Tolerating Faults in a Mesh with a Row of Spare Nodes

Jehoshua Bruck

Robert Cypher

Ching-Tien Ho

IBM Almaden Research Center
650 Harry Rd.
San Jose, CA 95120
{bruck,cypher,ho}@almaden.ibm.com

Abstract

We present an efficient method for tolerating faults
in a two-dimensional mesh architecture. Our approach
is based on adding spare components (nodes) and ertra
links (edges) such that the resulting architecture can be
reconfigured as a mesh in the presence of faults. We
optimize the cost of the fault-tolerant mesh architec-
ture by adding about one row of redundant nodes in
addition to a sel of k spare nodes (while tolerating up
to k node faults) and minimizing the number of links
per node. OQur results are surprisingly efficient and
seem to be practical for small values of k. The de-
gree of the fault-tolerant architecture is k + 5 for odd
k, and k + 6 for even k. Our results can be gener-
alized to d-dimensional meshes such that the number
of spare nodes is less than the length of the shortest
azis plus k, and the degree of the fault-tolerant mesh
is (d—1)k+d+3 when k is odd and (d— 1)k +2d +2
when k is even.

1 Introduction
1.1 Background

The advent of microprocessor technology and large
scale integration at affordable costs have allowed the
design and fabrication of parallel machines hosting a
large number of processors. As the number of the com-
ponents in an architecture becomes larger it is essen-
tial to consider the issue of computing in the presence
of faults.

Many existing parallel machines have a mesh topol-
ogy. Examples of two-dimensional mesh computers in-
clude the MPP (from Goodyear Aerospace), the MP-1
(from MASPAR), VICTOR, (from IBM), and DELTA
and Paragon (from Intel). The J-Machine, which is
under development at MIT, is a three-dimensional
mesh. The mesh is also a popular architecture for

0-8186-3200-3/92 $03.00 © 1992 IEEE

connecting computing modules on a board or chip. In
addition, memory chips are also organized in the form
of a two-dimensional mesh [15].

A large amount of research has been devoted to cre-
ating fault-tolerant parallel architectures. The tech-
niques used in this research can be divided into two
main classes. The first class consists of techniques
which do not add redundancy to the desired archi-
tecture. Instead, these techniques attempt to mask
the effects of faults by using the healthy part of the
architecture to simulate the entire machine [1, 7, 12,
14]. The hope with this approach is to obtain the
same functionality with a reasonable slowdown fac-
tor. While this approach yields interesting theoreti-
cal results, even a constant factor slowdown in per-
formance can be very significant in practice. Further-
more, this approach requires that some healthy pro-
cessors simulate several processors. As a result, each
simulated processor can have only a fraction of the
memory present in a healthy processor.

The second class consists of techniques which do
add redundancy to the desired architecture. These
techniques attempt to isolate the faults, usually by
disabling certain links or disallowing certain switch
settings, while maintaining the complete desired ar-
chitecture [2, 3, 4, 5, 6, 8, 9, 13, 15, 16, 17, 18, 19, 20].

1.2 Our Approach

Our approach is based on adding redundancy which
includes both spare processors and extra links. We
make the following assumptions:

e Both processors and links can fail.

o Faults are total, namely, a faulty processor cannot
route or compute.

o Faults are static, namely, a faulty component re-
mains faulty.

¢ Faults have been identified, for example, by a di-
agnostic procedure.

Given these assumptions our goal is to create a
fault-tolerant architecture that can tolerate up to k
(a given parameter) faults with no slowdown in per-
formance. The abstraction of our approach is based
on a graph model. In this model a distributed memory
parallel computer is viewed as being a graph in which
the nodes represent the processors and the edges rep-
resent the communication links. A target graph with
n nodes is first selected. Then a fault-tolerant graph
with n + m nodes is defined with the property that
given any set of k or fewer faulty nodes, the remain-
ing graph is guaranteed to contain the target graph as
a subgraph. Note that k¥ < m. This approach guaran-
tees that any algorithm designed for the target graph
will run with no slowdown in the presence of k or fewer
node faults, regardless of their distribution. Hence,
minimizing the cost in this model amounts to (i) con-
structing a fault-tolerant graph with a small number
of extra spare nodes, namely minimizing (m — k), and
(i) constructing a fault-tolerant graph with a small
degree.

