed in closed-form in most non-linear cases. Never-
theless, we can approximate them using sigma-point methods
such as the unscented transform [9]. We first select m sigma-
points X1, ...,Xm and weights ω1, ..., ωm, which match the
moments x and P , according to a suitable sigma-point method
[1], [9], [17]. Then, the SLR is performed as indicated in
Algorithm 2.

Algorithm 2 Statistical linear regression using sigma-points
Input: Function h (·) and first two moments x, P of a PDF p (·).
Output: SLR parameters

(
H+, b+,Ω+

)
.

- Select m sigma-points X1, . . . ,Xm and weights ω1, . . . , ωm

according to x and P .
- Transform the sigma-points Zj = h (Xj) j = 1, . . . ,m.
- Approximate the moments (12)-(14) as

z ≈
m∑

j=1

ωjZj

Ψ ≈
m∑

j=1

ωj (Xj − x) (Zj − z)T

Φ ≈
m∑

j=1

ωj (Zj − z) (Zj − z)T

- Obtain H+, b+,Ω+ from (9)-(11).

B. Previous work

In this section, we briefly describe how popular Gaussian
smoothers from the literature can be viewed as different
strategies to select the enabling approximation in (4)-(5). Let

qΘk−1 (xk | z1:k−1) = N
(
xk;x−k , P

−
k

)
qΘk (xk | z1:k) = N (xk;xk, Pk)

represent the predicted and filtering densities at time k where
Θk represents the parameters of the enabling approximations
up to time step k.

If we select Ωk = 0, Λk = 0, and (Hk, bk) and (Fk, ak) by
analytical linearisation at the predicted mean x−k and filtered
mean xk, respectively, the resulting algorithm is the extended
RTS smoother [1]. If we select (Hk, bk,Ωk) and (Fk, ak,Λk)
by SLR with respect to the predicted density and the filtering
density, respectively, the resulting algorithm is the (nonlinear)
RTS smoother. If these SLRs are approximated using sigma-
points, we obtain the sigma-point RTS smoothers such as
unscented, cubature or Gauss–Hermite RTS smoothers [1], [8],
[10], [18]. It should be noted that the previous linearisations
are performed while filtering without taking into account
current and future measurements. If we select Ωk = 0 Λk = 0,
and (Hk, bk) and (Fk, ak) by analytical linearisation at the
MAP estimate of x0:N calculated by a Gauss–Newton method,
we obtain the IEKS [13].

III. ITERATED POSTERIOR LINEARISATION SMOOTHER

In this section we explain the posterior linearisation
smoother (PLS). Then, we present the iterated PLS (IPLS),
which will be derived using KLD minimisation in Section IV,
and analyse its convergence. As the IPLS can also be used to
improve filtering, we also provide an efficient adaptation of
the smoother to this case.

A. Posterior linearisation smoother

We have seen in the previous section that many smoothers
use SLR in order to select the enabling approximation (4)-
(5). However, these algorithms select the SLR without taking
into account all measurements. This is clearly a suboptimal
approach as we are not considering all available information
to select the enabling approximation.

In this paper, we extend the ideas behind the PLF [16]
to smoothing. In the PLF, the SLR of the measurement
function is performed with respect to the filtering posterior
so that we take into account the current measurement in
the enabling approximation. The generalisation of this idea
to smoothing is straightforward and consists of selecting the
enabling approximation (4)-(5) by SLR of the functions with
respect to the posterior PDF, which is given by (3). The
resulting algorithm, the posterior linearisation smoother (PLS),
is intractable because it requires knowledge of the posterior
to approximate the posterior. Nevertheless, we can design
an iterative procedure to approximate the PLS as will be
explained next.



B. Forward-backward IPLS

The IPLS is based on carrying out iterated SLRs. That
is, since we do not have access to the posterior to perform
the SLRs of the PLS, we perform SLR of the nonlinear
functions with respect to the best available approximation of
the posterior. At the end of each iteration, we expect to obtain
an improved approximation of the posterior, which means that
can later be used to obtain an even better approximation to the
posterior.

