
ar
X

iv
:2

10
3.

08
57

7v
2

 [
cs

.C
R

]
 2

7
M

ar
 2

02
1

Compositional Security for Reentrant Applications

Ethan Cecchetti Siqiu Yao Haobin Ni Andrew C. Myers

Department of Computer Science

Cornell University

{ethan,yaosiqiu,haobin,andru}@cs.cornell.edu

Abstract

The disastrous vulnerabilities in smart contracts sharply remind us of our ignorance: we do not know

how to write code that is secure in composition with malicious code. Information flow control has long

been proposed as a way to achieve compositional security, offering strong guarantees even when com-

bining software from different trust domains. Unfortunately, this appealing story breaks down in the

presence of reentrancy attacks. We formalize a general definition of reentrancy and introduce a security

condition that allows software modules like smart contracts to protect their key invariants while retaining

the expressive power of safe forms of reentrancy. We present a security type system that provably en-

forces secure information flow; in conjunction with run-time mechanisms, it enforces secure reentrancy

even in the presence of unknown code; and it helps locate and correct recent high-profile vulnerabilities.

1 Introduction

Compositional security remains a fundamental concern for software security. Code might appear secure, yet

expose vulnerabilities when it interacts with other code. Blockchain smart contracts offer multiple prominent

recent examples of this problem [43, 44, 46], but other instances exist. JavaScript code is difficult to secure

when running on the same web page as code from a different source [13, 27, 38]. Web browsers themselves

have fallen victim to attacks when executing code on web pages [1, 2]. In these settings, securing code in

isolation is not sufficient. Reasoning about the behavior of a combination of interacting systems, however,

is notoriously difficult. This work therefore aims for a way to build software with compositional security

guarantees, meaning the security of an entire system follows from the security of its components.

Complex control flow, and in particular reentrant executions, pose a fundamental challenge for compo-

sitional security. Developers are increasingly building applications from separate communicating services

that may belong to different trust domains [18, 56]. In such architectures, one service waiting for another to

respond must be prepared to handle separate incoming requests. These reentrant calls effectively interrupt

the execution of the application and, if the developer is not careful, can catch it in an inconsistent state,

creating security vulnerabilities [3].

Reentrancy security has received much more attention since July 2016, when the Decentralized Au-

tonomous Organization (DAO)—an Ethereum smart contract intended to function as a distributed venture

capital fund—lost $50 million in tokens to such an attack, making global news [46]. Since then, a variety

of methods have emerged to analyze or eliminate reentrancy attacks [4, 14, 17, 26, 36], but vulnerabilities

continue to appear. For example, a January 2019 audit uncovered a reentrancy vulnerability in the Uniswap

decentralized exchange [15]. The attack leveraged a subtle interaction between two contracts that were se-

cure in isolation, and a third malicious contract. The first contract implicitly assumed the second would not

call the malicious contract. Because the interface could not specify this expectation, developers used the

exchange for a token standard that allowed for such calls. This choice led to the theft of $25 million worth

of tokens in April 2020 [44], over a year after the original vulnerability disclosure.

1

http://arxiv.org/abs/2103.08577v2

We follow our previous suggestion [12] and use a general language-based technique to obtain composi-

tional security even in the presence of reentrant executions. We define and enforce security using a semantic

specification of trust in the form of information flow labels. Information flow control (IFC) has long been an

appealing technique for obtaining compositional security and has proven useful in practice [20]. IFC type

systems can guide software development with compile-time checking and provably enforce strong security

guarantees such as noninterference. But while IFC is a good starting point for compositional security, ex-

isting approaches break down in the presence of reentrancy. Standard IFC rules either reject useful, secure

applications by blocking requests from untrusted sources, or they allow insecure applications that are vul-

nerable to reentrancy attacks. We extend standard IFC rules to define a secure type system that efficiently

and provably prevents attacks, yet is expressive enough to build interesting applications.

This approach addresses fundamental shortcomings of existing solutions. Current stand-alone reentrancy

analyses [4, 26, 36] are non-compositional. That is, analyzing two pieces of code separately might not yield

useful guarantees about their combination—the exact failing that led to the Uniswap attack. These tools

also focus specifically on blockchain smart contracts. While smart contracts have provided notable recent

examples of reentrancy vulnerabilities, similar exploits appear elsewhere [1–3] and there is no reason to

limit solutions. The focus on smart contracts and the absence of trust specifications forces the tools to rely

on contract boundaries—a syntactic construct—as a proxy for semantic security boundaries. This choice

leads to a reentrancy definition we call object reentrancy that can judge the security of two semantically

equivalent implementations differently, merely because the code has different structure.

There exist other language-based approaches that provide compositional guarantees and consider reen-

trancy, but they are again smart-contract focused and use object-based reentrancy definitions. Moreover,

some limit expressiveness by outlawing reentrancy entirely [14, 17], while others provide only heuristic

reentrancy protection [9, 50, 51]. In addition, they universally assume that all code is written in the same lan-

guage. This strong assumption clearly does not apply to open systems where anyone can submit code, like

Ethereum contracts or JavaScript on web pages. Even in closed systems with controlled environments and

known code, new code might need to interact with legacy applications that do not respect the language rules.

We address these shortcomings by defining a new general-purpose security type system that tracks the

integrity of data and computation. In addition to providing standard IFC data security guarantees, the type

system combines with a run-time mechanism to provably eliminate dangerous reentrancy while allowing

safe reentrancy. The guarantees, moreover, continue to hold even when trusted code interacts with untrusted

code that does not obey the same restrictions.

The remainder of the paper is structured as follows:

• Examples in Section 2 show the complexity of reentrancy.

• Section 3 provides background on information flow control and exposes its failure to handle reentrancy.

• Section 4 presents a new definition of security in the presence of reentrancy.

• Section 5 defines SeRIF, a core calculus that eliminates insecure reentrancy by combining a static IFC

type system with a dynamic locking mechanism.

• Section 6 shows formally that SeRIF enforces our formal, compositional security condition.

• Section 7 describes a prototype type checker implementation and our experience using it on realistic

programs.

• Section 8 discusses related work in more detail and Section 9 concludes.

2 Motivation

By their very nature, reentrancy vulnerabilities are often hard to spot. For instance, the attack on Ethereum’s

Decentralized Autonomous Organization (DAO) was considered subtle at the time [16], despite being one

2

1 contract Uniswap {

2 Token tX, tY;

3

4 function sellXForY(uint xSold) returns uint {

5 uint prod = tX.getBal(this) * tY.getBal(this);

6 uint yKept = prod / (tX.getBal(this) + xSold);

7 uint yBought = tY.getBal(this) - yKept;

8

9 assert tX.transferTo(msg.sender, this, xSold);

10 assert tY.transferTo(this, msg.sender, yBought);

11 return yBought;

12 }

13 }

14

15 contract Token {

16 function transferTo(address from, address to,

17 uint amount) returns bool {

18

19
... // check and update balances

20 from.alertSend(to, amount);

21 to.alertReceive(from, amount);

22 return true;

23 }

24 }

Figure 1. Distilled Solidity [54] code for the Uniswap bug.

of the simplest examples of reentrancy. To build intuition, we present three running examples of applica-

tions with reentrancy. Though we have distilled them to their core components, the vulnerabilities have

undermined security in real-world applications.

2.1 Uniswap

We begin with the Uniswap/Lendf.me reentrancy vulnerability first identified in January 2019 [15] and

later exploited in April 2020 [44]. The vulnerability arises from the combination of two contracts. Though

each may be considered secure in isolation, they combine in unexpected ways, demonstrating the need for

compositional reentrancy security.

Uniswap is a smart contract platform where users can exchange one token for another. Figure 1 shows a

simplified portion of the Uniswap contract: the exchange function "sellXForY" allows users to sell tokens of

type X for tokens of type Y . Uniswap determines the exchange rate by the amount of X and Y it currently

holds. It holds the product of the two amounts constant, allowing Uniswap to maintain the same total asset

value as exchange rates fluctuate. The tokens themselves are implemented by independent contracts.

To perform an exchange, Uniswap queries its balance with each token, computes how much of token Y
the user bought, and transfers tokens by calling transferTo on each token contract. Tokens execute transfers

by first checking and updating balances, and then notifying the sender and recipient, allowing each in turn

to execute arbitrary code.

Both contracts appear secure in isolation, following the best-practice recommendation of modifying

state before making external calls to avoid reentrancy concerns [55]. However, when combined, they expose

a dangerous exploit. Suppose the exchange begins with 6 units each of X and Y .

1. An attacker A calls sellXForY selling 6 units of X.

3

1 getOrCompute(key, computeFun) {

2 i = _getIdx(key) // index of mapping if it exists

3 if (mappings[i] == null) {

4 mappings[i] = computeFun();

5 }

6 return mappings[i];

7 }

Figure 2. The getOrCompute function of a key–value store. Here mappings is an array that the store resizes as

mappings are added.

2. Uniswap correctly computes prod = 36 and yBought = 3.

3. Uniswap calls token X to transfer 6 units from A.

4. The token notifies A, giving it control of the execution.

5. Before returning, A calls sellXForY again to sell 6 more units of X, reentering the Uniswap contract.

6. Uniswap now has 12 units of X, but still 6 units of Y , so it computes prod = 72, not 36, and

yBought = 2.

When the dust settles, Uniswap has 18 units of X and only 1 unit of Y , having given A an extra unit of Y
and having broken the invariant that the product of the balances is 36. If desired, A can reclaim their original

12 units of X for only 2 units of Y , keeping the other 3 as illicit profit.

The fundamental problem is a mismatch between Uniswap’s notion of secure behavior and the token’s.

The token correctly checks that all transfers are valid and authorized and follows programming patterns that

avoid (internal) reentrancy concerns. No user can transfer more tokens than they have. Uniswap, however,

implicitly assumes that transferTo transfers tokens and returns without allowing an adversary to call

Uniswap before it reestablishes the invariant that prod = 36.

This insight suggests two approaches to fixing the bug: (1) token contracts could respect Uniswap’s

assumption by not calling unknown, untrusted code, or (2) Uniswap could stop relying on the assumption.

Current platforms provide no way to guarantee the first option. Uniswap could state its assumption in docu-

mentation, but there is no technical means of specifying or enforcing it. Tokens that violate it could continue

to freely interface with Uniswap, with disastrous results. The exchange can, however, implement the second

option by acquiring a run-time lock on entry to the contract. It could then recognize the above attack and

produce an error at step 5.

Our approach detects this vulnerability and can specify and correctly analyze either proposed solution.

Among existing tools, only Nomos [17] can express the assumption of approach (1), which it mandates to

statically eliminate all reentrancy. Other tools either cannot properly secure the application [9, 50, 51] or

force the use of computationally expensive dynamic locks even when they are unnecessary [4, 14].

2.2 Key–Value Store

Smart contracts have made reentrancy concerns highly visible, but reentrancy is not unique to that domain.

It has led to multiple critical security vulnerabilities in Internet Explorer [1, 2], and is a known concern for

any application executing user-provided code [3].

For example, key–value stores often compute missing mappings with user-supplied functions [42, 48].

A careless implementation of this functionality can enable dangerous reentrancy. Consider the code in Fig-

ure 2, along with a clear method that frees mappings and installs a new empty array. An attacker can call

getOrCompute, providing as arguments an unmapped key and a malicious function that calls clear and

then returns a value. First getOrCompute computes i, then it calls the malicious function, which calls clear

4

1 contract TownCrier {

2 address[] requesters, callbacks;

3

4 function deliver(uint reqId, bytes data) {

5 if (msg.sender == SERVICE_ADDR

6 && requesters[reqId] != 0) {

7 requesters[reqId] = 0;

8 SERVICE_ADDR.call{value: FEE}("");

9 callbacks[reqId].call(bytes);

10 }

11 }

12

13 function cancel(uint reqId) {

14 if (msg.sender == requesters[reqId]) {

15 requesters[reqId] = 0;

16 msg.sender.call{value: FEE}("");

17 }

18 }

19 }

Figure 3. Solidity [54] code for simplified partial Town Crier contract. Here SERVICE_ADDR is TC’s trusted wallet

address, and FEE is the request fee.

and replaces the mappings array. Finally getOrCompute attempts to write the attacker-provided value into

index i of the new array.