Clearly, there is a trade-off between the number
of extra spares and the degree of the fault-tolerant
graph. In this paper we will present an approach that
addresses this trade-off. We note here that although
our results are stated for node faults they can also be
used to tolerate edge faults by viewing a node incident
with each faulty edge as being faulty.

This graph model of fault tolerance has been used
by several other researchers. Hayes [13] has used this
mode] with target graphs of cycles, linear arrays and
trees. The work by Wong and Wong [20] and Paoli,
Wong and Wong [17] relates to cycles. The recent
work by Dutt and Hayes uses trees [8], hypercubes [9)]
and arbitrary graphs [10] as target graphs. The recent
work by us [6] uses de Bruijn and shuffle-exchange
networks as target graphs. Also, we have described
in [4, 5] a number of constructions of fault-tolerant
meshes with minimal numbers of spares, namely with
m = k. Our approach is based on ideas related to
circulant graphs [4] and to diagonal graphs [5]. In
particular, our best constructions for fault-tolerant
two-dimensional meshes, with k spares, can tolerate
k faults and have degree 2k + 2 when k is odd and
2k + 4 when k is even [5]. While this result is ex-
tremely useful for ¥ = 1 (and maybe up to k = 3) it
is clear that the degree of the fault-tolerant graph is
growing too fast for it to be useful in practice.

In this paper we study the possible trade-off be-
tween minimizing the number of extra spares and min-
imizing the degree of the fault-tolerant graph. While
in [4, 5] we assumed that the cost of a processor is
very high and we designed a fault-tolerant mesh ar-
chitecture with an exact number of spares, in this pa-
per we present constructions that require more spare
processors but have the advantage of requiring fewer
links per node. Specifically, the constructions of fault-
tolerant graphs given here have degree k + 5 when k
is odd and k + 6 when k is even and use an extra row
of spares in addition to the k spares. Hence, we pro-
vide a technique for trading between redundancy in
number of spare nodes and redundancy in the number
of links per node. The construction presented here is
particularly well-suited to large mesh architectures, in
which case the extra row of components represents a
small fraction of the total number of components, and
a relatively large number of faults can be expected.
Whenever k is 4 or greater, the construction given
here has a smaller degree than that presented in [5].

Our constructions are based on a combination of
two ideas: (i) Labeling the mesh nodes such that it
becomes a subgraph of a circulant graph with offsets
that are next to each other, and (ii) creating a linear
ordering on the nodes and utilizing the concept of di-
agonal graphs, presented in [5]. These two ideas help
in reducing the degree of the fault-tolerant graph. It
turns out, that a combination of these two ideas can
be accomplished if we add an extra row of spares.

In the next section we present the concepts of cir-
culant and diagonal graphs and describe their ap-
plication in the creation of fault-tolerant meshes.
The constructions of fault-tolerant two-dimensional
meshes and the renaming (reconfiguration) algorithm
for these constructions are given in Section 3. In Sec-
tion 4 we describe how our approach can be general-
ized to d-dimensional meshes. Finally, conclusions are
presented in Section 5.

2 Circulant and Diagonal Graphs

A useful concept for creating fault-tolerant graphs
is the graph known as “circulant graph” [11], which is
defined below.

Definition: Let n be a positive integer and let S
be a set of integers in the range 1 through n — 1. The
n-node circulant graph with connection set S, denoted
Cn,s, consists of n nodes. Each node in C, s has a
unique label in the range 0 through n — 1. Each node
t is connected to all nodes of the form (i £ s) mod n
where s € S. The values in the connection set S will be

referred to as “jumps” or “offsets”. A simple example
of a circulant graph is a cycle, where there is only one
offset and the value of that offset is 1.

Definition: Let k be a nonnegative integer and
let G = (V,E) be a graph. We say that the graph
G’ = (V', E') is (k, G)-tolerant if the subgraph of G’
induced by any set of |V’| — k nodes contains G as a
subgraph.

Definition: Let S be a set of integers and let k
be a nonnegative integer. The ezpansion of S by k,
denoted expand(S, k), is the set T' where

T= U{s,s+1,...,s+k}.
SES

Note that |ezpand(S, k)| < (k +1)|S].
The following theorem is an immediate consequence
of a result proven by Dutt and Hayes [9].

