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Abstract—In recent years, control under urban intersection
scenarios becomes an emerging research topic. In such scenarios,
the autonomous vehicle confronts complicated situations since it
must deal with the interaction with social vehicles timely while
obeying the traffic rules. Generally, the autonomous vehicle is
supposed to avoid collisions while pursuing better efficiency. The
existing work fails to provide a framework that emphasizes the
integrity of the scenarios while being able to deploy and test
reinforcement learning(RL) methods. Specifically, we propose
a benchmark for training and testing RL-based autonomous
driving agents in complex intersection scenarios, which is called
RL-CIS. Then, a set of baselines are deployed consists of various
algorithms. The test benchmark and baselines are to provide
a fair and comprehensive training and testing platform for
the study of RL for autonomous driving in the intersection
scenario, advancing the progress of RL-based methods for
intersection autonomous driving control. The code of our pro-
posed framework can be found at https://github.com/liuyuqi123/
ComplexUrbanScenarios.

Index Terms—autonomous driving, reinforcement learning,
intersection scenarios, decision-making

I. INTRODUCTION

Driving under urban scenarios, especially the intersection
scenario, is one of the most challenging problems for an
autonomous driving(AD) system. According to [1], a general
AD system is composed of several subsystems, including
sensing, navigation, decision-making, planning, and control.
The key challenge of the intersection scenario is the interaction
between the autonomous driving vehicle(ADV) and social
vehicles, which mainly possess challenges on the decision-
making and control modules [2]. Since the behavioral intention
of social vehicles is uncertain, the ADV is forced to negotiate
and make decisions quickly under strong interactions, other-
wise, traffic accidents are very likely to occur. Generally, the
intersection scenario discussed in this paper mainly refers to
the ADV passing through a cross-junction while interacting
with social vehicles.

Reinforcement learning(RL) methods learn an optimal pol-
icy through trial-and-error, a RL agent is able to promote its
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performance by updating the policy repeatedly. In recent years,
RL has become a key technology in the field of AD decision-
making and control [3]–[5]. In [6], deep learning (DL) and
RL method is proposed to address the lane-keeping task with
the visual input for an ADV on a highway track. And [7], an
RL with rule-based constraints method is proposed to train the
ADV for the lane-changing task in the highway scenario.

Besides, some RL-based methods are proposed to deal
with the decision-making and control problems in intersection
scenarios. In [8], an end-to-end framework is proposed for
ADV controlling, the RL agent takes raw data as input and
directly outputs the control command of the vehicle. The
proposed scenario is mixed up with junctions and roundabouts,
while the traffic flow in the scenario is not adjustable. In [9], a
multi-agent RL framework is proposed for the behavior model
design under intersection scenarios, in which both rule-based
and RL-based baselines are provided. The proposed simulator
is similar to the one proposed in [10], both of them fail to
provide a delicate dynamic model of vehicles and a high-
resolution simulator. In [11], a simulator based on CARLA
simulator [12] is proposed, which provides a set of real-
world road maps as intersection AD benchmark. Though a
partially observable Markov decision process(POMDP) agent
is proposed, the RL interface is not deployed for further
research. In [13], an RL framework named after ULTRA is
proposed with a delicate scenario design. In this paper, the
behavior of social vehicles are modeled by the SMARTS
simulator [14]. The dynamics of the simulation are idealized
as well. We compare the features of some existing frameworks
as shown in TABLE I.

As discussed above, previous work has not been able to
integrate a tunable intersection scenario benchmark with the
RL-based baseline in a high-resolution simulator. In this paper,
we propose a training and testing RL framework addressing the
complex intersection scenarios for the AD problem. We call
our benchmark Reinforcement Learning Complex Intersection
Scenario or RL-CIS for short. As for the original contributions,
this paper:

• proposes benchmark called RL-CIS for RL-based AD
agents evaluation, the RL-CIS includes both stochastic
and deterministic tests and training environment for RL
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agent,
• develops an RL training environment for intersection

scenarios and proposes a traffic flow generation method
based on stochastic process,

• provides some basic metrics of performance for the AD
agent, also a set of baselines of both RL and rule-based
methods. The experimental results show that our RL
agent outperforms some rule-based methods in intersec-
tion scenarios.