If i is large—which is likely if the store previously contained many mappings—the write would be

past the end of the new empty array. In languages like C/C++ without array bounds checking, an attacker-

provided value would thus be written into an arbitrary memory location, enabling remote code execution or

other critical security vulnerabilities. Even memory-safe languages like Java explicitly recommend develop-

ers check for reentrant modifications and throw exceptions [42].

Notably, while this attack appears very similar to concurrent-modification attacks on key–value stores, it

requires no concurrency. Single-threaded applications or applications using simple thread-level locking are

still vulnerable.

2.3 Town Crier

Banning all reentrancy might seem appealing, but this solution would be overly restrictive. Town Crier (TC) [64]

is an example where safe reentrancy enables important functionality. TC provides authenticated data to smart

contracts upon request. Users place requests with a smart-contract front end, and TC processes them asyn-

chronously and delivers the data to user-specified callbacks when it is available. TC also allows users to can-

cel pending requests for a refund. Figure 3 shows simplified versions of TC’s deliver and cancel methods.

Invoking a user-provided callback in deliver opens the possibility of reentrant calls. Unlike in the

previous examples, however, these calls are safe. By ensuring that the request status is updated (lines 7

and 15) before calling untrusted code (lines 9 and 16), TC prevents attackers from receiving refunds for

canceling requests that are mid-delivery or already canceled. Honest users, however, can still respond to

data they receive from one request by creating or canceling other requests.

For instance, a user contract may ask TC to function as a real-world timer and alert it at a specific real-

world time. When woken up, the contract might determine that it needs to wait longer and request that TC

send another alert, say, 2 hours later. A different user could make multiple parallel requests to retrieve the

same data, e.g., a stock price, from several sources. Once enough responses have arrived, the user might wish

5

to cancel the outstanding requests to reduce costs. Both of these patterns require safe reentrant calls into TC.

This work aims to allow this secure reentrancy while still eliminating the vulnerabilities described above.

3 Information Flow Control

To obtain compositional security, it is natural to build on top of information flow control (IFC), a classic

way to obtain compositional security guarantees such as noninterference [23]. Most IFC work has focused

on data confidentiality [49, 58], but IFC can also protect integrity [8, 60] and availability [65]. As our goal

is to guard against attackers performing unexpected calls into trustworthy code, we track only integrity.

IFC systems assign labels to computation and data within a system. As information flows through the

system, the label on the destination of information is constrained to be no less restrictive than the label on its

source. Since our goal is to enforce integrity, less trusted information should be prevented from influencing

more trusted information.

Secure information flow is statically enforceable by a type system [49]. When linking separate code

modules together, the security guarantees offered by the type system are automatically compositional, as

long as the linked modules agree on types at interface boundaries and account for the confidentiality and

integrity of the code itself [5]. Of course, real-world systems often have to interact with user-provided code

or legacy applications that do not obey the rules of the type system. As we show, such noncompliant code

can only violate the security guarantees of code that expresses trust in it.

3.1 Label model

We specify integrity using a set of integrity labels L and give each piece of data x a label ℓx representing its

trust level. The labels have a reflexive, transitive relation ℓ1 ⇒ ℓ2, which we read “ℓ1 acts for ℓ2,” to denote

that ℓ1 is at least as trusted as ℓ2. That is, anything that can influence data labeled ℓ1 can also influence

data labeled ℓ2.1 Data x can thus safely influence data y only when ℓx ⇒ ℓy. Influence can be either

explicit—by assigning x directly to y—or implicit—by conditioning on x and assigning different values to

y in each branch. For explicit flows, a simple check that ℓx ⇒ ℓy at the point of assignment is sufficient. To

control implicit flows, a program counter label, written pc, tracks the integrity of the computation itself, as

is standard [49]. Inside a branch conditioned on x, the value of x has influenced control flow, so we require

the constraint ℓx ⇒ pc. Assigning a variable y to some value then requires pc ⇒ ℓy, ensuring transitively

that ℓx ⇒ ℓy .

L must also have some additional structure. Any pair of labels ℓ1 and ℓ2 must have a join, denoted ℓ1∨ℓ2,

and a meet, denoted ℓ1 ∧ ℓ2. The join is the least upper bound and the meet is the greatest lower bound, so

ℓ1 ∨ ℓ2 ⇒ ℓ ⇐⇒ ℓ1 ⇒ ℓ and ℓ2 ⇒ ℓ

ℓ ⇒ ℓ1 ∧ ℓ2 ⇐⇒ ℓ ⇒ ℓ1 and ℓ ⇒ ℓ2.

We can then safely label information influenced by both ℓ1 and ℓ2 with label ℓ1∨ ℓ2, for example. Lastly, the

join and meet operators must distribute: ℓ1 ∨ (ℓ2 ∧ ℓ3) = (ℓ1 ∨ ℓ2)∧ (ℓ1 ∨ ℓ3). These properties collectively

make (L,⇒) a distributive lattice.

This additional structure supports the precision and flexibility of our approach to enforcing reentrancy

security, discussed in Section 5.2. Luckily, existing label models are typically distributive lattices, including

two-point lattices, subset lattices of permissions [61], and free distributive lattices over a set of principals [6,

39]. In smart-contract systems, for example, it is natural to view contracts themselves as principals with

1Most IFC systems use flows-to, denoted ⊑. We use acts-for as we find it intuitive, and the two mean the same thing when only

tracking integrity.

6

different trust relationships among them. We might then employ decentralized information flow control [40]

where labels are constructed from principals (e.g., contracts) that can influence data or computation.

3.2 Endorsement

Strictly enforcing IFC allows systems to enforce strong security properties like noninterference, which for-

bids any influence from untrusted information to trusted information. Noninterference, however, is too re-

strictive to build real applications, so practical IFC systems allow downgrading. Downgrading integrity,

known as endorsement [66], treats information with a low-integrity label as being more trustworthy than its

source would indicate.

From the IFC perspective, services like smart contracts endorse frequently, though implicitly. They ex-

pose functions that accept calls from untrusted users, yet modify trusted local state. In other words, untrusted

state affects trusted state, which an IFC system should only allow via endorsement.

Existing IFC languages support these trusted functions, but make them explicit. For example, the Jif

language [37] supports autoendorse methods that can be called by an untrusted caller and that boost the

integrity of the pc label on entry.

Viewed from the perspective of pc integrity, reentrancy attacks all exhibit a distinctive pattern: they

involve trusted (high-integrity) code calling lower-integrity code, which then calls back into high-integrity

code by exploiting endorsement. However, existing endorsement mechanisms in Jif and other systems [19,

32, 35, 61] do not prevent this potentially dangerous control-flow pattern. These IFC systems are thus vul-

nerable to reentrancy attacks. Preventing reentrancy attacks requires new restrictions on endorsement.

4 Reentrancy and Security

The examples in Section 2 show the need across application domains to constrain reentrancy without elimi-

nating it entirely. We build on our previous work [12] to provide flexible definitions of reentrancy and secu-

rity based on information flow control. This choice gives access to existing IFC tools and techniques with

their strong data security guarantees, while making possible a precise, semantic specification of security.

4.1 Defining Reentrancy

Prior work [4, 14, 26, 36] focuses on smart contracts and defines reentrancy in those terms: if contract A calls

contract B, which calls back into contract A, the second call, and thus the entire execution, is considered

reentrant. If no calls to A occur before the call to B returns, the execution is non-reentrant. We refer to this

notion of reentrancy as object reentrancy, viewing contracts as a form of object.

We avoid object reentrancy because it relies on object boundaries—a fundamentally syntactic construct—

to define security. Instead we define reentrancy with respect to the integrity level of computation. As integrity

levels are part of a semantic security specification, using them to define a security-relevant property is sensi-

ble. This view leads to the following informal definition.

Definition 1 (ℓ-Reentrancy (informal)). If computation C1 calls computation C2, which then (possibly in-

directly) calls C3, the execution is reentrant with respect to label ℓ, or ℓ-reentrant, if C1 and C3 are trusted

at ℓ, but C2 is not.

Note that C1 and C3 may be the same or different, as long as they are both trusted at ℓ.
Figure 4 depicts how ℓ-reentrancy relates to object reentrancy. If an entire object is trusted at ℓ and noth-

ing else is (Figure 4a), ℓ-reentrancy and object reentrancy align. However, object and trust boundaries may

differ, leading to different definitions. If a trusted operation in A calls untrusted B, a call to an untrusted

portion of A (Figure 4b), would be considered reentrant in an object-based definition but not ℓ-reentrancy.

7

A B

(a) Object reentrancy and

ℓ-reentrancy are the same when

object and trust boundaries match.

A B

(b) Partially-trusted objects can

create object reentrancy that is not

ℓ-reentrancy.

A

C

B

(c) Mutually-trusting objects can

create ℓ-reentrancy that is not

object reentrancy.

Figure 4. Comparing ℓ-reentrancy to object reentrancy. Boxes represent objects, the blue shaded region is high-

integrity code, and arrows represent calls.

Such a call could correspond to a Town Crier user updating a request callback during data delivery or a web

app accessing untrusted user profile data while modifying a trusted billing key–value store. These opera-

tions are never dangerous, as low-integrity operations cannot damage high-integrity data. By contrast, one

application may be split across multiple mutually trusting objects. For example, such a split in Ethereum’s

Parity Wallet led to two famous attacks [10, 43]. For an application split across A and C , if A calls B, then a

call from B into C (Figure 4c) is a reentrant call into the application. By relying on trust levels, ℓ-reentrancy

properly identifies this pattern as reentrancy, while object reentrancy does not.

To employ ℓ-reentrancy, each operation needs an integrity level. Conveniently, the pc label used to

control implicit information flows (Section 3.1) provides such a label. It combines the integrity of the code

and the integrity of data influencing the control flow to specify how trusted an operation is to execute when

it does, making it ideal to define a property of trusted and untrusted operations calling each other.

4.2 Reentrancy Security

While ℓ-reentrancy defines reentrancy based on integrity patterns of the control flow, it does not tell us

when it is secure. An option taken by some work [14, 17] is to declare all reentrancy (according to their

definition) dangerous and to outlaw it entirely. With an appropriate definition of reentrancy, this would

eliminate vulnerabilities, but safe reentrancy has legitimate uses, as illustrated by the Town Crier example.

To eliminate the need for difficult manual reentrancy analysis, we define “secure reentrancy” as reen-

trancy that programmers can ignore when analyzing correctness. In general, a safe way to accomplish this

goal is to ensure that reentrancy cannot enable program behaviors that would not exist without it. These

behaviors could be program invariants, such as Uniswap holding the product of its asset quantities con-

stant or the key–value store never writing to unallocated memory; they could be statements about how state

changes, like Town Crier’s request ID monotonically increasing; or they could be more complex properties

like noninterference.

Programmers cannot hope to guarantee properties that unknown or untrusted code can directly violate, so

our definition ignores such properties entirely. Specifically, ℓ-reentrancy security considers only properties

defined over state trusted at label ℓ. We refer to these as ℓ-integrity properties, leading to the following

security definition, depicted visually in Figure 5.

Definition 2 (Reentrancy Security (informal)). A program is ℓ-reentrancy-secure if every ℓ-integrity prop-

erty, such as a program invariant, that holds for all non-ℓ-reentrant executions holds for all executions.

Definition 2 specifies a semantic notion of security and helps identify safe forms of reentrancy. For in-

stance, a high-integrity computation making a low-integrity call as its last operation—in tail position—no

longer needs high integrity. That is, any reentrant call will have the same effect as making a second, non-

reentrant call after the first computation returns. We refer to this secure form of reentrancy as tail reentrancy.