The IPLS creates a sequence Θi i ∈ N of enabling
approximation parameters such that the objective is to im-
prove the posterior approximation at each iteration. As the
nonlinear functions only depend on the state at a given time,
the SLRs are performed with respect to the marginals of
qΘi

(x0:N |z1:N ), which are denoted as

qΘi

(xk|z1:N ) = N
(
xk;uik,W

i
k

)
, k ∈ {0, . . . , N} .

Given Θi, these marginals can be computed via forward-
backward smoothing, see Algorithm 1, or two-filter smoothing.
The steps of the forward-backward IPLS are summarised
in Algorithm 3, where we use J to denote the number of
iterations and SLR

(
f (·) , uik,W i

k

)
stands for SLR of f (·)

with respect to N
(
·;uik,W i

k

)
.

Algorithm 3 Forward-backward IPLS
Input: Prior moments u1

0 = x0, W 1
0 = P0.

Output: Posterior moments uJ
k , W J

k for k ∈ {0, ..., N}.
- Initialisation: Compute u1

k, W 1
k for k ∈ {0, . . . , N} by a sigma-

point smoother.
for i = 1 to J − 1 do

for k = 0 to N do . We use Algorithm 2
-
(
F i+1
k , ai+1

k ,Λi+1
k

)
= SLR

(
fk (·) , ui

k,W
i
k

)
.

-
(
Hi+1

k , bi+1
k ,Ωi+1

k

)
= SLR

(
hk (·) , ui

k,W
i
k

)
.

end for
- Obtain ui+1

k , W i+1
k for k ∈ {0, ..., N} using Algorithm 1

with parameters
(
F i+1
k , ai+1

k ,Λi+1
k

)
and

(
Hi+1

k , bi+1
k ,Ωi+1

k

)
.

end for

C. Convergence

If the moments (12)-(14) are approximated by analytical
linearisation rather than SLR, the IPLS becomes the IEKS,
which is a Gauss–Newton method. In this case, the algorithm
converges locally, but in general it is not guaranteed to
converge [13]. In general, we provide the following theorem:

Theorem 2 (Local convergence of the IPLS). The IPLS
converges if it is initiated sufficiently close to the fixed point
and the eigenvalues of matrix Ξ, which is given by (27), are
lower than one.

Theorem 2 is proved in the Appendix. The algorithm
converges if the initial point of the iteration is sufficiently
close to the fixed point and the nonlinearities of the system
are sufficiently mild, as indicated by the eigenvalues of Ξ.
If the initial point of the iteration is not sufficiently close to
the fixed point, the algorithm could diverge or converge to
a bad fixed point, which corresponds to a PDF that does not
represent the posterior accurately. We also want to remark that
quite similar conditions are obtained for the convergence of the

Gauss–Newton method [19, Eq. (6.1.11)], which corresponds
to the IEKS.

D. Use in filtering
In this section, we present a modification of the IPLS to

tackle filtering problems, which we call the L-scan IPLF.
Popular sigma-point smoothers such as the ones mentioned in
Section II-B do not improve filtering performance. In contrast,
the IPLS can also improve the filtering due to the iterated
SLRs of all nonlinear functions. As a result, even if we are
only interested in the filtering solution, we can also use the
IPLS.

In filtering, N increases and the objective is to approx-
imate the filtering density p (xN | z1:N ) per each value of
N [1]. We can run the IPLS every time we receive a new
measurement. However, this is a computationally inefficient
option as the marginals posteriors that correspond to a long
time ago probably remain unaltered by a measurement at the
current time. Instead, we can set a parameter L ∈ N so that
we only relinearise the nonlinear dynamic and measurement
functions in the window that comprises the last L time steps.
Assuming that, at time step N , we have the filtering posterior
approximations

qΘ (xk | z1:k) = N (xk;xk, Pk)

and the SLRs (Fk−1, ak−1,Λk−1) and (Hk, bk,Ωk) for k ∈
{N−, . . . , N}, where N− = max (1, N − L+ 1), the objec-
tive is to approximate the filtering posterior at time N + 1
using the IPLS in the last L time steps. In order to be
able to continue with the filtering recursion, we also need to
provide the filtering posterior approximations and SLRs for
k ∈ {N− + 1, . . . , N + 1}.