II. INTERSECTION SCENARIOS

A. Design of Test Scenarios

In order to evaluate the AD agent, we design a set of
intersection scenarios based on [15], which is proposed for
ADV field test evaluation. Inspired by [15] and [16], a scenario
is defined through a 3-level structure. The first level is the
definition of the functional scenario. In this part, the road
network structure, target route, behavior of the traffic flow, and
other necessary features are defined. The second level is the
logical scenario. During this phase of scenario development,
the range of all parameters is given, which constitutes a set
of all available scenarios. Then, the final stage is that the
concrete scenario, a specific group of parameters is selected to
instantiate a single concrete scenario, which will be rendered
for the ADV test.

1) Variability: The variability is the most critical feature
for the proposed benchmark. The variability is composed of
the diversity of the functional scenarios and the randomness of
the logical scenarios, which are the two major rules in scenario
design.

a) Diversity: Diversity is emphasized for functional sce-
narios design. In this phase, the diversity of functional scenar-
ios refers to the variety of the driving tasks and behavior of
social vehicles, which leads to a diverse interaction between
ego and the social vehicles. In [8]and [11], though the traffic
flow is random, the diversity of interaction between ADV and
social vehicles is not guaranteed, which means some type of
interaction may not happen among the whole test set.

Specifically, in a cross-intersection, the ADV has 3 potential
passing directions, which are turning left, turning right, and
going straight. For each driving task, the ego vehicle may
encounter interacting traffic flow from different directions. The

variation of the interaction is the major diversity of intersection
scenarios.

b) Randomness: Randomness is the critical rule in log-
ical scenarios design. In intersection scenarios, randomness
mainly indicates two aspects. The first is the randomness of
the behavior model of social vehicles. It is defined as that how
a social vehicle reacts to potential traffic conflicts. The second
aspect is the range of critical kinetic parameters, such as the
target speed and minimum brake distance for some rule-based
methods. In the design of the range of tunable parameters,
there is a trade-off. The parameter range should be as broad
as possible to generalize the scene, but it should not exceed a
reasonable range.

Fig. 1. Intersection scenario in CARLA simulator

2) Deterministic Test Scenarios: The un-signalized inter-
section scenario is one of the most challenging scenarios for
ADV and is mainly discussed in this paper. In the signalized
intersection, the interaction between vehicles is taken over
by the traffic lights assuming that all traffic participants obey
the traffic rules. Though in real-world traffic, both signalized
and un-signalized junctions are common. The un-signalized
intersection is selected intentionally to stress the interaction
problem in the intersection scenario.

In this paper, we select the cross-intersection scene which
is the most typical road-network structure among intersection
scenarios. We use the Town03 map in the CARLA simulator
to configure the scenario, as shown inf 1. The blue lines refer
to the planned turning routes in the intersection. In a cross-
intersection, three typical tasks are mainly considered, which
are turning left, turning right, and going straight. For each

TABLE I
COMPARISON ON FRAMEWORK OF INTERSECTION AUTONOMOUS DRIVING

Features Vehicle dynamics RL Interface Scenario diversity Scenario randomness Evaluation benchmark
CARLA scenario runner # ! # ! !

Highway env # ! # ! !

interp e2e driving ! ! # # #

Summit ! # ! # #

BARK # ! # ! !

ULTRA # ! ! ! !

RL-CIS(ours) " " " " "



turning task, there are multiple potential interacting traffic
flows which is deterministic by the road network structure. To
further decompose scenarios, each functional scenario extracts
only a single interacting traffic flow.

Therefore, we propose five functional scenarios as shown in
Fig. 2. The functional scenario (a) and (b) refer to left-turning
task, interacting with a going straight and turning right traffic
flow coming from the opposite direction. Secondly, scenarios
(c) and (d) refer to ego vehicle going straight task, interacting
with a going straight and turning left traffic flow coming from
left and opposite direction respectively. Thirdly, scenario (e)
refers to turning right task interacting with a going straight
traffic flow coming from the left direction. The traffic flow in
each scenario is composed of a continuous sequence of social
vehicles, each vehicle in the traffic flow has a predefined route
as illustrated in Fig.1.