8

(a) Vulnerable system (b) Secure system

All behavior

Non-reentrant

behavior

Figure 5. The set of possible behaviors in a secure vs a vulnerable system. In a vulnerable system, reentrancy can

introduce behaviors not possible without it. In a secure system, all behaviors are possible in non-reentrant executions.

Tail reentrancy also provides a principled explanation for a common smart-contract programming best prac-

tice: performing all state modifications before calling other contracts [55]. Done properly, this design pattern

ensures that all reentrant calls are tail-reentrant, and thus safe.

Definition 2 is also flexible. For a specific application, we could refine it to require only that reentrancy

does not violate particular programmer-specified application properties. To keep annotation burden low and

to avoid the need to specify detailed program properties, our definition requires that ℓ-reentrant executions

maintain all properties that hold without reentrancy. However, the later formal definition (Definition 9)

allows such refinement simply by restricting a universal quantifier.

4.3 Enforcing Reentrancy Security

As described above, ℓ-reentrancy occurs when high-integrity code calls low-integrity code that then calls

back into high-integrity code before returning. IFC only permits this pattern through the autoendorse mech-

anism described in Section 3.2. Many services, including the examples in Section 2, require untrusted users

to make requests into trusted code, making some version of autoendorse necessary. We therefore allow it,

but with additional restrictions.

In particular, endorsement of control flow is restricted by locking integrity. When a function endorses

the integrity of the control flow to label ℓ, integrity ℓ is locked, preventing further endorsement up to ℓ until

the original call returns. Locking allows an honest user to invoke a service one or more times in sequence

using a call-and-return pattern, but prevents an adversary from reentering into high-integrity code.

The semantics of these locks is to prevent autoendorsement from granting integrity that is locked. A

trusted operation is then always given the chance to reestablish any high-integrity invariants or properties it

may have temporarily invalidated before an attacker can invoke another trusted operation. To safely autoen-

dorse from integrity pc1 to integrity pc2, for any operation pc2 is trusted to perform, either pc1 must already

be trusted at that level or the requisite integrity must be unlocked. Formally, when integrity ℓL is locked,

then for all labels ℓ, if ℓL ⇒ ℓ and pc2 ⇒ ℓ, then pc1 ⇒ ℓ. The definition of lattice join quickly shows that

this rule is equivalent to pc1 ⇒ pc2 ∨ ℓL.

We could track and enforce locks statically, as part of the type system, or dynamically in the runtime.

Static locking—proving that a dynamic lock would never prevent execution—imposes no overhead and

avoids unexpected errors at run time. Unfortunately, purely static locks interact poorly with code that may

not enforce the same guarantees. If some unknown code might call autoendorse functions—violating a

static lock, meaning a dynamic lock would halt execution—a sound type system must assume the worst and

prevent all calls to that code when integrity may be locked. This highly restrictive outcome would violate a

core design goal of this work: providing compositional security even when interacting with unknown code.

Dynamic locks avoid this constraining over-approximation at the expense of run-time cost.

We therefore take a hybrid approach and separate locked integrity into a static component and a dynamic

one. The type system automatically adds endorsed control flow to the static component, but programmers

can explicitly move integrity from the static component to the dynamic one. This approach achieves the

9

f,m, x ∈ V (variable, method, and field names)

ℓ, pc ∈ L (integrity labels)

t ::= unit | bool | ref τ | C

τ ::= tℓ

CL ::= class C[ℓ] extends C {f :τ ; K ; M}

K ::= C(f :τ) {super(f) ; this.f = f}

M ::= τ m{pc≫pc; ℓ}(x :τ) {e}

v ::= x | () | true | false | ι | null | new C(v)

e ::= v | if{pc} v then e else e
| ref v τ | !v | v := v
| (C)v | v.f | v.m(v)
| endorse v from ℓ to ℓ | lock ℓ in e
| let x = e in e

Figure 6. Syntax for SeRIF

run-time efficiency and predictability of static mechanisms when security can be proved statically, while

still supporting safe interaction with unknown or untrusted code through more expressive dynamic locks.

The calculus does not specify how to implement dynamic locks. They could be built into the runtime,

tracked by a security monitor, or even implemented as a library. So long as all code trusted at level ℓ is well-

typed and agrees on some protocol to enforce the dynamic portion of the locks, the system will preserve

ℓ-reentrancy security. There is no requirement that untrusted check integrity locks statically or dynamically.

5 A Core Calculus for Secure Reentrancy

We present the Secure-Reentrancy Information Flow Calculus (SeRIF), an object-oriented core calculus that

models how a programming language can implement the above ideas. Figure 6 gives the syntax for SeRIF.

It extends Featherweight Java (FJ) [30] with information flow labels and, to support mutation, also reference

cells [45, Chapter 13].

SeRIF employs fine-grained IFC, so each type τ consists of a base type t and an integrity label ℓ. For

simplicity, we limit base types to unit, bool, references, and object types. To simplify proofs, null references

are allowed.

Class and method definitions extend those in FJ with integrity labels. To model distributed systems, we

consider code a form of data that may come from multiple sources, so each class definition CL includes a

label ℓC for the integrity of the code.

A method definition M contains labels pc1≫pc2; ℓ. Most IFC systems give functions a single pc label,

but SeRIF has two: pc1 specifies the minimum integrity required to call m, while pc2 specifies the integrity at

which m operates. Separating these labels supports autoendorsement as described in Section 3.2. If pc1 6⇒
pc2, then m is an autoendorse function. Both pc labels are bounded by ℓC , so code may only perform

operations that ℓC is trusted to perform. The label ℓ specifies the locks method m promises not to violate.

The if syntax includes the pc label used for the branches. We make this label explicit only to simplify

the operational semantics. In practice, it is easy to infer automatically.

The endorse expression endorses data as in other IFC systems with downgrading. The term lock ℓ in e
converts static locks to dynamic ones. In the operational semantics, e executes with ℓ dynamically locked,

so the type system can safely release any static lock on ℓ when type-checking e.

Expression subterms consist mostly of (open) values, not arbitrary expressions. In particular, let state-

ments are the only way to sequentially compose computation.

10

Because SeRIF is object-oriented, it can model interacting services and reentrancy concerns. An appli-

cation or contract implementation is a class, and a contract or instance of that application is an object of that

class type, allowing easy interaction between different services. Moreover, inheritance allows applications

that share common features to inherit form a common parent. For instance, a blockchain smart contract

system can be modeled by having all contracts inherit from a Contract class that implements tracking of cur-

rency.

5.1 SeRIF Operational Semantics

SeRIF has a small-step substitution-based semantics. Most rules are standard for an object-oriented language

with mutable references [30, 45], with a few additions for security.

Because expressions are built mostly out of values, evaluation contexts are simple. Indeed, let expres-

sions are the only surface syntax to serve as evaluation contexts. We introduce three new syntactic forms

as evaluation contexts to enable precise tracking of function boundaries, execution integrity, and dynamic

locks. These statements are denoted by s.

E ::= [·] | let x = E in e | returnτ E | E at-pc pc | E with-lock ℓ

s ::= E[e]

Semantic steps are defined on a pair of a statement s and a semantic configuration: a four-tuple

C = (CT , σ,M, L). Unlike in FJ, the class table CT is explicit, as the security definitions in Section 6

quantify over possible class tables. A heap σ maps locations to value–type pairs, and Σσ denotes the location-

to-type mapping induced by σ. That is, Σσ(ι) = τ if and only if σ(ι) = (v, τ) for some v. The final two

elements, M and L are both lists of integrity labels. M tracks the integrity of executing code, and L tracks

the dynamic portion of the currently-locked integrity. For notational ease, we reference the components of

C freely when only one group is in scope and we write C[X/L] to denote (CT , σ,M,X), and similarly for

σ and M.

Figure 7 presents selected semantic rules. The complete semantics is in Figure 9 (Appendix A). In the

semantic rules, v refers to a closed value, not a variable. In addition to many standard rules, the rules E-LOCK

and E-UNLOCK dynamically lock and unlock labels. The semantics abstracts out the many possible lock

implementations, merely tracking the set of locked labels and defining where to check them. The rules for

conditionals (E-IFT and E-IFF) now include tracking terms.

The key rule is E-CALL. It looks up the definition of a method with mbody (Appendix A) and performs

several dynamic checks: it verifies that the arguments all have the correct types, that the caller has suffi-

cient integrity to invoke the function, and that calling the method does not violate any dynamically locked

label ℓ ∈ L.

Dynamic Security Checks. Four rules—E-REF, E-ASSIGN, E-CALL, and E-RETURN—contain dynamic

checks for type safety and information security. These checks prevent untrusted code from placing ill-typed

values in the heap or passing them to trusted code. They similarly prevent untrusted code from modifying

trusted heap locations in any way. Such checks are critical for trusted code to safely interact with ill-typed

attacker code in any information flow system. While we do not detail how to implement dynamic typing

or label checks here, there is considerable research into both. Gradually typed languages do run-time type

checking [53], and distributed IFC systems include run-time label checks [e.g., 22, 35, 62]. Moreover, when

all high-integrity code is well-typed, it is sufficient to isolate memory between objects, as in Ethereum

contracts [57], and to execute run-time checks when entering trusted code.

11

[E-IFT]
〈if{pc} true then e1 else e2 | C〉 −→ 〈e1 at-pc pc | C〉

[E-ATPC]
〈v at-pc pc | C〉 −→ 〈v | C〉

[E-REF]
ι /∈ dom(σ) Σσ ⊢ v : τ M = M′, ℓm ℓm ⊳ τ

〈ref v τ | C〉 −→ 〈ι | C[σ[ι 7→ (v, τ)]/σ]〉

[E-ASSIGN]
Σσ(ι) = τ Σσ ⊢ v : τ M = M′, ℓm ℓm ⊳ τ

〈ι := v | C〉 −→ 〈() | C[σ[ι 7→ (v, τ)]/σ]〉

[E-CALL]

mbody(C,m) = (ℓm, x, τa, pc1≫pc2, e, τ)

M = M′, ℓ′m ℓ′m ⇒ pc1

∧

ℓ∈L

(pc1 ⇒ pc2 ∨ ℓ)

Σσ ⊢ w : τa e′ = e[x 7→ w, this 7→ new C(v)]

〈new C(v).m(w) | C〉 −→ 〈returnτ (e′ at-pc pc2) | C[M, ℓm/M]〉

[E-RETURN]
Σσ ⊢ v : τ M = M′, ℓm

〈returnτ v | C〉 −→ 〈v | C[M′/M]〉

[E-LOCK]
〈lock ℓ in e | C〉 −→ 〈e with-lock ℓ | C[L, ℓ/L]〉

[E-UNLOCK]
L = L′, ℓ

〈v with-lock ℓ | C〉 −→ 〈v | C[L′/L]〉

Figure 7. Selected small-step semantic rules for SeRIF.

5.2 Type System for SeRIF

The type system for SeRIF contains two different forms for typing judgments: one for values and one for

expressions. The typing judgment for values is straightforward for a stateful language. It takes the form

Σ;Γ ⊢ v : τ where Σ is a heap type mapping references to types and Γ is a typing environment mapping

variables to types. We write Σ ⊢ v : τ when Γ is empty, as we did in Section 5.1.

Values specify no computation so they require no security reasoning. Typing judgments for expressions

are more complex, including a standard pc label to track the integrity of the control flow. To secure reentrancy

with static locks when possible, they also include a label λ representing locked integrity.

Allowing tail reentrancy while eliminating other forms of ℓ-reentrancy requires treating calls in tail

position differently from calls in other positions. We accomplish this goal not by restricting when a given

call can occur, but instead by restricting what can occur after the call returns. Instead of one lock label, this

strategy uses two: an input lock λI that an expression must maintain to safely execute outside tail position,

and an output lock λO specifying the locks the expression actually maintains. The typing judgment now

takes the form Σ;Γ; pc;λI ⊢ e : τ ⊣ λO.