Theorem 2.1 [9] Let n be a positive integer, let S be
a set of integers in the range 1 throughn—1, let k be
a nonnegative integer, and let T = expand(S, k). The
circulant graph Cpyi, 1 is (k,Cy s)-tolerant.

Theorem 2.1 gives a general technique for creating
a fault-tolerant graph when the target graph is circu-
lant. In fact, in [4] we have presented a few construc-
tions based on this idea. We mention here two of these
constructions.

Theorem 2.2 Let M be an r x ¢ mesh with n = rc
nodes. Then

1. Let S = {1,¢} and let T = expand(S,k). The
circulant graph Cn i 1 is (k, M)-tolerant and has
degree at most 4k + 4.

2. Let S={c,c+1} and let T = expand(S, k). The
circulant graph Cp i 1 is (k, M)-tolerant and has
degree at most 2k + 4.

Notice that the first construction in Theorem 2.2
follows from the row-major ordering of a mesh and
results in a large degree (4k + 4), since it consists of
2 offsets (1 and c) that are far apart. The trick in
the second construction is in having the offsets be two
consecutive integers (¢ and c+1), the ezpand operation
on the offsets is then shared by both offsets and the
result is a degree 2k + 4 fault-tolerant graph. We get
the consecutive offsets by what we call antidiagonal-
major ordering of the nodes [4].

Another important class of target graphs consists
of what we call “diagonal graphs” [5]. The definition

of diagonal graphs and a general technique for adding
fault-tolerance to diagonal graphs are given next.
Definition: Let n be a positive integer and let S
be a set of integers in the range 1 through n — 1. The
n-node diagonal graph with connection set S, denoted
D, s, consists of n nodes. Each node in Dy s has a
unique label in the range 0 through n — 1. Each node
i is connected to all nodes of the form ¢ + s where
s € S. Thus diagonal graphs are similar to circulant
graphs, except they do not have the “wraparound”
connections from high numbered nodes to low num-
bered nodes. The name “diagonal graph” refers to
the structure of the adjacency matrix of such a graph.
Given the target graph D, s (with the restriction
that S C {1,2,...,[n/3]}), we will use the circulant
graph C,yrr, where T = ezpand(S, |k/2]), as the
fault-tolerant graph. The idea is similar to the tech-
nique for adding fault-tolerance to circulant graphs
which was described above. Recall that given the
circulant target graph C g, the fault-tolerant graph
(which tolerates k faults) has the connection set T’ =
ezpand(S, k). The reason that we have to expand S
by k is that an edge in the target graph may have to
“jump over” as many as k faults in the fault-tolerant
graph. In contrast, given the diagonal target graph
D, s, the fault-tolerant graph requires only the con-
nection set 7' = ezpand(S, |k/2]). The reason that
we can expand S by |k/2] rather than by k is that
the lowest and highest numbered nodes in Dy, s have
smaller degree than the other nodes in Dy, g. Thus if
the fault-tolerant graph has a cluster of faults which
are near one another (and thus could require an edge
to jump over a large number of faults), we can choose
to map the lowest and highest numbered nodes in Dy, 5
to the healthy nodes near that cluster of faults. Us-
ing this mapping none of the edges has to jump over
the cluster of faults, and the expansion by |k/2] is
sufficient. This argument is formalized below.

Theorem 2.3 [5] Let n be a positive integer, let
y = [n/3], let S be a set of integers in the range
1 through y, let k be a positive integer, and let
T = expand(S, |k/2]). The circulant graph Cpii1
is (k, Dy s)-tolerant.

Given an r x ¢ mesh, say M, with n = rc nodes.
Label the nodes by row-major ordering. It is easy to
see that M is a subgraph of D, s where S = {1,¢c}.
Hence, using Theorem 2.3 we proved in [5] that

Theorem 2.4 Let r and c be integers where r > ¢
and r > 3. Let M be an r x ¢ mesh with n = rc

nodes. Let S = {1,c} and let T = ezpand(S, |k/2)).
The circulant graph C, 4 7 is (k, M)-tolerant and has
degree at most 2k + 4 if k is even, and at most 2k + 2
if k is odd.