The behavior model of all social vehicles is determined
by two rules. The first one is speed tracking. The social
vehicle will accelerate until it reaches the target speed and
then maintain it. The second rule specifies how the social
vehicle reacts to the potential conflict, which we employ the
autonomous emergency braking(AEB) method. Generally, the
AEB model detects a certain range in the front direction, if any
obstacles are detected, the vehicle will brake until the collision
detection is clear, the vehicle will continue pursuing the target
speed.

Besides the design of functional scenarios, the logical
scenario is instantiated with a set of determined kinetic pa-
rameters. In our proposed intersection scenarios, the adjustable
kinetic parameters are the target speed of each vehicle in the
traffic flow V and the gap distance between adjacent vehicles
d, as shown in 2. The gap distance is fixed in each concrete
scenario instance to guarantee the stability of the test. The
two parameters are determined through discretization of a
certain range. The value of target velocity is sampled from
[10, 40]km/h uniformly with a step length of 2. The value of
gap distance is sampled from [16, 50]m uniformly with a step
length of 2.

3) Stochastic Test Scenarios: Besides the deterministic test,
we propose the stochastic test set for the RL-based agent
evaluation. In the stochastic test, a comparatively more random
traffic flow is provided. Specifically, the behavior model of
social vehicles is determined by CARLA’s built-in Autopilot
function. CARLA Autopilot is a rule-based AD framework
which includes navigation, planning and control module. The
social vehicle controlled by CARLA Autopilot will randomly
plan the route to pass through the junction. For the driving
behavior, a CARLA autopilot agent has a Boolean switch for
collision avoidance with certain vehicles. In our experiment,
we switch off the collision avoidance of all social vehicles
against RL-based ADV. Because the RL agent learns the policy
through trial-and-error, switching off the collision detection
will help the RL agent explore and learn policies more
efficiently.

(a) Turning left facing a going
straight traffic flow

(b) Turning left facing a right turn-
ing traffic flow

(c) Turning right facing a going
straight traffic flow

(d) Going straight facing a going
straight traffic flow

(e) Going straight facing a left turn-
ing traffic flow

Fig. 2. Functional scenarios of intersection scene

B. Design of Training Scenarios

Generally, the training scenario set is supposed to cover
the test scenario set as much as possible but remains some
variability at the same time. The traffic flow setting in training
scenarios is similar to the one used in test scenarios. We deploy
a rule-based traffic flow with adjustable kinetic parameters,
while each traffic flow holds a fixed route. The kinetic param-
eters are target speed and gap distance, which are the same as
in the deterministic test. However, in the training scenario, the
two parameters are various for each vehicle of the same traffic
flow. The parameters are sampled from the same interval as
defined in the deterministic test when a new social vehicle is
spawned. The behavior model of all social vehicles in training
scenarios uses the same assumption as in the deterministic test,
which combines speed tracking and the AEB model.

Therefore, we deploy three agents for turning left, turning
right, and going straight tasks respectively. In each training
procedure, the functional scenario with the same task route is
trained at the same time. For example, in the left turning task,
the RL agent will confront traffic flows shown in Fig.2 (a) and
(b) at the same time. The traffic flow on other roads will not
be activated.

1) OU-process Parameter Generation: In the training
phase, the RL agent is supposed to fully explore all available



traffic situations. As discussed above, the randomness of
scenarios is highly affected by the distribution of the kinetic
parameters of the social vehicles, which are target speed
and gap distance in our proposed test scenarios. Therefore,
we deploy a kinetic parameter generation method based on
Ornstein–Uhlenbeck(OU) process [17]. The OU process will
generate a sequence of kinetic parameters for the whole traffic
flow, and each social vehicle of the traffic flow will be given
a set of parameters sequentially.