For an expression e to type-check with input lock λI, each subexpression of e outside tail position must

maintain λI. As non-value expressions only appear outside of tail position in let expressions, the following

typing rule enforces this restriction.

[LET]

Σ;Γ; pc;λI ⊢ e1 : τ1 ⊣ λ′
O λ′

O ⇒ λI

Σ;Γ, x :τ1; pc;λI ⊢ e2 : τ2 ⊣ λO

Σ;Γ; pc;λI ⊢ let x = e1 in e2 : τ2 ⊣ λO

12

[IF]

Σ;Γ ⊢ v : boolℓ ℓ ⇒ pc ℓ ⊳ τ
Σ;Γ; pc;λI ⊢ e1 : τ ⊣ λO Σ;Γ; pc;λI ⊢ e2 : τ ⊣ λO

Σ;Γ; pc;λI ⊢ if{pc} v then e1 else e2 : τ ⊣ λO

[ASSIGN]

Σ;Γ ⊢ v1 : (ref τ)ℓ

Σ;Γ ⊢ v2 : τ ℓ ⊳ τ

Σ;Γ; ℓ;λI ⊢ v1 := v2 : unitℓ
′

⊣ λO

[CALL]

mtype(C,m) = τa
pc

1
≫pc

2
;λO

−−−−−−−→ τ0
Σ;Γ ⊢ v : Cℓ Σ;Γ ⊢ va : τa

ℓ ⇒ pc1 pc1 ⇒ pc2 ∨ λI τ0 <: τ pc2 ∨ ℓ ⊳ τ

Σ;Γ; pc1;λI ⊢ v.m(va) : τ ⊣ λO ∨ pc2
[LOCK]

Σ;Γ; pc;λ′
I ⊢ e : τ ⊣ λ′

O

λ′
I ∧ ℓ ⇒ λI λ′

O ∧ ℓ ⇒ λO

Σ;Γ; pc;λI ⊢ lock ℓ in e : τ ⊣ λO

[METHOD-OK]

λI ⇒ pc2 ℓC ⇒ pc2 λI ∨ λ′
O ⇒ λO pc1 ⊳ τa

Σ;x :τa, this :C
pc

2 ; pc2;λI ⊢ e : τ ⊣ λ′
O

CT (C) = class C[ℓC] extendsD {· · ·}

(D,m) ∈ dom(mtype) =⇒ mtype(D,m) = τa
pc

1
≫pc

2
;λO

−−−−−−−→ τ

Σ ⊢ τ m{pc1≫pc2;λO}(x :τa) {e} ok in C

Figure 8. Selected typing rules for SeRIF

This rule is standard except that it requires λ′
O ⇒ λI, capturing the intuition above: e1 must maintain at

least lock λI, as it is outside tail position. Because e2 is in tail position in this expression, there is no similar

restriction on λO.

Figure 8 contains selected typing rules for SeRIF. The notation ℓ ⊳ τ indicates that data of type τ is no

more trusted than ℓ; that is, ℓ ⊳ tℓ
′

if and only if ℓ ⇒ ℓ′. The rules also use auxiliary lookup functions fields

and mtype and a subtyping relation <: that includes both standard object subtyping and safe relabeling—

tℓ <: tℓ
′

if and only if ℓ ⇒ ℓ′. The complete type system is in Figures 10 and 11 (Appendix A).

Most typing rules (e.g., IF and ASSIGN) are standard for an information flow calculus [49]. The only

non-standard rules are those that directly reference or constrain static locks: sequential composition (LET),

method calls (CALL), and dynamic locking (LOCK).

Most premises of CALL are standard. They check that the object and arguments have appropriate types

and ensure information security of the return type and control flow of the call. They also check that the call

does not violate any static locks (pc1 ⇒ pc2 ∨ λI) and that it attenuates trust in the output by the integrity

of both the object and the method (pc2 ∨ ℓ ⊳ τ).

This rule has two notable features. The first is not what it requires, but rather what it does not require.

There is no relation between the static input locks λI of the surrounding environment and λO, the locks

maintained by the method itself. This lack of constraint is precisely what enables tail reentrancy. A call

in tail position need not maintain any locks, so it may result in reentrancy. Outside tail position, however,

the LET rule requires that the output locks of the call expression—bounded by the locks maintained by the

method—must act for λI. CALL and LET therefore combine to enable safe tail reentrancy while ruling out

other potentially dangerous reentrancy.

The second feature is that CALL does not maintain locks λO—the locks maintained by the method—but

instead only λO ∨ pc2. This adjustment enables safe interaction with untrusted code that might not enforce

the same guarantees as SeRIF. Such code may claim to maintain locks, but fail to do so. Our safeguard

follows the principle of decentralized IFC [40]: you can only be hurt by an adversary you trust. We therefore

attenuate the claimed lock label λO by the integrity of the code.

Due to SeRIF’s inheritance structure, however, there is no way to determine the exact integrity of the

code. The implementation of m may come from C or any of its superclasses or subclasses. We instead

need a bound on the implementation’s integrity. The class typing rule METHOD-OK requires that the code’s

integrity act for pc2 to define or override a method with integrity pc2. As a result, pc2 is the most precise

13

bound on the code’s integrity available to the type system.

To understand the LOCK rule, recall that the lock term is designed to convert static locks to dynamic

ones. The type system must ensure that λI, the previous input locks, remain locked in some manner, but

it can safely release the portion that is dynamically checked. In particular, LOCK splits λI into ℓ and some

λ′
I such that λ′

I ∧ ℓ ⇒ λI. Now λI will remain locked as long as e type-checks with static input lock λ′
I.

Similarly, lock ℓ in e actually maintains locks on both λ′
O—the locks e maintains—and ℓ. It is thus safe to

trust λO up to λ′
O ∧ ℓ ⇒ λO. Notably, allowing these arbitrary label divisions is only secure because the label

lattice is distributive. Otherwise, separately locking λ′
I and ℓ could be insufficient to lock λI, and similarly

for λ′
O and λO.

Finally, METHOD-OK defines when a method is well-typed. This rule implements the idea that autoen-

dorse methods statically lock integrity by default. Specifically, it requires λI ⇒ pc2, so any expression

outside tail position must respect locks on the new, higher integrity of control flow. The integrity of the code

must also act for the integrity with which the function executes (ℓC ⇒ pc2), ensuring code cannot do any-

thing its source is not trusted to do. Next, the locks the method claims to enforce (λO) must be maintained

both initially (λI) and throughout (λ′
O). The last information-security check (pc1 ⊳ τa) guarantees that any

code trusted to call the method is also trusted to provide its arguments.

5.3 Modeling Application Operation

We aim to model applications that, like smart contracts, service user requests and may persist state across

requests. We represent the current state of the world by a set of class definitions in a class table CT and

a state map σ. A single user interaction, which we term an invocation I , is a label specifying the user’s

integrity and a call to a single method of an object stored in σ.

Execution of an invocation I = (ι,m(v), ℓ) with state σ starts from a semantic configuration with the

expression, integrity ℓ, and no locks, and step it to completion. The notation (I,CT , σ) ⇓ σ′ signifies that

it terminates in updated state σ′. The following rule formalizes this idea, using !ι.m(v) as shorthand for

let o = !ι in o.m(v).

[E-INVOKE]
〈!ι.m(v) | (CT , σ, ℓ, ·)〉 −→∗ 〈w | (CT , σ′, ℓ, ·)〉

(I,CT , σ) ⇓ σ′

The same notation denotes running a list of invocations I in sequence, using the output state from one

as the input state from the next. That is, if I = I1, . . . , In and (Ii,CT , σi−1) ⇓ σi for each 1 ≤ i ≤ n, then

we write (I,CT , σ0) ⇓ σn.

To type-check an invocation, the expression used in the evaluation must be well-typed in the evaluation

environment:

[INVOKE]
Σ; ·; ℓ;λI ⊢ !ι.m(v) : τ ⊣ λO

Σ ⊢ (ι,m(v), ℓ)

5.4 Examples Revisited

We now revisit the examples from Section 2 to see how SeRIF detects application vulnerabilities while

permitting secure implementations.

Uniswap. The vulnerability (Section 2.1) stems from an unexpected interaction between an exchange, to-

kens, and a malicious user. While they may all have different integrity, for simplicity, we give the exchange

and the tokens the same trusted label T and the user an untrusted label U with U 6⇒ T .

14

Anyone can call sellXForY, but it computes how much of asset Y to move and transfers tokens, so it

must have label U ≫T ;λO for some λO. Similarly, the token’s transferTo method modifies high-integrity

records, so it needs label pc≫T ;λ′
O for some labels pc and λ′

O.

The METHOD-OK rule requires sellXForY to type-check with some λI where λI ⇒ T . Because we

sequence two calls to transferTo, LET requires either λ′
O ⇒ λI ⇒ T , or a dynamic lock on label T around

(at least) the first transfer. These options correspond precisely to the solutions suggested in Section 2.1.

Requiring λ′
O ⇒ T is a statement that Uniswap expects the tokens not to call untrusted code. A dynamic

lock, by contrast, secures the exchange without assuming any particular token behavior and correspondingly

allows any value of λ′
O.

Notably, transferTo can type-check with λ′
O ⇒ T in either of two ways: it can decline to call unknown

code (i.e., remove lines 20 and 21 in Figure 1), or the token itself could acquire a dynamic lock while

making the calls. The first option straightforwardly eliminates the vulnerability. By locking T , the second

option dynamically prevents reentrant calls during a transfer to either the token or the exchange.

Key–value store. We use the same labeling scheme: the key–value store application gets a trusted label T
while the user gets an untrusted label U . Because anyone can call getOrCompute but it modifies trusted data,

it must have label U ≫T ;λO for some λO. The user-provided computation function is not trusted, so it gets

label pc≫U ;λ′
O for some labels pc and λ′

O.

As in the Uniswap example above, METHOD-OK requires getOrCompute to type-check with some

λI ⇒ T . Because the user-provided fallback function executes in sequence before another trusted operation,

LET and CALL combine to require either a dynamic lock or λ′
O∨U ⇒ λI ⇒ T . This second option, however,

is impossible because U 6⇒ T .

This forced reliance on a dynamic lock stems from the type system not trusting the user-provided call-

back to even type-check. In a modified type system that separated trust in the code’s execution from trust

that it type-checks, it would be sufficient to require that it type-check with high-integrity and some λ′
O ⇒ T .

This solution would correspond to a static guarantee that the user-provided callback does not invoke clear

or any other method modifying the store’s internal state.

Town Crier. As described in Section 2.3 and the original paper [64], Town Crier is secure despite using

(object) reentrancy, and the type system can verify that. Using the same labels again, we label Town Crier

and the trusted service address T and the user U . We can give the functions the following signatures.

int request{U ≫T ;T }(params:tU, callback:addressU)

void cancel{U ≫T ;U}(id:intU)

void deliver{T ≫T ;U}(id:intT , data:bytesT)

The request method—which just records the request parameters and updates a counter—type-checks sim-

ply. The cancel method type-checks with an endorsement on the condition on line 14 of Figure 3. Type-

checking deliver relies on TC trusting SERVICE_ADDR not to call attackers when receiving money. However,

SERVICE_ADDR is a hard-coded wallet address with no code that is already trusted to provide data to deliver,

so the operation sending it money can safely have the signature T ≫T ;T . These labels allow deliver to

type-check as written.

6 Formalizing Security Guarantees

We now have the tools needed to formalize reentrancy and security from Section 4.