One step of the filtering recursion using the L-scan IPLF is
described in Algorithm 4. It should be noted that the 1-scan
IPLF corresponds to the IPLF [16]. In this case, the recursion
simplifies as we do not need to iterate on the prediction step
and relinearise dynamic functions.

Algorithm 4 Prediction and update step for the L-scan IPLF
Input: Measurement zk+1, filtering moments xk, P k and SLRs
(Fj−1, aj−1,Λj−1) and (Hj , bj ,Ωj) for j ∈

{
N−, . . . , N

}
.

Output: Filtering moments xk, P k and SLRs (Fj−1, aj−1,Λj−1)
and (Hj , bj ,Ωj) for j ∈

{
N− + 1, . . . , N + 1

}
.

- Let K =
{
N− + 1, . . . , N + 1

}
.

- Use a sigma-point filter prediction to obtain x−
N+1, P

−
N+1 and

(FN , aN ,ΛN ).
- Use a sigma-point filter update to obtain xN+1, PN+1 and
(HN+1, bN+1,ΩN+1).
- Run smoother to obtain uk, Wk for k ∈ K. . First iteration
- Apply KF prediction to get x−

N−+1
, P−

N−+1
based on

(FN− , aN− ,ΛN−) and xN− , PN− . . Prior at the beginning of
the window
for i = 2 to J do

for each k ∈ K do
- (Fk, ak,Λk) = SLR (fk (·) , uk,Wk).
- (Hk, bk,Ωk) = SLR (hk (·) , uk,Wk).

end for
- Run KF with parameters (Fk, ak,Λk) and (Hk, bk,Ωk) and

prior x−
N−+1

, P−
N−+1

to recalculate xk, P k for k ∈ K.
- Recalculate smoothing moments uk, Wk for k ∈ K.

end for



IV. DERIVATION OF THE IPLS USING THE KLD

In this section, we derive the IPLS as an iterated approx-
imate KLD minimisation. To put the derivation into context,
we first present the ideal smoother solution, the nonlinear RTS
smoother and the PLS from a KLD perspective.

A. Ideal smoother

As mentioned in Section II, ideally, we want to select Θ
such that qΘ (x0:N | z1:N ) matches the first two moments
of p (x0:N | z1:N ). This selection can be seen as the KLD
minimisation [20]

arg min
Θ

D
(
p (x0:N |z1:N )

∥∥qΘ (x0:N |z1:N )
)

= arg min
Θ

ˆ
p (x0:N | z1:N ) log

p (x0:N | z1:N )

qΘ (x0:N | z1:N )
dx0:N .

(17)

This minimisation could be solved approximately via Monte
Carlo methods but they are computationally expensive in
relation to the IPLS.

B. Nonlinear RTS smoother

In the nonlinear RTS smoother, the nonlinear functions are
linearised once while filtering without considering current and
future measurements in the enabling approximations [8]. At
time step k, the enabling approximation (5) for the measure-
ment function is selected by minimising the following joint
KLD of PDFs on the state and the measurement at the current
time step:(
H+

k , b
+
k ,Ω

+
k

)
= arg min

(Hk,bk,Ωk)

D
(
qΘk−1 (xk | z1:k−1) p (zk | xk)∥∥qΘk−1 (xk | z1:k−1) qHk,bk,Ωk (zk | xk)

)
.

(18)

The solution is given by SLR of hk (·) with respect to
qΘk−1 (xk | z1:k−1). The linearisation for the dynamic mea-
surement is obtained by minimising (18) but substituting zk
by xk+1, Θk−1 by Θk and z1:k−1 by z1:k. The solution is
given by SLR of fk (·) with respect to qΘk (xk | z1:k). We
want to highlight that, in contrast to the ideal solution, which
is given by (17), the nonlinear RTS smoother does not consider
all states and measurements in the KLD minimisation.