For the kinetic parameters generation, the OU process has
two significant advantages. The first is that the cumulative
probability distribution of the OU process is Gaussian. The
second is that the OU process is mean reverting, which limits
the difference between two contiguous sampling values. The
stochastic differential equation(SDE) of the OU process is

dVt = θ (µ− Vt) dt+ σdWt (1)

in which µ, σ > 0, µ refers to the expectation of the variable,
θ > 0 denotes the damping factor of the OU process, Vt refers
to the target speed of the social vehicle, Wt denotes the Wiener
process. The ordinary differential equation(ODE) of the OU
process is

Vt+τ =
(
1− e−θτ

)
µ+ Vte

−θτ + σ

∫ t+τ

t

e−θ(τ−s)dWs (2)

Since the kinetic parameters of vehicles is bounded by an
interval, inspired by [18] we deploy a clipped OU process
to avoid over-accumulation on the interval boundary. The
clipping process is shown as Algorithm 1. We denote the
interval for parameter sampling as [vl, vu].

Algorithm 1 Clipped OU process for traffic flow parameter
generation

Initialize V̂t+τ with equation (2)
while V̂t+τ /∈ [vl, vu] do

Sample V̂t+τ from OU process using equation (2)
end while
Vt+τ = V̂t+τ as the kinetic parameter for next vehicle

As for the gap distance between social vehicles, the value
is sampled from a truncated gaussian distribution

f(d;µ, σ, dl, du) =


0, d < dl

1
σ

φ
(
d−V̂
σ

)
φ
(
du−V̂
σ

)
−φ

(
dl−V̂
σ

) , du < d < dl

0, d > du
(3)

in which φ refers to the normal distribution, dl, du refers to the
value interval of the gap distance, σ denotes the variance of
the truncated gaussian distribution. In this paper is determined
through

σ =
du − dl
n

(4)

where n > 0 is a tunable parameter. It is used to adjust the
concentration of the parameters relative to the mean value.
According to our proposed sampling method, the gap distance
is a linear mapping of target speed over the sampling interval.

III. BASELINE METHODS

A. Baselines for Intersection Scenarios

1) Rule-based Methods: In this part, we select several clas-
sic rule-based methods and an RL algorithm as our proposed
baseline methods for the intersection scenarios.

a) Intelligent Driver Model(IDM): The intelligent driver
model(IDM) [19] is one of the most popular rule-based
baselines for the ADV. The IDM model is designed based
on the car-following behavior. The IDM model is defined by
the following equations

ẋα =
dxα
dt

= vα

v̇α =
dvα
dt

= a

(
1−

(
vα
v0

)δ
−
(
s∗ (vα,∆vα)

sα

)2
)

with s∗ (vα,∆vα) = s0 + vαT +
vα∆vα

2
√
ab

(5)

where v0 refers to the desired velocity that the vehicle would
drive at in free traffic, s0 refers to the minimum desired net
distance to the car in the front, T refers to the minimum
possible time to the vehicle in front, a refers to the maximum
vehicle acceleration, b > 0 refers to a comfortable braking
deceleration, δ usually takes a value of 4.

Besides, the acceleration of vehicle α can be separated into
a free road term and an interaction term

v̇freeα = a

(
1−

(
vα
v0

)δ)

v̇intα = −a
(
s∗ (vα,∆vα)

sα

)2

= −a
(
s0 + vαT

sα
+

vα∆vα

2
√
absα

)2

(6)

b) Autonomous Emergency Braking(AEB) Model: The
AEB method is a widely used technique of level-2 ADV.
In real-world deployment, the AEB method processes sensor
data with a determined algorithm and performs the brake
action if any collisions are detected. In the CARLA simulator,
we directly use the ground-truth value as the input for the
deployment of the AEB method.