15

6.1 Attacker Model

Proving a security guarantee requires a well-defined attacker. As ℓ-reentrancy is parameterized on a label,

we also parameterize attackers over what they compromise. We assume that an attacker A controls some

collection of system components, including anything that trusts any combination of those components. For

simplicity, we require a label ℓA representing the combined attacker power and a label ℓt representing the

minimum honest integrity, where every label is either attacker-control or honest. That is, for all ℓ ∈ L, either

ℓA ⇒ ℓ or ℓ ⇒ ℓt, but not both.2 We prove that, for any such ℓt and ℓA, if all code trusted at ℓt abides

by the static and dynamic locking requirements, the system is ℓ-reentrancy secure whenever ℓ ⇒ ℓt. This

parameterization of the attacker ensures that only someone you trust can damage your security.

Notably, the requiring ℓt and ℓA to exist means that, to guaranteeing security at ℓ1∧ ℓ2, one or both of ℓ1
and ℓ2 must act for ℓt, and therefore be honest. In other words, trusting the combined power of two labels is a

statement that you believe at least one of those labels is honest, though you may not know which. Combined

with trust in ℓ1∨ ℓ2 expressing trust in both ℓ1 and ℓ2, this idea supports modeling complex assumptions like

“at least k of n nodes are honest.”

Because reentrancy attacks stem from attacker code performing unexpected operations, we grant at-

tackers considerable power. Specifically, attackers can modify or replace any code that executes with low

integrity—that is, any code where ℓA ⇒ pc. Allowing attackers to modify high-integrity code executing

with a low-integrity pc may seem unrealistic, but experience has shown that code bases contain “gadgets”

that attackers can combine to achieve arbitrary functionality [47, 52]. This expansive power conservatively

models the ability to exploit such gadgets without modeling the gadgets explicitly.

To model the attacker’s ability to sidestep static security features, we introduce a new term to ignore

static lock labels.

e ::= · · · | ignore-locks-in e

E ::= · · · | ignore-locks-in E

[E-IGNORELOCKS]
〈ignore-locks-in v | C〉 −→ 〈v | C〉

[IGNORELOCKS]
Σ;Γ; pc;λ′

I ⊢ e : τ ⊣ λ′
O

Σ;Γ; pc;λI ⊢ ignore-locks-in e : τ ⊣ λO

Reasoning explicitly about ill-typed code is challenging, so the formal model requires all code to type-

check, but allows low-integrity code to use this new term. Using ignore-locks-in may not appear to grant

the full power of ignoring the type system. After all, the type system limits the location of method calls

and state modifications based on the pc label, which attackers cannot modify. However, low-integrity code

can only interact with high-integrity code in three ways: calling high-integrity methods, returning values

to high-integrity contexts, or writing to memory that high-integrity code will later read. In each case, the

operational semantics includes dynamic checks to ensure memory safety and to ensure that method calls and

state modifications are only performed by sufficiently trusted code—exactly what the type system asks.

2Our results hold for any partition of L into a downward-closed sublattice T and an upward-closed sublattice A, letting ℓ be

“trusted” if ℓ ∈ T . If T and A are complete, this formulation is equivalent with ℓt =
∨

T and ℓA =

∧
A.

16

Indeed, the only constraint the type system imposes that these dynamic checks do not enforce is the static

locking that ignore-locks-in is designed to avoid. Modeling well-typed high-integrity code and unknown

attacker code is therefore as simple as demanding that all code type-checks and high-integrity code does not

use ignore-locks-in, formalized as follows.

Definition 3 (Lock Compliance). A class table CT complies with locks in ℓt-code if, whenever

CT (C) = class C[ℓC] extends D {f :τf ; K ; M}

and ℓC ⇒ ℓt, then ignore-locks-in does not appear syntactically in the body of any method m ∈ M .

Strong object-level memory isolation, like that in Ethereum, reduces the information security checks

of the semantics to type-checking high-integrity code. Forcing dynamic lock checks, however, requires

direct support in the system runtime. As such features are uncommon, we model a system where attackers

can freely ignore dynamic locks. Specifically, we extend the operational semantics with a second rule for

function calls, E-CALLATK, which enables calls to attacker-controlled code without checking dynamic label

locks.

[E-CALLATK]

mbody(C,m) = (ℓm, x, τa, pc1≫pc2, e, τ)
M = M′, ℓ′m ℓ′m ⇒ pc1 ℓA ⇒ pc2

Σσ ⊢ w : τa e′ = e[x 7→ w, this 7→ new C(v)]

〈new C(v).m(w) | C〉 −→ 〈returnτ (e′ at-pc pc2) | C[M, ℓm/M]〉

This rule is identical to E-CALL, except instead of checking dynamic locks, it checks that pc2 is untrusted

(ℓA ⇒ pc2).

Interestingly, in systems that require even untrusted calls to check dynamic locks—admitting only

E-CALL and not E-CALLATK—trust of ℓ1 ∧ ℓ2 can be safe even when neither ℓ1 nor ℓ2 is honest. Such

systems enforce ℓt-reentrancy security whenever CT complies with locks in ℓt-code. There can even exist

labels ℓ1 and ℓ2 where CT does not comply with locks in ℓ1-code or ℓ2-code, but ℓ1 ∧ ℓ2 ⇒ ℓt, meaning ℓA
cannot be a well-defined label. The proofs in Appendix E consider both system and attacker models.

Attacker-provided code. In addition to having ill-typed code, attackers can tailor their attacks to the spe-

cific application. We therefore define security with respect to any system with the same high-integrity code.

Specifically, we employ a notion of ℓt-equivalent code that allows an attacker to add, remove, or replace

code whenever pc 6⇒ ℓt.
We formalize the equivalence using erasure on the code in a class table CT . Let CT |ℓt denote CT ,

but erasing any class C with low-integrity code (ℓC 6⇒ ℓt), any method m that executes with low integrity

(pc2 6⇒ ℓt), and the branches of if statements executing with low integrity (pc 6⇒ ℓt). Two class tables are

then ℓt-equivalent if they erase to the same thing.

CT ≈ℓ CT
′ △
⇐⇒ CT |ℓt = CT ′|ℓt

Attackers can also freely modify low-integrity locations in the heap, so we define ℓt-equivalent heaps

using similar erasure. As a heap σ is a partial function from locations to value–type pairs, memory is erased

to σ|ℓt simply by erasing mappings with low-integrity types. Formally, σ|ℓt(ι) = σ(ι) if σ(ι) = (v, tℓ) with

ℓ ⇒ ℓt, and it is undefined otherwise. As with code, the equivalence follows directly from this erasure:

σ ≈ℓ σ
′ △
⇐⇒ σ|ℓt = σ′|ℓt .

6.2 Noninterference

A typical goal for security in IFC systems, including our core calculus, is noninterference [23], which

for integrity means untrusted data should not influence trusted data at all. As we argued in Section 3.2,

17

noninterference is too restrictive, and indeed, endorsement exists to violate it. However, explicit endorsement

should be the only way to violate noninterference.

To state this, we first need a notion of a class table CT being endorsement-free for a label ℓ.

Definition 4 (Endorsement-Free). CT is ℓ-endorsement-free if, for all classes C and methods m such that

class C[ℓC] extends D {f :τf ; K ; M} ∈ CT

τ m{pc1≫pc2;λO}(x :τa) {e} ∈ M

the following two properties hold. (1) Either pc1 ⇒ ℓ or pc2 6⇒ ℓ, and (2) for any subexpression of e of the

form endorse v from ℓ1 to ℓ2, similarly, either ℓ1 ⇒ ℓ or ℓ2 6⇒ ℓ.

Intuitively, this definition says that CT is ℓ-endorsement-free if CT contains no means of endorsing

either control flow or data from a label that ℓ does not trust to one that it does.

This condition is sufficient to prove a strong notion of noninterference at ℓ. Because the SeRIF semantics

are nondeterministic with respect to selection of location names (E-REF), we use a modified equivalence ≃ℓ

that allows renaming locations in addition to erasing low-integrity state. See Appendix B for the formal

definition of this equivalence.

For partial functions f and f ′, we write f ⊆ f ′ to mean dom(f) ⊆ dom(f ′) and f(x) = f ′(x) wherever

f is defined.

Theorem 1 (Noninterference). Let CT be a class table where Σ ⊢ CT ok is ℓ-endorsement-free. For any

well-typed heaps σ1 and σ2 such that Σ ⊆ Σσi
and any invocation I such that Σ ⊢ I and (I,CT , σi) ⇓ σ′

i,

if σ1 ≃ℓ σ2, then σ′
1 ≃ℓ σ

′
2.

Theorem 1 follows by a complicated induction on the operational semantics, erasing untrusted values in

the heap. See Appendix D for details.

Note also that the theorem says nothing about lock compliance, only endorsement freedom. Indeed,

reentrancy locks are unnecessary to enforce noninterference.

6.3 Formalizing Reentrancy

Definition 1 in Section 4.1 informally defines ℓ-reentrancy as a trusted computation calling an untrusted

one, which then calls a trusted computation before returning. We also noted that the pc label specifies the

integrity of the control flow and is therefore ideal for defining reentrancy.

Because SeRIF’s semantics has no explicit call stack, it must insert at-pc tracking terms in the only

places where the pc label of the currently-executing code can change: conditionals and method calls. The

terms surround the body of the condition or method and remain until execution returns to the previous

pc label. Nested tracking terms appear precisely when code in one conditional or method body calls a

second before returning. We therefore formalize ℓ-reentrancy as three nested at-pc terms where ℓ trusts the

label of the first and third, but not the second. As each condition or call may still have pending computation,

we allow arbitrary evaluation contexts at each integrity level.

Definition 5 (ℓ-Reentrancy). A statement s is ℓ-reentrant if, for some evaluation contexts E0, E1, E2,

s = E0

[

E1

[

E2[s
′ at-pc pc3] at-pc pc2

]

at-pc pc1

]

where pc1, pc3 ⇒ ℓ but pc2 6⇒ ℓ.
We say an invocation I = (ι,m(v), ℓ′) is ℓ-reentrant in σ if 〈!ι.m(v) | (CT , σ, ℓ′, ·)〉 −→∗ 〈s | C〉

where s is ℓ-reentrant.

18

With a definition of reentrancy and a formal attacker model, we can formalize the notion of security

described in Section 4.2. Recall that “secure reentrancy” meant that any program behavior possible with

reentrancy is also possible without reentrancy. Equivalently, state changes made by reentrant executions

must be possible using non-reentrant ones.

We describe the properties a program maintains using a modified Hoare logic [28]. Because high-

integrity code may interact with arbitrary attacker code, we consider all possible invocations with ℓ-equiv-

alent code. Specifically, the high-integrity component of CT maintains a property defined by a predicate

pair (P,Q) if, whenever P holds on the input state, Q must hold on the output state.

Definition 6 (Predicate Satisfaction). Given a class table CT , a heap type Σ, and state predicates P and

Q, we say that CT satisfies (P,Q) at ℓ in Σ, denoted Σ �ℓ {P} CT {Q}, if, for any CT ′ such that

CT ≈ℓ CT
′, any well-typed state σ1 where Σ ⊆ Σσ1

, and any invocation sequence I such that Σσ1
⊢ I and

(I,CT ′, σ1) ⇓ σ2, then P (σ1) implies Q(σ2).

To simplify proofs, the definition requires invocations to be well-typed. The requirement does not, how-

ever, weaken the security guarantee. In a system like Ethereum without a strong type system, a high-integrity

contract would need to examine its arguments to ensure they are well-typed. We assume this facility is built

into the runtime.

The predicates P and Q can capture a variety of program properties. A simple example is program

invariants—such as Uniswap’s invariant on the product of the token balances—in which case P and Q
would be the same. Quantifying over a potentially infinite set of predicates, as the security definition does

below, allows for arbitrarily complex properties. For example, requiring a specific high-integrity output state

for each possible high-integrity input state would enforce noninterference. A demonstration of interference

would demonstrate that one such predicate pair is not satisfied.