C. PLS

In this section, we explain the PLS from a KLD point
of view, which will be useful to derive the iterated PLF in
Section IV-D. The general idea is that we want to see how
well we approximate the joint posterior density of the states
and the states transformed by the nonlinear functions using
the KLD. This is of interest as the enabling approximation
(4)-(5) implicitly provides us with an approximation to these
functions. To do so, we consider the auxiliary variables

vk = fk (xk) + εk

yk = hk (xk) + ξk

where εk and ξk are independent zero-mean Gaussian noises
with covariance matrix βInx and βInz , respectively, Inz is
the identity matrix of size nz and β > 0 is a parameter to
ensure that vk and yk have a density given xk and we can
therefore use the KLD. As β → 0, then, vk → fk (xk) and
yk → hk (xk). Therefore, the joint posterior approximation
qΘ (x0:T , v0:T−1, y1:T | z1:T ), which can be obtained analyti-
cally once the enabling approximation (4)-(5) is performed, in
relation to the true joint posterior p (x0:N , v0:N−1, y1:N |z1:N )
tells us how well we have approximated the distribution over
the state transformed by the functions as well as the state.

The true joint PDF of the variables (x0:N , v0:N−1, y1:N )
given z1:N factorises as

p (x0:N , v0:N−1, y1:N | z1:N )

= p (x0:N | z1:N )

N−1∏
k=0

p (vk | xk)

N∏
k=1

p (yk | xk) . (19)

We make the approximation
• AP1

qΘ (x0:T , v0:T−1, y1:T | z1:T )

≈ qΘ (x0:T | z1:T )

N−1∏
k=0

qΘ (vk | xk)

N∏
k=1

qΘ (yk | xk)

(20)

with

qΘ (vk | xk) =N (vk;Fkxk + ak,Λk + βInx
)

qΘ (yk | xk) =N (yk;Hkxk + bk,Ωk + βInz
) .

If Λk = 0 and Ωk = 0 for all k then we have an equality in
(20) so Approximation AP1 is accurate for low nonlinearities.
This kind of approximation is analysed more thoroughly for
the filtering case in [16].

We would like to select Θ that minimises the KLD from
the true posterior (19) to its approximation (20)

arg min
Θ

[
D
(
p (x0:N | z1:N )

∥∥qΘ (x0:N | z1:N )
)

+

ˆ
p (x0:N | z1:N )D (p (v0:N−1, y1:N | x0:N )∥∥qΘ (v0:N−1, y1:N | x0:N )

)
dx0:N

]
. (21)

Instead, the PLS selects Θ that minimises the second term in
(21) as indicated by the following lemma.

Lemma 3. The solution to

Θ∗ =arg min
Θ

ˆ
p (x0:N | z1:N )D (p (v0:N−1, y1:N | x0:N )∥∥qΘ (v0:N−1, y1:N | x0:N )

)
dx0:N (22)

under Approximation AP1 is given by SLR of the measure-
ment and dynamic functions with respect to the posterior
p (x0:N | z1:N ).

Lemma 3 can be proved by analogy with the filtering case
[16]. It should be noted that the SLRs of the measurement and
dynamic functions at time step k only depend on the marginal
posterior p (xk|z1:N ) and they are calculated according to
Definition 1. The PLS therefore minimises a lower bound of
the joint KLD (21) under Approximation AP1 [16].



D. IPLS

In this section, we derive the IPLS using the KLD. First,
we remark that the previously mentioned smoothers belong
to the assumed density framework, where the approximation
p (· | z1:N ) ≈ qΘ (· | z1:N ) is made to evaluate quantities of
interest such as integrals or KLDs [16, Remark 1].