Hence, both construction 2 in Theorem 2.2 and the
diagonal graph idea give a reduction in about a factor
of two (for large k) in the degree of the fault-tolerant
mesh compared to the first construction based on row-
major ordering presented in Theorem 2.2. The chal-
lenge here is to combine between the two techniques to
reduce the degree by a factor of 4 (for large k). We are
able to achieve that at the cost of adding more spares
than the minimal number needed. Notice that all the
constructions presented above have minimal numbers
of spares, namely k.

3 The Construction for 2-Dimensional
Meshes

In this section we present our main result which
is a construction of a fault-tolerant two-dimensional
mesh which has a degree smaller than the best known
constructions by a factor of 2 (for large k). The key to
our result is a combination of the two ideas presented
in Section 2: the contiguous offsets and the diagonal
graph.

We are interested in this section in a two-
dimensional mesh, denoted by M, with n = rc nodes,
where r specifies the number of rows and c specifies
the number of columns. Each node is labeled with a
unique label of the form (z,,z;) where 0 < z; < r and
0 < z3 < c. Each node (z1, z3) is connected to at most
4 nodes of the form (x; + 1,2, + 1). We first present
the construction of a (k, M)-tolerant graph and then
we describe an efficient algorithm for finding the good
mesh which is present in the (k, M)-tolerant graph af-
ter it has suffered k node faults. We will call this
algorithm the renaming algorithm.

3.1 Construction of Fault-Tolerant

Meshes

We first describe the construction of the general
case. We then present, as an example, the special
case of a 7 x 6 mesh and consider the case of a single
fault.

Main Construction: Let M be an r x ¢ mesh. M
consists of n = rc¢ nodes. Let M, be the corresponding
(k, M)-tolerant graph. M; consists of n+m nodes that
are numbered from 0 to n+m—1. There are two cases

circulant graph. For the definition of the edges there
are two cases.

e Case 1: k is odd. Every node has degree k +
5. The edges are defined by the following set of

offsets: kol

fe+il-1gj< 31},

e Case 2: k is even. Every node has degree k +
6. The edges are defined by the following set of

offsets:

. _k+2
|15 <32

{c+J
- The correctness of the above construction follows
from Theorem 2.3 and is formalized as follows.

Theorem 3.1 Let M be an r x ¢ mesh with n =
rc nodes. Let S = {c —1l,c,e+1}. Let T =
ezpand(S, |k/2]). Let My be the circulant graph
Caymr with m = k + c— 1 when c ts odd and
m=k+c—2 when c is even. Then My is a (k, M)-
tolerant graph.

Proof: Let M be the diagonal graph with n+m nodes
and the set of offsets S = {¢ — 1,¢,c+ 1}. Namely, M
is the diagonal graph that corresponds to the circulant
graph Mo. The key in the proof is to show that the
diagonal graph M contains the r x ¢ mesh M as a
subgraph and then apply Theorem 2.3 to obtain the
fault-tolerant graph.

We will define the mapping between the nodes of
the mesh M and the nodes of the diagonal graph M
as follows: Each node (4, j) in M corresponds to node

¢(5,7) = (E+((G+)mod2e+j-1 (1)

in M.

We need to show that the mapping ¢(, j) defined
in Eq. (1) is correct. First it can be shown that 0 <
#(i,j) < rc+c— 2 when ¢ is odd and 0 < ¢(i,j) <
rc+ ¢ — 3 when c is even, where 0 < i < r—1 and
0<j<e-1.

Second we need to show that given the mapping
#(i,3), the edges of M exist in M. This is true because

|¢(irj) - ¢('+ 11])'
I¢(1’]) - ¢(‘ - 1!.7)]

cES,
c€S,

eitherc+lorec—1€ S5,
eitherc+lore—-1€ S,

|6(3,5) — ¢(i, 5 + 1)|
and |¢(i, 5) — (4,5 — 1)]

for the value m. When cisodd m = k+c¢—1 and
when c is even m = k + ¢ — 2. The graph M; is a

for all valid values of (,5). We can also prove that
we never use “wraparound” edges when we embed M
using (¢, j). Hence, M is a subgraph of the diagonal
graph M.