Our goal, however, is not to guarantee any specific properties, but to formalize the idea that reentrancy

should not introduce new behavior. Definition 6 says nothing about reentrancy. It captures the entire set of

possible behaviors, including the reentrant ones. Saying that a complete set of behaviors is equivalent to

the non-reentrant behaviors requires a definition of non-reentrant behaviors. For that, we simply restrict our

previous definition to executions that are not ℓ-reentrant.

Definition 7 (Single-Entry Predicate Satisfaction). Given a class table CT , a heap type Σ, and state predi-

cates P and Q, we say that CT single-entry satisfies (P,Q) at ℓ in Σ, denoted Σ �1
ℓ {P} CT {Q}, if CT

satisfies (P,Q) at ℓ in Σ when restricted to invocation sequences I that are not ℓ-reentrant.

These two definitions combine to specify the difference between non-reentrant program behavior and

all program behavior. To compare them, note that a program satisfies predicate pair (P,Q) precisely when

no behavior violates it. Therefore, if reentrancy can exhibit new behaviors—the program is insecure—there

should be a predicate pair that is single-entry satisfied, but not satisfied in general.

Because attackers can arbitrarily modify low-integrity state, any changes to low-integrity state are pos-

sible without ℓ-reentrancy. We correspondingly restrict our security notion to predicates that are unaffected

by low-integrity state.

Definition 8 (ℓ-integrity Predicate). We say a predicate P is ℓ-integrity if, for all pairs of states σ1 and σ2,

σ1 ≈ℓ σ2 =⇒ P (σ1) ⇔ P (σ2).

We now define ℓ-reentrancy security formally.

Definition 9 (Reentrancy Security (formal)). We say a class table CT is ℓ-reentrancy secure in Σ if for all

pairs (P,Q) of ℓ-integrity predicates, Σ �1
ℓ {P} CT {Q} implies Σ �ℓ {P} CT {Q}.

19

Definition 9 is the core security definition SeRIF enforces.

Theorem 2. For any label ℓ, class table CT , and heap type Σ, if ℓ ⇒ ℓt and Σ ⊢ CT ok complies with

locks in ℓt-code, then CT is ℓ-reentrancy secure in Σ.

Theorem 2 follows from two core results. First, all reentrancy allowed by SeRIF is tail reentrancy. That

is, if an invocation passes through an ℓ-reentrant state, then the outer high-integrity call (E1 at-pc pc1 in

Definition 5) must be in tail position.

Theorem 3. For a label ℓ, class table CT , and well-typed heap σ1, if ℓ ⇒ ℓt and Σσ1
⊢ CT ok complies

with locks in ℓt-code, then for any invocation I and heap σ2 where Σσ1
⊢ I and (I,CT , σ1) ⇓ σ2, all

ℓ-reentrant states in the execution are ℓ-tail-reentrant.

Proof Sketch. The theorem follows from two facts. First, if a statement s steps to a call to a method that

grants integrity ℓ, then s cannot maintain a lock on ℓ. Second, any statement executing with integrity ℓ must

maintain a lock on ℓ (either statically or dynamically) unless it is in tail position. We provide a complete

proof in Appendix E.1.

Once we know that all reentrant executions are tail-reentrant, we need only show that tail reentrancy

is secure. The following theorem formalizes this idea by proving that, if all ℓ-reentrant states are ℓ-tail-

reentrant, then single-entry predicate satisfaction translates to predicate satisfaction.

Theorem 4. Let CT be a class table, σ1 and σ2 be well-typed heaps, and I be an invocation such that

(I,CT , σ1) ⇓ σ2 where all ℓ-reentrant states are ℓ-tail-reentrant. For any ℓ-integrity predicates P and Q, if

Σσ1
�1
ℓ {P} CT {Q} and P (σ1), then Q(σ2).

Proof Sketch. Examine the execution of I and build a CT ′ and I that produce a ℓ-equivalent final state with

no reentrancy. Whenever a high-integrity environment transitions to a low-integrity one in CT , replace the

low-integrity code in CT ′ with code that returns the same value as a hard-coded constant and makes no

calls to high-integrity code. For each call from a low-integrity environment to a high-integrity method, add

an invocation to I that makes the same call with the same arguments. Add additional invocations between

each high-integrity call to update the low-integrity state to match the low-integrity state in the original exe-

cution when the call occurred. The result is clearly a non-reentrant set of executions. Because all ℓ-reentrant

states are ℓ-tail-reentrant in the original execution, placing a reentrant call sequentially after the call it was

originally inside produces the same result.

Since the start and end states σ′
1 and σ′

2 of this new execution are ℓ-equivalent to σ1 and σ2 and Σσ1
�1
ℓ

{P} CT {Q},

P (σ1) ⇐⇒ P (σ′
1) =⇒ Q(σ′

2) ⇐⇒ Q(σ2).

See Appendix E.2 for details.

From here, we have enough to prove our desired result.

Proof of Theorem 2. For a class table CT ′, invocation I , and heaps σ1 and σ2 such that CT ≈ℓ CT ′ and

(I,CT ′, σ1) ⇓ σ2, Theorem 3 says all ℓ-reentrant states are ℓ-tail-reentrant. For ℓ-integrity predicates P
and Q such that Σσ1

�1
ℓ {P} CT {Q}, Theorem 4 says that if P (σ1) then Q(σ2), which is precisely the

definition of Σσ1
�ℓ {P} CT {Q}.

20

Application LoC
type-check

time (s)

necessary

annotations

Uniswap 1 57 4.1 11

Uniswap 2 49 4.0 9

Uniswap 3∗ 53 4.3 9

Town Crier 1 133 6.3 17

Town Crier 2∗ 133 6.5 17

Town Crier 3∗ 133 6.4 17

KV Store 1 38 2.1 10

KV Store 2∗ 35 2.0 9

Multi-DAO 1 38 3.5 8

Multi-DAO 2 36 3.3 7

Multi-DAO 3∗ 36 3.3 7

Table 1. Evaluation of SeRIF type checker. Asterisks indicate vulnerable implementations.

7 Implementation

We implemented a type checker for SeRIF in 4,200 lines of Java, using JFlex [31] and CUP [29]. We employ

the SHErrLoc constraint solver [63] to analyze information flow constraints, infer missing integrity labels,

and identify likely error locations.

We ran the type checker on four examples: the three from Section 2, but without simplifying Town Crier,

and one we call Multi-DAO. Multi-DAO is a multi-contract version of the vulnerable portion of Ethereum’s

DAO contract [46]. It is one application split across multiple contracts that synchronize on each transaction.

This structure allows for the DAO’s original reentrancy vulnerability, as well as a second attack where the

attacker reenters the application by leaving one contract and entering another before they synchronize. By

definition, this attack is not object reentrancy, but as long as the Multi-DAO contracts trust each other, it

is ℓ-reentrancy. As with the original DAO, the exploits can be patched either with dynamic locks or by

performing local state changes and inter-contract synchronization operations before external calls.

For each example, the type checker correctly identified vulnerabilities in the initial versions presented in

Section 2. It also accepted as secure patched implementations following the suggested fixes, both with and

without dynamic locks.

Developer Overhead. Table 1 presents several metrics for developer overhead. As each example applica-

tion is designed to distill complex security logic into minimal code, the examples are all relatively short—

ranging from 35 to 133 lines of code. On these examples, the type checker is able to run in a few seconds

on a consumer desktop from 2015 with an Intel i7-4790 CPU. Because the type system and the associated

guarantees are compositional, modules can be checked independently, so running time should scale well as

the code grows.

Another important practical concern is the annotation burden of adding information flow labels to the

code. Labels on classes, fields, methods, and data endorsements are necessary to define the security of a

program. Though SeRIF requires explicit labels elsewhere to ease formal reasoning, many of these—such

as the pc labels on if statements—are simple to infer. Considering only the labels with no obvious inference

mechanism, we found that 13% of the lines required explicit labels in Town Crier. The other examples

required more annotations per line as their distilled nature led to more function declarations and explicit

endorsements. As even Town Crier is a short application with complex security concerns, we expect many

applications would have lower annotation burdens.

Finally, SHErrLoc is capable of localizing errors, helping guide development. To see its utility, we look

21

at the Uniswap example in more detail. As in Section 5.4, we use two labels: U and T . Recall that the

exchange must either utilize a lock or state its assumption that the token will not call untrusted code. The

following signature for the token’s transferTo method makes the assumption explicit, where H is a token

holder class.

boolT transferTo{T ≫T ;T }(from:HT , to:HT , amount:intT)

To model the alert functions in H being unknown code from unknown sources, the interface can state the

following entirely-untrusted signatures.

void alertSend{U ≫U ;U}(to:HU, amount:intU)

void alertReceive{U ≫U ;U}(from:HU, amount:intU)

With these signatures, the calls to the alert functions in transferTo on lines 20 and 21 of Figure 1 cannot

type-check without a dynamic lock. SHErrLoc helpfully identifies line 21 as the most likely error. The type

checker correctly identifies the program as secure if we either wrap both alerts in a dynamic lock or remove

them entirely.

8 Related Work

We now discuss other work on reentrancy security, secure smart contracts, and information flow control.

Formal Reentrancy Security. Grossman et al. [26] define Effectively Callback-Free (ECF) executions, the

only other formal definition of reentrancy security of which we are aware. An ECF execution is one where

the operations can be reordered to produce the same result without callbacks (reentrancy). Their definition

is object-based, which we have argued fails to separate the security specification from the program design,

and they focus on dynamic analysis of individual executions.

Albert et al. [4] present a static analysis tool to check if code produces only ECF executions. The authors

advertise the tool as providing modular guarantees, but define “modular” to mean that a contract remains

secure against any possible outside code. Our approach provides the same guarantees when applied to a

single program with no assumptions on others, but also enables developers to safely compose independently-

checked modules by stating assumptions on each other’s behavior. Furthermore, Albert et al.’s analysis relies

on an SMT solver, limiting its scalability. In comparison, SeRIF only relies on checking acts-for relation-

ships of information flow labels.

We previously proposed the intuition of using information flow control with a mix of static and dynamic

locks to enforce ℓ-reentrancy [12]. In this work we add a core calculus with static and dynamic semantics,

formal definitions, proofs, and an evaluation.

Reentrancy-aware Languages. Several languages—all smart-contract oriented—attempt to guard against

reentrancy using a variety of techniques.

Scilla [51] constrains programming style by removing the call-and-return model of contract interaction.

Instead, it queues requests and executes them when the caller completes. While this structure makes object-

level reentrancy difficult, it prevents contracts from using the return values from remote calls. Moreover, by

allowing multiple unconstrained requests, it fails to detect or eliminate bugs like Uniswap (see Section 2.1).

Obsidian [14] and Flint [50] ease reasoning about contract behavior using typestate. Obsidian includes a

dynamic check that prevents (object) reentrancy entirely, while Flint has no such check. Both languages and

Move [9] have a notion of linear assets that cannot be created or destroyed. Asset linearity prevents attacks

like the DAO, but fails to address the challenges of Uniswap. The errant send in Uniswap does not create or

destroy tokens; it merely sends the wrong number because it the invariant it relies on is broken.

Nomos [17] enforces security using resource-aware session types. Since linearity of session types is

insufficient to eliminate reentrancy, it uses the resources tracked by the session types to prevent attackers

from acquiring permission to call an in-use contract—again, eliminating all (object) reentrancy.

22

Smart Contract Analysis Tools. There are many static analysis tools for blockchain smart contracts. Some

tools operate as unsound best-effort bug finding tools. OYENTE [36] searches for anti-patterns in code,

TEETHER [33] automatically generates exploits based on commonly-exploitable operations, and Ethain-

ter [11] uses information flow taint analysis to attempt to locate a predefined set of security concerns, such

as tainted owner variables and access to self-destruct.

Other tools use formal analysis techniques to soundly analyze contracts. Bhargavan et al. [7] prove

functional correctness through translation to F⋆. MAIAN [41] and ETHBMC [21] prove security against

specific classes of vulnerabilities using symbolic execution and bounded model checking, respectively.