In our work, the AEB method is determined with two rules.
The first one is that the longitudinal range of detection L and
the second one is the expansion factor of the bounding box
of the social vehicle η. During the driving process, the ego
vehicle will detect along its longitudinal direction with a length
of L. In meantime, the bounding box of each social vehicle
is expanded from its original physical model according to the
expansion factor. More specifically, the size of the bounding
box is calculated through



Lx = ηL̂x, Ly = ηL̂y, Lz = ηL̂z (7)

where Lx, Ly, Lz refer to the original size of social vehicle
physical model. If the bounding box of any social vehicle
penetrating the front area of the ego vehicle, the AEB model
will perform a maximum braking action until the detection
area is clear.

2) Reinforcement Learning:
a) State Representation: For the intersection scenario,

inspired by [20], we use the ground-truth value of kinetic
information of ego vehicle and social vehicles for state rep-
resentation. Such consideration is common in autonomous
driving system design since the major challenge of the in-
tersection scenario comes from the interaction between ego
vehicle and social vehicles. For the ego vehicle, the state
vector is defined as se = [ve, g], in which ve denotes the
speed of ego vehicle, and g denotes a 3-dimension one-hot
vector, which indicates ego vehicle’s current position. For
the social vehicle, the state vector of each one is defined as
[vi,x, vi,y, xi, yi, cos(θi), sin(θi)], in which vi,x, vi,y refer to
two-dimensional velocity of social vehicle i, xi, yi indicate
vehicle’s Cartesian coordinates and θ denotes the heading
angles under the ego vehicle’s coordinate system. The total
state representation is combined of the ego vehicle and 5
nearest social vehicles. All six state vectors are concatenated
to a 33-dimension vector as the RL input state vector.

b) Action Space: The action space is constructed as a
2-dimension continuous variables a = [a0, a1]. The vector is
transformed for speed tracking by â = a0−a1. Then we scale
the action â to [0, 9]m/s as the target speed of ego vehicle for
longitudinal control.

c) Reward Design: Inspired by [21], the reward func-
tion is defined through events. More specifically, the reward
function is combined with two parts, the first is the reward
for each timestep, the second is the final reward at the end of
an episode. The complete reward function can be written as
follows

r =


−0.1 , t ≤ 0.5 · Tmax
+150 , success
−350 , collision
−150 , time exceed

(8)

where Tmax refers to the maximum time limit of one episode,
by which common sub-task reward encourages ego vehicle to
improve traffic efficiency.

d) RL Algorithms: For the intersection scenario, we
deploy the TD3 algorithm [22] as our RL baseline. For the
neural network design, the state vector is divided by ego and
social vehicle, each component is followed by an encoder
network, which is formed by 64 × 64 fully-connected(FC)
layers. The output of encoders is concatenated and followed by
an FC layer. The actor and critic network of the TD3 algorithm
share the same network structure in our experiments.

IV. SIMULATION EXPERIMENTS

A. Evaluation Metrics

1) Intersection Scenarios: Many metrics can be used to
measure the behavior of agents [23]. For an AD system,
safety and efficiency are the most concerned performance
index. In our framework, success rate and average passing
time are general metrics for performance evaluation. Success
rate indicates that how the RL agent performs for the specified
task directly. In this paper, the success rate is defined as

SuccessRate =
SuccessCounts

TotalTestNumber
× 100% (9)

Secondly, efficiency is measured through the average du-
ration time of a single testing episode. Since the functional
scenario which targets on same turning task shares the same
route, the average passing time is compared through route
classification. It is important to note that we only count the
time of the successful test. That is to say, scenarios are divided
into three groups for average passing time comparison.

B. Results and Analysis

1) Training Process: The learning curves of RL baselines
in the task of highway training scenario are depicted in Fig. 3.
From the figure, we can see that the RL agent for each task
converges fast within 2000 episodes. Besides, for each route
task, the learning curve converges to a maximum level within
5000 episodes. Then the left turning and right turning agents
maintain relatively high and stable performance while the
going straight agent has slight fluctuation. The main reason
for such appearance is mainly because that the agent in going
straight task must interact with the left turning traffic flow
coming from the opposite direction, which brings greater
challenge than other tasks.