Now, we can apply Theorem 2.3 and notice that
the circulant graph Cp4m 1 with

m = k+c—1, when cisodd,
T L k+c—2, when cis even,

is a (k, M)-tolerant graph. O

As an example, consider the case of a 7 x 6 mesh.
Figure 1 presents the labeling of the nodes in the 7 x 6
mesh given by Eq. 1. As can be seen from the figure,
the labeling results in a traversal of nodes in a “see-
saw” manner. Figure 2 shows the graph Mo, which
is a circulant graph with offsets {5,6,7} and contains
the 7 x 6 mesh M as a subgraph. For clarity, some im-
age of nodes, which are represented by empty circles,
are added for the wraparound connections. Note that
the labeling of nodes of the mesh contained in My is
the same as that in Figure 1. Figure 3 presents the
(1, M)-tolerant mesh with degree 6 and 5 extra nodes.
Note that a new node numbered 46 is added in the
lower right corner from Figure 2.

Next, we present a systematic way to label the re-
maining graph and obtain the mesh.

3.2 The Renaming Algorithm

We present an efficient algorithm which, given &
faults in My, finds a healthy rx ¢ mesh. The algorithm
defines the healthy mesh by assigning new labels to the
nodes. The algorithm is a particular application of the
more general labeling algorithm for diagonal graphs,
presented in [5], where a proof of correctness can be
found.

The Renaming Algorithm: We are given a set of k
nodes in My, that are faulty. If there are z faulty nodes
where ¢ < k, we arbitrarily select any k¥ — z healthy
nodes and consider them to be faulty. Recall that the
nodes in the graph are numbered 0 through n+m—1.
These nodes will be viewed as being ordered cyclically,
with nodes n + m — 1 and 0 being adjacent. Thus,
when the nodes are traversed in ascending order, node
0 follows node n+ m — 1 and when they are traversed
in descending order, node n + m — 1 follows node 0.
The renaming algorithm consists of three steps.

o The first step uses two counters, one to count
faulty nodes and one to count non-faulty nodes.
The following routine is performed for all values of
i where 0 < i < n+m—1. First, both counters are

set to 0. Then the nodes are visited in a descend-
ing order, starting with node i. As each node is
visited, the appropriate counter is incremented.
That is, if the visited node is faulty, the counter
for faulty nodes is incremented, and if the vis-
ited node is non-faulty, the counter for non-faulty
nodes is incremented. Thus, node i is the first
node to be visited, and the appropriate counter is
set according whether or not node ¢ is faulty. The
counter for non-faulty nodes is checked after it is
incremented. If this counter is equal to ¢+ 2, the
process of visiting the nodes in descending order
is terminated and the counter for faulty nodes is
checked. If the counter for faulty nodes is greater
than k/2, node i is designated as being “marked”,
while if it is less than or equal to k/2, node i is
designated as being “unmarked”. The non-faulty
marked nodes are ones which have a large num-
ber of faulty nodes preceding them, and as a re-
sult they must be assigned to the first rows of the
non-faulty mesh.

The second step figures out which non-faulty node
should play the role of node 0 in the non-faulty
mesh. The second step uses a single counter and
it consists of two phases. Phase 1 begins by set-
ting the counter to 0. Then the nodes are visited
in descending order, starting with any arbitrarily
selected node. As each node is visited, the node
is checked to see whether or not it is faulty and
whether or not it is marked. If the node is non-
faulty and unmarked, the counter is incremented.
If the node is non-faulty and marked, the counter
is reset to 0. If the node is faulty, the counter is
left unchanged. Then the counter is checked and
Phase 1 is terminated if the counter is greater
than or equal to n/3. We will call the node that
is being visited when the counter reaches [n/3]
node a. Phase 2 then visits the nodes in ascending
order beginning with node a. It terminates when
it encounters a non-faulty node which is marked.
This non-faulty marked node will be called node
b.

The third step then assigns numbers to the non-
faulty nodes. The nodes are visited in ascending
order, starting with node b, and the non-faulty
nodes are assigned the values 0,1,...n 4+ m —1
in order. Thus node b is assigned 0, the next
non-faulty node that is visited is assigned 1, and
the last non-faulty node that is visited is assigned

n+m— 1. These numbers correspond to the
numbering of M. The correspondence of a label
£ to the coordinates of the mesh, say (i, j), is as
follows:

i= C12D (4 1) moay),

Jj=({+1)mode.

Clearly, nodes with label £ for which i < 0 or ¢ >r
are omitted.