EtherTrust [24] allows developers to specify program properties as Horn clauses and verify them using

a formal semantics for EVM [25]. SOLYTHESIS [34] combines static and dynamic mechanisms It statically

determines what checks are necessary for correctness and compiles them into run-time checks.

These tools are valuable for securing smart contracts, but they all analyze individual contracts, and their

analyses often fail to compose. As a result, they are unable to verify security of applications like Uniswap

that span multiple contracts.

Information Flow Control. Several distributed and decentralized systems enforce security using IFC. Fab-

ric [35] is a system and language for building distributed systems that allows secure data and code sharing

between nodes despite mutual distrust. DStar [62] uses run-time tracking at the OS level to control infor-

mation flow in a distributed system. These previous systems have the same limitation of information flow

systems that is described in Section 1: they do not defend against reentrancy attacks. The IFC-based instruc-

tion set of Zagieboylo et al. [59] restricts endorsement of pc labels using a purely dynamic mechanism that

appears to prevent all ℓ-reentrancy. However, this property is neither stated nor proved.

9 Conclusion

Despite decades of work on techniques for making software more secure and trustworthy, recent smart con-

tract bugs have vividly shown that avoiding critical security vulnerabilities can be difficult even in very short

programs. The essential challenge is composition of code with complex control flow across trust boundaries.

Prior static information flow analyses provide compositional guarantees, but are missing a key ingredient:

security against reentrant executions. Smart contracts have produced the most salient reentrancy vulnerabili-

ties to date due to their structure of interacting service in different trust domains. As more applications adopt

distributed service-oriented architectures mirroring this design, we expect reentrancy to become more of a

concern elsewhere.

This paper provides a flexible general-purpose security definition that permits secure forms of reentrancy

and a fine-grained static mechanism to reason about reentrancy security. We presented SeRIF, a core calculus

that combines static and dynamic locking to provably enforce reentrancy security in addition to providing

standard information flow assurances. We further showed that SeRIF is expressive enough to implement and

analyze various challenging examples. SeRIF’s lightweight, inferable annotations support an independently-

useful verification process while complementing other verification methods.

We hope these foundational results will aid the development of practical secure languages. To ensure

usability, languages will need to infer labels wherever possible and use sensible defaults in many other

areas. They might further require polymorphic, finer-grained locks that we believe can fit into the structure

of a distributive lattice. Finally, while we focused entirely on single-threaded reentrancy, concurrency is

common in real-world languages and applications. The relationship between reentrancy and concurrency

controls/consistency models is unclear and, we believe, a promising area for future work.

23

Acknowledgments

We would first like to thank our anonymous reviewers for their thoughtful comments and suggestions. Addi-

tional thanks to Tom Magrino for help clarifying and explaining earlier versions of this work, and to Rachit

Nigam, Rolph Recto, and Drew Zagieboylo for help editing.

This work was funded in part by a National Defense Science and Engineering Graduate (NDSEG) Fel-

lowship, NSF grants 1704615 and 1704788, and a gift from Ripple. Any opinions, findings, conclusions, or

recommendations expressed here are those of the authors and may not reflect those of these sponsors.

References

[1] CVE-2014-1772. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1772, 29 Jan.

2014. Accessed March 2021.

[2] CVE-2018-8174. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-8174, 14 Mar.

2018. Accessed March 2021.

[3] CWE-1265: Unintended reentrant invocation of non-reentrant code via nested calls.

https://cwe.mitre.org/data/definitions/1265.html, 20 Dec. 2018. Accessed March

2021.

[4] E. Albert, S. Grossman, N. Rinetzky, C. Rodríguez-Núñez, A. Rubio, and M. Sagiv. Taming callbacks

for smart contract modularity. Proc. ACM on Programming Languages, 4(OOPSLA), Nov. 2020. doi:

10.1145/3428277.

[5] O. Arden, M. D. George, J. Liu, K. Vikram, A. Askarov, and A. C. Myers. Sharing mobile code

securely with information flow control. In IEEE Symp. on Security and Privacy, pages 191–205, May

2012. URL http://www.cs.cornell.edu/andru/papers/mobile.html.

[6] O. Arden, J. Liu, and A. C. Myers. Flow-limited authorization. In 28th IEEE

Computer Security Foundations Symp. (CSF), pages 569–583, July 2015. URL

http://www.cs.cornell.edu/andru/papers/flam.

[7] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi, G. Gonthier, N. Kobeissi, N. Kulatova,

A. Rastogi, T. Sibut-Pinote, N. Swamy, et al. Formal verification of smart contracts: Short paper. In

11th ACM SIGPLAN Workshop on Programming Languages and Analysis for Security (PLAS), pages

91–96, Oct. 2016. doi: 10.1145/2993600.2993611.

[8] K. J. Biba. Integrity considerations for secure computer systems. Technical Report

ESD-TR-76-372, USAF Electronic Systems Division, Bedford, MA, Apr. 1977. URL

https://ban.ai/multics/doc/a039324.pdf. (Also available through National Technical Informa-

tion Service, Springfield Va., NTIS AD-A039324.).

[9] S. Blackshear, E. Cheng, D. L. Dill, V. Gao, B. Maurer, T. Nowacki, A. Pott, S. Qadeer, Rain,

D. Russi, S. Sezer, T. Zakian, and R. Zhou. Move: A language with programmable resources.

https://developers.diem.com/docs/technical-papers/move-paper/, May 2020. Accessed

March 2021.

[10] L. Breidenbach, P. Daian, A. Juels, and E. G. Sirer. An in-depth look at the parity multisig bug.

https://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/, 22 July 2017. Ac-

cessed March 2021.

24

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1772
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-8174
https://cwe.mitre.org/data/definitions/1265.html
http://www.cs.cornell.edu/andru/papers/mobile.html
http://www.cs.cornell.edu/andru/papers/flam
https://ban.ai/multics/doc/a039324.pdf
https://developers.diem.com/docs/technical-papers/move-paper/
https://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/

[11] L. Brent, N. Grech, S. Lagouvardos, B. Scholz, and Y. Smaragdakis. Ethainter: A smart contract secu-

rity analyzer for composite vulnerabilities. In 41st ACM SIGPLAN Conf. on Programming Language

Design and Implementation (PLDI), page 454–469, June 2020. doi: 10.1145/3385412.3385990.

[12] E. Cecchetti, S. Yao, H. Ni, and A. C. Myers. Securing smart contracts with information flow. In 3rd

Int’l Symp. on Foundations and Applications of Blockchain (FAB), Apr. 2020.

[13] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner. Staged information flow for JavaScript. In ACM

SIGPLAN Conf. on Programming Language Design and Implementation (PLDI), June 2009. URL

http://dl.acm.org/citation.cfm?id=1542476.1542483.

[14] M. Coblenz, R. Oei, T. Etzel, P. Koronkevich, M. Baker, Y. Bloem, B. A. Myers, J. Sunshine,

and J. Aldrich. Obsidian: Typestate and assets for safer blockchain programming. ACM Trans.

on Programming Languages and Systems, 42(3), Nov. 2020. doi: 10.1145/3417516. URL

https://doi.org/10.1145/3417516.

[15] ConsenSys Diligence. Uniswap audit. https://github.com/ConsenSys/Uniswap-audit-report-2018-12#31-liquidity-pool-can-be-stolen-in-some-tokens-eg-erc-777-29,

Jan. 2019. Accessed March 2021.

[16] P. Daian. Analysis of the DAO exploit. https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/,

18 June 2016. Accessed March 2021.

[17] A. Das, S. Balzer, J. Hoffmann, F. Pfenning, and I. Santurkar. Resource-aware session types for digital

contracts. In 34th IEEE Computer Security Foundations Symp. (CSF). IEEE, 2019.

[18] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin, and L. Safina. Mi-

croservices: yesterday, today, and tomorrow. In Present and Ulterior Software Engineering, pages

195–216. Springer, 2017.

[19] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler, E. Kohler, D. Mazières,

F. Kaashoek, and R. Morris. Labels and event processes in the Asbestos operating sys-

tem. In 20th ACM Symp. on Operating System Principles (SOSP), Oct. 2005. URL

http://dl.acm.org/citation.cfm?id=1095813.

[20] M. D. Ernst, R. Just, S. Millstein, W. Dietl, S. Pernsteiner, F. Roesner, K. Koscher, P. Barros, R. Bho-

raskar, S. Han, P. Vines, and E. X. Wu. Collaborative verification of information flow for a high-

assurance app store. In 21st ACM Conf. on Computer and Communications Security (CCS), pages

1092–1104, Nov. 2014.

[21] J. Frank, C. Aschermann, and T. Holz. ETHBMC: A bounded model checker

for smart contracts. In 29th USENIX Security Symp., Aug. 2020. URL

https://www.usenix.org/conference/usenixsecurity20/presentation/frank.

[22] D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Mazières, J. C. Mitchell, and A. Russo. Hails:

Protecting data privacy in untrusted web applications. In 10th USENIX Symp. on Operating

Systems Design and Implementation (OSDI), pages 47–60. USENIX Association, 2012. URL

http://dl.acm.org/citation.cfm?id=2387880.2387886.

[23] J. A. Goguen and J. Meseguer. Security policies and security models. In IEEE Symp. on Security and

Privacy, pages 11–20, Apr. 1982. URL https://ieeexplore.ieee.org/document/6234468.

25

http://dl.acm.org/citation.cfm?id=1542476.1542483
https://doi.org/10.1145/3417516
https://github.com/ConsenSys/Uniswap-audit-report-2018-12#31-liquidity-pool-can-be-stolen-in-some-tokens-eg-erc-777-29
https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
http://dl.acm.org/citation.cfm?id=1095813
https://www.usenix.org/conference/usenixsecurity20/presentation/frank
http://dl.acm.org/citation.cfm?id=2387880.2387886
https://ieeexplore.ieee.org/document/6234468

[24] I. Grishchenko, M. Maffei, and C. Schneidewind. Foundations and tools for the static analysis of

Ethereum smart contracts. In International Conference on Computer Aided Verification (CAV), pages

51–78. Springer, 2018.

[25] I. Grishchenko, M. Maffei, and C. Schneidewind. A semantic framework for the security analysis of

Ethereum smart contracts. In Int’l Conf. on Principles of Security and Trust (POST), pages 243–269.

Springer, 2018.

[26] S. Grossman, I. Abraham, G. Golan-Gueta, Y. Michalevsky, N. Rinetzky, M. Sagiv, and Y. Zohar.

Online detection of effectively callback free objects with applications to smart contracts. Proc. ACM

on Programming Languages, 2(POPL):1–28, Dec. 2017. doi: 10.1145/3158136.

[27] D. Hedin and A. Sabelfeld. Information-flow security for a core of JavaScript. In 25th IEEE Computer

Security Foundations Symp. (CSF), June 2012.

[28] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica, 1(4):271–281, 1972.

[29] S. Hudson, F. Flannery, C. S. Ananian, and M. Petter. CUP 0.11b: Construction of Use-

ful Parsers. Software release, http://www2.cs.tum.edu/projects/cup, June 2014. URL

http://www2.cs.tum.edu/projects/cup.

[30] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus for Java and GJ.

ACM Trans. on Programming Languages and Systems, 23(3):396–450, 2001.

[31] G. Klein, S. Rowe, and R. Decamp. JFlex 1.8.2. Software release, https://jflex.de, May 2020.

URL https://jflex.de.

[32] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler, and R. Morris. Information

flow control for standard OS abstractions. In 21st ACM Symp. on Operating System Principles (SOSP),

2007. URL http://dl.acm.org/citation.cfm?id=1294293.

[33] J. Krupp and C. Rossow. TEETHER: Gnawing at ethereum to automatically exploit smart contracts. In

27th USENIX Security Symp., Aug. 2018.