(a) Reward (b) Success rate

Fig. 3. Intersection training curve

In the training process of each task, the interacting traffic
flows are activated according to the definition of logical
scenarios, as described in experiment settings. The kinetic
parameters generation of each traffic flow is counted, the
sampling and distribution in the training of left-turning task
is shown in Fig.4. The distribution of parameters sampling
is approximate to Gaussian distribution, while the sampling
curve of the time domain is rather smooth.



(a) Going straight traffic flow in left turning task

(b) Turning right traffic flow in left turning task

Fig. 4. OU process-based kinetic parameters sampling and distribution

2) Deterministic Test: In the deterministic test, we deploy
a TD3 agent as the RL baseline. Besides, two rule-based
methods are deployed as a comparison, which is IDM and the
AEB model. In our deployment in CARLA, the IDM model
will detect a certain distance along the driving route, pursuing
either speed tracking or car following behavior as shown in
(5) and (6). Compared to the AEB method, the IDM agent
adjusts its velocity rather smoothly. The experimental results
are shown in TABLE II. We evaluate the TD3 agent and rule-
based agents in all five functional scenarios. Since the rule-
based agents are poorly performed relatively. The statistics
are calculated by the task routes for the rules-based agents.
In turning left and turning right experiments, the RL agent
reaches a success near 90%, and exceeds the rules-based agent
in both success rate and average time. According to the result,
going straight is the most challenging task since the left-
turning social vehicles are rather fast and hard to negotiate
for the ego vehicle.

3) Stochastic Test: The experimental results of the stochas-
tic test are shown in Table III. In the stochastic test, the

TABLE II
INTERSECTION DETERMINISTIC TEST RESULTS.

Functional scenario (a) (b) (c) (d) (e)
Ego route Turning left Turning right Going straight

TD3
Success rate(%) 94.8 93.8 89.24 99.0 80.0
Average time(s) 6.83 6.65 7.04 6.94 4.79

IDM
Success rate(%) 67.7 62.8 47.4
Average time(s) 8.40 8.23 8.59

AEB
success rate(%) 72.74 50.0 48.96
average time(s) 8.66 7.21 7.18

kinetic parameters of traffic flows are uniformly sampled from
an interval, which makes traffic flows not extremely dense.
Therefore the RL agent reaches a significantly higher success
rate for each task compared to the deterministic test.

In this part, the RL method is compared with rule-based
methods as well. As the table shows, the RL agent outperforms
rule-based methods in both success rate and average time. The
overall success rate of the TD3 agent is above 90%. Though in
turning left task and going straight task, rule-base agents have
better the average time, they are at a definite disadvantage in
terms of safety. We believe such results occur because the IDM
and AEB methods have a limited input, which makes them
not capable of detecting potential conflict with social vehicles
from the cross direction. In conclusion, the model-free RL
agent dominates our proposed benchmark of the intersection
scene.

TABLE III
INTERSECTION STOCHASTIC TEST RESULTS

Methods Driving task Success rate(%)↑ Average time(s)↓

TD3(ours)
Left 95.9 9.78

Right 96.9 7.64
Straight 91.9 9.20

IDM
Left 68.3 11.21

Right 72.7 11.05
Straight 33.7 22.6

AEB
Left 71.3 9.06

Right 88.7 8.86
Straight 58.3 8.83

V. CONCLUSION

In this paper, we propose RL-CIS as a framework to
train and test the RL-based AD agent in intersection scenar-
ios. Firstly, a group of un-signalized intersection functional
scenarios is designed. Then the behavioral model of social
vehicles is determined with two critical parameters, composed
of the whole logical scenario set. The concrete scenarios are
proposed by discretizing logical scenarios and become the
deterministic test set in our proposed framework. Besides,
we deploy a set of stochastic tests to further evaluate the



RL-based AD agent. Meanwhile, the training environment for
the RL agent is developed. In this part, a stochastic process-
based sampling method is deployed for traffic flow parameters
generation. Both the training and test sets are built through
the CARLA simulator. In addition to that, we offer a set
of baselines for the intersection AD benchmarks, including
TD3, IDM, and AEB methods. According to the experimental
results, the RL agent shows significant superiority compared
with rule-based methods.
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