Notice that in the case of a single fault the above
algorithm will result in a new labeling that starts im-
mediately after the fault. For example, consider the
7 % 6 (1,M)-tolerant graph in Figure 3 and assume
that node 18 is faulty. Figure 4 presents the new la-
beling of the mesh. Each row in the configured mesh
is shown by a thick line (possibly with wraparound).
to

4 Generalization d-dimensional

Meshes

In this section, we generalize the fault-tolerant tech-
nique described before from two-dimensional meshes
to d-dimensional meshes, while preserving the num-
ber of spare nodes to be approximately the length of
the shortest axis plus k.

4.1 Construction of d-dimensional Fault-

Tolerant Meshes

Let M be a d-dimensional mesh of form n; x ngy x
-+ X nq, where it is assumed that n; < ny < ... <
ng and ngy > 3. Thus, M consists of n = Hf=1n,-
nodes. Let M; be the corresponding (k, M)-tolerant
graph. The graph M} consists of n+m nodes that are
numbered from 0 through n + m — 1. There are two
cases for the value m. When n; isodd m = k+n; —1
and when n; is even m = k + n; — 2. The graph M
is a circulant graph. For the definition of the edges
there are two cases.

e Case I: k is odd. Every node has degree (d —
1)k + d + 3. The edges are defined by the union
of the following sets of offsets:

(m+i | ~1<j< 220,
. k-1
{nina+j | 05]5—2‘},
. . k-1
{rinana+j5 | 0<ji<—1}, -,

and up to
. . k-1
{rin2-ma1+5]0<5 < T}

o Case 2: k is even. Every node has degree (d —
1)k + 2d + 2. The edges are defined by the union
of the following sets of offsets:

Y
+
[

, . _k
{nina+j | 0<i<gh

. . _k
{minans+j | 0<j< 5}7)

and up to
) . _k
{ning-nao1 +510<5 < 3

We now give a few examples for the sets of offsets
Just defined. When d = 2, it yields the same definition
for the two-dimensional meshes given before. When
d=3 and k = 1, the set of offsets is {n; — 1,n1,n; +
1,n1ny}. When d = 3 and k = 3, the set of offsets
is {ny — 1,n1,n1 + 1,01 + 2,n1ny,n 09 + 1}, which
has the same set of offsets as for the case d = 3 and
k = 2. The degree of a fault-tolerant 3-dimensional
mesh that can tolerate k faults is 2k + 6 when k is odd
and is 2k 4+ 8 when k is even.

It can be shown that the M; as defined is a a
(k, M)-tolerant graph with M being a d-dimensional
mesh (as defined before).

The renaming algorithm for locating the healthy d-
dimensional mesh M in the fault-tolerant mesh M;
after up to k node faults have occurred is similar to
the renaming algorithm for locating the healthy two-
dimensional mesh described before. Details are omit-
ted due to space limitations.

5 Concluding Remarks

We have presented constructions of fault-tolerant
mesh architectures. Our approach is based on adding
spare components (nodes) and extra links (edges) such
that the resulting architecture can be reconfigured as
a mesh in the presence of k faults. The degree of the
fault-tolerant mesh is k+5 for odd k, and k+6 for even
k. The number of spare nodes is at most & + ¢ — 1.
Those are the best known constructions in terms of
the degree of the fault-tolerant graph for k > 3. Note
that in the case that the fault-tolerant graph has an
exact number of spares, namely k, it is easy to prove

that the degree of the fault-tolerant graph is at least
max{4,k + 2}. Hence, using our techniques we got
close to the lower bound related to exact number of
spares by paying an extra row of redundancy. It would
be interesting to close the gap by proving better lower
bounds or by finding better constructions.

References

(1] F. Annexstein, Fault Tolerance in Hypercube-
Derivative Networks, Proceedings of the 1st An-
nual ACM Symposium on Parallel Algorithms
and Architectures, pp. 179-188, 1989.

(2] V. Balasubramanian and P. Banerjee, A Fault
Tolerant Massively Parallel Processing Architec-
ture, J. of Parallel and Distributed Computing,

vol. 4, pp. 363-383, 1987.
B8]

K. E. Batcher, Design of a Massively Parallel
Processor, IEEE Trans. on Computers, vol. C-29,

no. 9, pp. 836-840, September 1980.