In the IPLS, there is a sequence of enabling approxima-
tions Θi, i ∈ N. Given Θi, the aim is to obtain Θi+1

that minimises (21) under the assumed density approximation
p (x0:N | z1:N ) ≈ qΘi

(x0:N | z1:N ) such that

arg min
Θi+1

[
D
(
qΘi

(x0:N | z1:N )
∥∥∥qΘi+1

(x0:N | z1:N )
)

+

ˆ
qΘi

(x0:N | z1:N )D
(
p (v0:N−1, y1:N | x0:N )∥∥∥qΘi+1

(v0:N−1, y1:N | x0:N )
)
dx0:N

]
. (23)

At the fixed point of this recursion, the first term in (23) is
zero. Therefore, as in the IPLF, if we are sufficiently close to
the fixed point, we can make the approximation

• AP2 The first term in (23) is negligible compared to the
second.

Under Approximations AP1 and AP2, we can use Lemma 3 so
that the solution to (23) is given by selecting Θi+1 using SLR
with respect to qΘi

(x0:N | z1:N ). This leads to the IPLS, in
which we recursively perform SLR of the nonlinear functions
with respect to the latest posterior approximation.

V. SIMULATIONS

In this section we compare several Gaussian smoothers and
filters via simulations. The SLRs have been implemented using
the unscented transform with Ns = 2nx + 1 sigma-points and
the weight of the sigma-point located on the mean is 1/3. We
use the following terminology: IPLS(i)-J denotes the IPLS in
which we first run an IPLF with i iterations and J iterations of
the smoother; IEKS(i)-J denotes the IEKS in which we first
run an IEKF with i iterations and J iterations of the smoother
[13]. We should note that IPLS(1)-0, IPLS(1)-1, IEKS(1)-0,
IEKS(1)-1 and IPLS(i)-0 represent the UKF, the unscented
RTS smoother [1], the EKF, the extended RTS smoother [1]
and the IPLF with i iterations [16], respectively. In other
words, popular sigma-point filters and smoothers correspond
to the IPLS with certain selection of parameters. We have
also implemented the L-scan IPLF to see how filtering can
be improved by relinearising the dynamic and measurement
functions.

We analyse the univariate nonstationary growth model
whose dynamic function is

fk (xk) = 0.9xk +
10xk

1 + (xk)
2 + 8 cos (1.2 · k)

with a quadratic and cubic measurement models. The quadratic
measurement model is a usual model to compare how filters
deal with multimodality and nonlinearities [7], [21]. However,
as mentioned in the introduction, Gaussian filters only approx-
imate the posterior accurately if it is unimodal, as with cubic
measurements. Otherwise, more general filters, with a higher
computational complexity, should be used [21].

Table I: RMS error with cubic measurement

J
0 1 5 10

IEKS(1) 8.80 7.67 1.25 0.73
IEKS(5) 1.17 1.53 0.78 0.72

IEKS(10) 0.74 0.87 0.76 0.74
IPLS(1) 2.20 1.92 0.46 0.46
IPLS(5) 0.60 0.50 0.47 0.49
IPLS(10) 0.61 0.53 0.47 0.49
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Figure 1: RMS error against time step for the IPLS. Iteration improves
performance.

Cubic measurement: We first analyse the case with a cubic
measurement

h (xk) =
(xk)

3

20
.

The prior PDF parameters are x0 = 5, P0 = 4 and the
noise variances are Q = 1, R = 1. In order to evaluate
the algorithms, we generate 20 independent trajectories with
50 time steps and 50 independent measurement sequences for
each trajectory, so we consider 1000 Monte Carlo runs in total.

The root mean square (RMS) errors of the state estimates
averaged over all Monte Carlos runs for the IEKS and IPLS are
shown in Table I. It can be seen that performing iterations in
the filter and the smoother lowers the error for both the IEKS
and the IPLS. The IPLS has consistently a lower error than
the IEKS. The error of the unscented RTS smoother (IPLS(1)-
1) can be greatly lowered by iterations using the IPLS. In
this case, best results are given by IPLS(1)-10, which implies
that we iterate in the smoother but not in the filter. This is
achieved even though the best filtering results are obtained
by performing iterations in the filter, compare IPLS(5)-0 and
IPLS(10)-10 with IPLS(1)-0. We also show how the RMS error
at each time step decreases with the iterations for the IPLS(1)
in Figure 1. The RMS error is reduced significantly by iteration
for time steps lower than 25.