[4] J. Bruck, R. Cypher and C.-T. Ho, Fault- Tolerant
Meshes with Minimal Numbers of Spares, Pro-
ceedings of the 3rd IEEE Symposium on Parallel
and Distributed Processing, pp. 288-295, Dallas

TX, December 1991.

[5] J. Bruck, R. Cypher and C.-T. Ho, Fault- Tolerant
Meshes and Hypercubes with Minimal Numbers
of Spares, IBM Research Report, RJ 8211, July

1991.

(6] J. Bruck, R. Cypher and C.-T. Ho, Fault- Tolerant
de Bruijn and Shuffle-Ezchange Networks, IBM
Research Report, RJ 8547, December 1991. To
appear in the Proceedings of the 1992 Interna-

tional Conference on Parallel Processing.

[7] J. Bruck, R. Cypher and D. Soroker, Running
Algorithms Efficiently on Faulty Hypercubes, Pro-
ceedings of the 2nd Annual ACM Symposium on
Parallel Algorithms and Architectures, pp. 37-44,

1990.

[8] S. Dutt and J. P. Hayes, On Designing and Re-
configuring k-Fauli-Tolerant Tree Architectures,
IEEE Trans. on Computers, vol. C-39, no. 4, pp.
490-503, April 1990.

[9] S. Dutt and J. P. Hayes, Designing Fault- Tolerant
Systems Using Automorphisms, Journal of Paral-
lel and Distributed Computing, vol. 12, pp. 249
268, 1991.

(10] S. Dutt and J. P. Hayes, Some Practical Issues
in the Design of Fault-Tolerant Multiprocessors,
Proceedings of the 21st International Symposium
on Fault-Tolerant Computing, pp. 292-299, June
1991.

{11] B. Elspas and J. Turner, Graphs with Circulant
Adjacency Matrices, J. of Combinatorial Theory,

no. 9, pp. 297-307, 1970.

(12] J. Hastad, F. T. Leighton and M. Newman, Fast
Computations using Faulty Hypercubes, Proceed-
ings of 21st Annual ACM Symposium on Theory

of Computing, pp. 251-284, 1989.

(13] J. P. Hayes, A Graph Model for Fauli-Tolerant
Computing Systems, IEEE Trans. on Computers,

vol. C-25, no. 9, pp. 875-884, September 1976.

[14] C. Kaklamanis, A. R. Karlin, F. T. Leighton, V.
Milenkovic, P. Raghavan, S. Rao, C. Thomborson
and A. Tsantilas, Asymptotically Tight Bounds
for Computing with Faulty Arrays of Processors,
Proc. of 31st Annual IEEE Symp. on Foundations

of Computer Science, pp. 285296, October 1990.

[15] S.-Y. Kuo and W. K. Fuchs, Efficient Spare Al-
location for Reconfigurable Arrays, IEEE Design

and Test, pp. 24-31, February 1987.

[16] F. T. Leighton and C. E. Leiserson, Wafer Scale
Integration of Systolic Arrays, IEEE Trans. on
Computers, vol. C-34, no. 5, pp. 448-461, May

1985.

[17] M. Paoli, W. W. Wong and C. K. Wong, Mini-
mum k-Hamiltonian Graphs, II, J. of Graph The-

ory, Vol. 10, pp. 79-95, 1986.

(18] A. L. Rosenberg, The Diogenes Approach to
Testable Fault-Tolerant VLSI Processor Arrays,
IEEE Trans. on Computers, Vol. C-32, no. 10,

pp. 902-910, October 1983.

V. P. Roychowdhury, J. Bruck and T. Kailath,
Efficient Algorithms for Reconfiguration in
VLSI/WSI Arrays, IEEE Trans. on Computers,
vol. C-39, no. 4, pp. 480-489, April 1990.

[19]

[20] W. W. Wong and C. K. Wong, Minimum k-
Hamaltonian Graphs, J. of Graph Theory, Vol. 8,

pp. 155-165, 1984.

R »..

\
A@WWW“W
ﬂ@@@@ﬂﬂ
NN
JWW@W@W
[N RN RN/
NN
IR
ﬂﬂW@WﬂW

_LJ:uuua

TR PP

(a) (8 () 7

AR
mwmmmmmﬁ

B tcfuynoe [@] the healthy unused node

@ the healthy used node O image of a healthy node

Figure 2: The circulant graph Mo. Figure 4: The reconfigured mesh.