We also show the expected value of the negative log-
likelihood (ENLL) [22] in Table II. The lower it is, the
better we fit the posterior moments [22]. Iterations are also
beneficial in general and, in this case, lowest ENLL is achieved
by IPLS(10)-1. The execution times in milliseconds of the



Table II: ENLL with cubic measurement

J
0 1 5 10

IEKS(1) 3.22 · 109 3.22 · 109 4.17 · 105 31.21
IEKS(5) 7.72 · 104 7.72 · 104 190.73 23.02

IEKS(10) 12.17 14.17 32.41 58.61
IPLS(1) 1.21 · 103 1.21 · 103 4.82 -0.58
IPLS(5) 39.88 39.87 -0.55 -0.50
IPLS(10) -0.63 -0.68 -0.45 -0.45

Table III: Execution times (ms) of the algorithms

J
0 1 5 10

IEKS(1) 4 5 21 39
IEKS(5) 10 11 25 45

IEKS(10) 16 17 32 50
IPLS(1) 11 12 53 105
IPLS(5) 29 30 70 120
IPLS(10) 50 51 92 145

algorithms are shown in Table III. Obviously, the IEKS has a
lower computational burden but requires the computation of
gradients and does not attain the performance of the IPLS.

We also show the results of the L-scan IPLF in Table IV.
The L-scan IPLF is a filter so it should be compared with
the filters, which are given by column J = 0 in Table I.
In this scenario, the L-scan IPLF attains roughly the same
performance for different values of L. If J = 2, the L-scan
IPLF does not improve the performance of the IPLS(10)-
0, which only relinearises the measurement function at the
current time step. However, if we perform more iterations the
L-scan IPLF outperforms the IPLS(10)-0, which corresponds
to the IPLF [16]. The execution times of the L-scan IPLFs
are shown in Table V. The greater L and J are, the higher the
computational burden is.

Quadratic measurement: We also provide simulation results
with a quadratic measurement

h (xk) =
(xk)

2

20
.

Using the same parameters as in the previous section, the
RMS errors of the algorithms are given in Table VI. As
before, the IPLS outperforms the IEKS and performing more
iterations in the IPLS decreases the value of the error. The
most significant difference with the previous case is that now
it is not convenient to run iterations within the filters. That
is, IPLS(10)-0 has a considerably higher error than IPLS(1)-
0, and the same applies to the IEKS. This is due to the fact

Table IV: RMS error for the L-scan IPLF with cubic measurement

J
L 2 5 10
2 1.39 0.56 0.57
5 1.43 0.56 0.57
10 1.43 0.56 0.57

Table V: Execution times (ms) for the L-scan IPLF

J
L 2 5 10
2 38 107 214
5 75 228 481
10 126 414 900

Table VI: RMS error with quadratic measurement

J
0 1 5 10

IEKS(1) 6.24 6.06 6.14 6.10
IEKS(5) 7.99 8.12 7.98 7.96

IEKS(10) 8.33 8.49 8.30 8.30
IPLS(1) 1.80 1.46 1.04 1.01
IPLS(5) 5.64 5.67 5.57 5.56
IPLS(10) 6.92 7.00 6.89 6.84

that the posterior is not always unimodal so increasing the
iterations at this point is not beneficial, but it is in smoothing
as we have information from all measurements.

VI. CONCLUSIONS

We have proposed an iterated smoothing algorithm called
the iterated posterior linearisation smoother (IPLS). At each
step of the iteration, the IPLS performs statistical linear
regression of the nonlinear functions with respect to the current
posterior approximation. The IPLS is derivative-free, uses
sigma-points to approximate the statistical linear regressions
and outperforms other Gaussian smoothers in smoothers in the
literature in two numerical examples.

In addition, popular sigma-point filters and smoothers are
equivalent to the IPLS with a certain selection of parameters.
Moreover, if we approximate the SLR by analytical linearisa-
tion rather than sigma-point methods, the IPLS becomes the
IEKS. We can therefore see the IPLS as a nontrivial extension
of popular Gaussian filters and smoothers. As the IPLS also
changes the filtering solution, we have also proposed the L-
scan IPLF. This filter is based on applying the IPLS in the last
L time steps and can perform better than other filters due the
relinearisation of the dynamic and measurement functions.

Future work includes the extension of this work to Bayesian
graphical models or the development of damped versions of
the algorithm to improve convergence.

APPENDIX

In this appendix, we prove Theorem 2. This local conver-
gence proof is quite similar to the convergence proof of the
IPLF [16, App. B]. In this section, we use ui and W i to denote
the mean and covariance matrix of the whole trajectory at the
ith iteration. The vectorisation of W i is denoted as wi [16].

We also set yi =
[(
ui
)T
,
(
wi
)T ]T

, Σi
k =

(
Ωi

k +Rk

)−1/2
,

Γi
k =

(
Λi
k +Qk

)−1/2
and

r
(
yi
)

=



P
−1/2
0 (x0 − x0)

Γi
0

(
x1 − F i

0x0 − ai0
)

Σi
1

(
z1 −Hi

1x1 − bi1
)

...
Γi
N−1

(
xN − F i

N−1xN−1 − aiN−1

)
Σi

N

(
zN −Hi

NxN − biN
)


J
(
yi
)



=



P
−1/2
0 0 . . . 0 0
−Γi

0F
i
0 Γi

0 . . . 0 0
0 −Σi

1H
i
1 . . . 0 0

...
...

... 0 0
0 0 . . . −Γi

N−1F
i
N−1 Γi

N−1

0 0 . . . 0 −Σi
NH

i
N


where r

(
yi
)

and J
(
yi
)

have dimensions nx+N (nx + nz)×1
and nx + N (nx + nz) × nx (N + 1), respectively. From the
solution of the linear case, we have that

ui+1 = ui − J̃
(
yi
)
JT
(
yi
)
r
(
yi
)

where the updated covariance matrix of the trajectory is

J̃
(
yi
)

=
(
JT
(
yi
)
J
(
yi
))−1

. (24)

Its vectorisation is

wi =

 J̃
(
yi
)
e1

...
J̃
(
yi
)
e(N+1)nx

 (25)

where ej ∈ Rnx(N+1)×1 is a vector whose components are
zero except component j, which is one.

The proof is analogous to the IPLF convergence proof
[16, App. B] so we only provide the result here. We use

y? =
[

(u?)
T

(w?)
T
]T

to denote the fixed point, hi =[
(hui )

T
(hwi )

T
]T

with hui = ui − u? and hwi = wi − w?.
We also define

H̃j

(
yi
)

=
(
∇Jj (y)|y=yi

)T
.

M(yi) =
(
∇r (y)|y=yi

)T
and write

M(yi) =
[
Mx(yi) Mw

(
yi
) ]

where Mx(yi) corresponds to the first (N + 1) · nx columns
and Mw

(
yi
)

denotes the rest. We also define L(yi) =
Mx(yi)− J(yi),

N
(
y?, yi

)
= −J̃

(
yi
)N(nz+nx)+nx∑

j=1

(
ẽTj r (y?)

)
H̃j (y?)

+ JT (yi)
[
L(yi), Mw

(
yi
) ]

where ẽj ∈ RN(nz+nx)+nx is a vector whose components are
zero expect component j, which is one. We also denote by
Tj (y?) the Jacobian of the jth column of J̃ (·) evaluated at
y?. Then, we get that [16, App. B]

‖hi+1‖ ≤
∥∥Ξ
(
y?, yi

)∥∥ ‖hi‖+O
(
‖hi‖2

)
(26)

where

Ξ
(
y?, yi

)
=


N
(
y?, yi

)
T1 (y?)

...
TNnx (y?)

 . (27)

Therefore, if the absolute values of the eigenvalues of
Ξ
(
y?, yi

)
are lower than one,

∥∥Ξ
(
y?, yi

)∥∥ < 1 and we get
linear convergence.
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