[34] A. Li, J. A. Choi, and F. Long. Securing smart contract with runtime validation. In 41st ACM SIGPLAN

Conf. on Programming Language Design and Implementation (PLDI), pages 438–453, June 2020. doi:

10.1145/3385412.3385982.

[35] J. Liu, O. Arden, M. D. George, and A. C. Myers. Fabric: Building open distributed systems securely

by construction. J. Computer Security, 25(4–5):319–321, May 2017. doi: 10.3233/JCS-0559. URL

http://www.cs.cornell.edu/andru/papers/jfabric.

[36] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor. Making smart contracts smarter. In ACM

Conf. on Computer and Communications Security (CCS), pages 254–269, 2016. doi: 10.1145/2976749.

2978309. URL http://doi.acm.org/10.1145/2976749.2978309.

[37] T. Magrino, J. Liu, O. Arden, C. Isradisaikul, and A. C. Myers. Jif 3.5: Java information flow. Software

release, https://www.cs.cornell.edu/jif, June 2016. URL https://www.cs.cornell.edu/jif.

[38] L. A. Meyerovich and B. Livshits. ConScript: Specifying and enforcing fine-grained security poli-

cies for JavaScript in the browser. In IEEE Symp. on Security and Privacy, May 2010. URL

http://dl.acm.org/citation.cfm?id=1849992.

26

http://www2.cs.tum.edu/projects/cup
http://www2.cs.tum.edu/projects/cup
https://jflex.de
https://jflex.de
http://dl.acm.org/citation.cfm?id=1294293
http://www.cs.cornell.edu/andru/papers/jfabric
http://doi.acm.org/10.1145/2976749.2978309
https://www.cs.cornell.edu/jif
https://www.cs.cornell.edu/jif
http://dl.acm.org/citation.cfm?id=1849992

[39] A. C. Myers and B. Liskov. Complete, safe information flow with decentralized la-

bels. In IEEE Symp. on Security and Privacy, pages 186–197, May 1998. URL

http://www.cs.cornell.edu/andru/papers/sp98/sp98.pdf.

[40] A. C. Myers and B. Liskov. Protecting privacy using the decentralized label model. ACM

Transactions on Software Engineering and Methodology, 9(4):410–442, Oct. 2000. URL

http://www.cs.cornell.edu/andru/papers/iflow-tosem.pdf.

[41] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor. Finding the greedy, prodigal, and suicidal

contracts at scale. In Proceedings of the 34th Annual Computer Security Applications Conference,

pages 653–663, Dec. 2018. doi: 10.1145/3274694.3274743.

[42] Oracle Corporation. Java SE version 15 API specification. java.util.Map#computeIfAbsent.

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/Map.html#computeIfAbsent(K,java.util.function.Function),

Sept. 2020. Accessed March 2021.

[43] Parity Technologies. A postmortem on the parity multi-sig library self-destruct.

https://www.parity.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/,

15 Nov. 2017. Accessed March 2021.

[44] PeckShield. Uniswap/Lendf.Me hacks: Root cause and loss analysis.

https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09,

Apr. 2020. Accessed March 2021.

[45] B. C. Pierce. Types and programming languages. MIT press, 2002.

[46] N. Popper. A hacking of more than $50 million dashes hopes in the world of virtual currency. The

New York Times, 17 June 2016.

[47] R. Roemer, E. Buchanan, H. Shacham, and S. Savage. Return-oriented programming: Systems,

languages, and applications. ACM Trans. Inf. Syst. Secur. (TISSEC), 15(1), Mar. 2012. URL

https://doi.org/10.1145/2133375.2133377.

[48] Rust 2020. The Rust standard library, version 1.48.0. Enum

std::collections::hash_map::Entry.or_insert_with. https://doc.rust-lang.org/std/collections/hash_map/enum.Entry.html#method.or_insert_with,

Nov. 2020. Accessed March 2021.

[49] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE

Journal on Selected Areas in Communications, 21(1):5–19, Jan. 2003. URL

http://www.cs.cornell.edu/andru/papers/jsac/sm-jsac03.pdf.

[50] F. Schrans, S. Eisenbach, and S. Drossopoulou. Writing safe smart contracts in Flint. In Conference

Companion of the 2nd International Conference on Art, Science, and Engineering of Programming,

pages 218–219, 2018.

[51] I. Sergey, V. Nagaraj, J. Johannsen, A. Kumar, A. Trunov, and K. C. G. Hao. Safer smart contract

programming with Scilla. Proc. ACM on Programming Languages, 3(OOPSLA):1–30, Oct. 2019.

[52] H. Shacham. The geometry of innocent flesh on the bone: Return-into-libc without function calls (on

the x86). In 14th ACM Conf. on Computer and Communications Security (CCS), page 552–561, Oct.

2007. doi: 10.1145/1315245.1315313.

27

http://www.cs.cornell.edu/andru/papers/sp98/sp98.pdf
http://www.cs.cornell.edu/andru/papers/iflow-tosem.pdf
https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/Map.html#computeIfAbsent(K,java.util.function.Function)
https://www.parity.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://doi.org/10.1145/2133375.2133377
https://doc.rust-lang.org/std/collections/hash_map/enum.Entry.html#method.or_insert_with
http://www.cs.cornell.edu/andru/papers/jsac/sm-jsac03.pdf

[53] J. Siek and W. Taha. Gradual typing for objects. In 21st European Conf. on Object-Oriented Program-

ming, pages 2–27, July 2007.

[54] Solidity. Solidity documentation. Release 0.7.5. https://docs.soliditylang.org/en/v0.7.5/,

Nov. 18 2020. Accessed December 2020.

[55] Solidity. Solidity security considerations. https://solidity.readthedocs.io/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern,

2021. Accessed March 2021.

[56] The Open Group. SOA standards. https://publications.opengroup.org/standards/soa. Ac-

cessed December 2020.

[57] G. Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum Project Yellow

Paper, 2014.

[58] J. Yang, K. Yessenov, and A. Solar-Lezama. A language for automatically enforcing privacy policies.

In 39th ACM Symp. on Principles of Programming Languages (POPL), pages 85–96, 2012.

[59] D. Zagieboylo, G. E. Suh, and A. C. Myers. Using information flow to design an ISA that con-

trols timing channels. In 32nd IEEE Computer Security Foundations Symp. (CSF), June 2019. URL

https://www.cs.cornell.edu/andru/papers/hyperisa.

[60] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers. Secure program partitioning. ACM Trans. on

Computer Systems, 20(3):283–328, Aug. 2002. ISSN 0734-2071. doi: 10.1145/566340.566343. URL

http://doi.acm.org/10.1145/566340.566343.

[61] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. Making information flow explicit in

HiStar. In 7th USENIX Symp. on Operating Systems Design and Implementation (OSDI), pages 263–

278, 2006. URL http://dl.acm.org/citation.cfm?id=2018419.

[62] N. Zeldovich, S. Boyd-Wickizer, and D. Mazières. Securing distributed systems with information

flow control. In 5th USENIX Symp. on Networked Systems Design and Implementation (NSDI), pages

293–308, 2008. URL http://dl.acm.org/citation.cfm?id=1387610.

[63] D. Zhang, A. C. Myers, D. Vytiniotis, and S. Peyton Jones. SHErrLoc: A static holistic er-

ror locator. ACM Trans. on Programming Languages and Systems, 39(4):18, Aug. 2017. URL

http://dl.acm.org/citation.cfm?id=3121137.

[64] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi. Town Crier: An authenticated data feed

for smart contracts. In 23rd ACM Conf. on Computer and Communications Security (CCS), CCS ’16,

pages 270–282, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4139-4. doi: 10.1145/2976749.

2978326. URL https://eprint.iacr.org/2016/168.pdf.

[65] L. Zheng and A. C. Myers. End-to-end availability policies and noninterference. In 18th

IEEE Computer Security Foundations Workshop (CSFW), pages 272–286, June 2005. URL

http://www.cs.cornell.edu/andru/papers/avail.pdf.

[66] L. Zheng, S. Chong, A. C. Myers, and S. Zdancewic. Using replication and partitioning to build

secure distributed systems. In IEEE Symp. on Security and Privacy, pages 236–250, May 2003. URL

http://www.cs.cornell.edu/andru/papers/sp03.pdf.

28

https://docs.soliditylang.org/en/v0.7.5/
https://solidity.readthedocs.io/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern
https://publications.opengroup.org/standards/soa
https://www.cs.cornell.edu/andru/papers/hyperisa
http://doi.acm.org/10.1145/566340.566343
http://dl.acm.org/citation.cfm?id=2018419
http://dl.acm.org/citation.cfm?id=1387610
http://dl.acm.org/citation.cfm?id=3121137
https://eprint.iacr.org/2016/168.pdf
http://www.cs.cornell.edu/andru/papers/avail.pdf
http://www.cs.cornell.edu/andru/papers/sp03.pdf

A Full SeRIF Rules

The full operational semantics for SeRIF are given in Figure 9 and the full typing rules are given in Fig-

ures 10 and 11.

B Location–Name Isomorphism

The E-REF operational semantic rule allows for selection of any unmapped location name when creating a

new location. This makes the SeRIF operational semantics nondeterministic in its choice of location names.

However, this is the only source of nondeterminism in the semantics. That is, for any pair of statement-heap

pairs that are equivalent up to location names, if one steps, then the other steps and the results are again

equivalent up to location names.

To reason about these differences, we define an equivalence relation that relates statements and heaps

that differ only in their location names. Formally, we define a location name permutation θ as an injective

map from locations to locations. We extend it to values by permuting location names, recursively permuting

constructor arguments of objects, and leaving other values unmodified. We further extend it to statements

by recursively applying to each sub-statement and to heaps as follows.

θ(σ)(ι) , (θ(v), τ) where σ(θ−1(ι)) = (v, τ)

This permutation supports the requisite equivalence relation.

Definition 10 (Location–name isomorphism). Statements s1 and s2 are location–name isomorphic, denoted

s1 ≃ s2, if there exists some θ such that s1 = θ(s2). Similarly, for heaps σ1 and σ2, σ1 ≃ σ2
△

⇐⇒ ∃θ. σ1 =
θ(σ2).

We write (s1, σ1) ≃ (s2, σ2) to mean there is a θ such that (s1, σ1) = (θ(s2), θ(σ2)) and similarly for

(s1, C1) ≃ (s2, C2).

This definition is sufficient to state and prove the important property that the SeRIF semantics is deter-

ministic up to location–name isomorphism.

Theorem 5. For any s1, s′1, and s2 and any C1, C′
1 and C2, if (s1, C1) ≃ (s2, C2) and 〈s1 | C1〉 −→ 〈s′1 | C

′
1〉,

then there exists s′2 and C′
2 such that 〈s2 | C2〉 −→ 〈s′2 | C

′
2〉, and for all such s′2 and C′

2, (s′1, C
′
1) ≃ (s′2, C

′
2).

Proof. By induction on the operational semantics. We take the permutation to be defined only mapping

location names between σ1 and σ2 and extend it on uses of E-REF (or inductively with E-EVAL).

Finally, for use in the noninterference theorem (Theorem 1), we combine location–name isomorphism

with ℓt-equivalence.

Definition 11 (Location–name ℓt-isomorphism). Two states σ1 and σ2 are location–name ℓt-isomorphic,

denoted σ1 ≃ℓ σ2, if there exists a θ such that σ1|ℓt = θ(σ2)|ℓt .

C Preservation and Progress

We now prove preservation and progress theorems for SeRIF.

Because SeRIF is stateful, the type preservation theorem includes preservation of both the statement and

the heap.

Theorem 6 (Type Preservation). If

29

[E-EVAL]
〈s | C〉 −→ 〈s′ | C′〉

〈E[s] | C〉 −→ 〈E[s′] | C′〉

[E-LET]
〈let x = v in e | C〉 −→ 〈e[x 7→ v] | C〉

[E-IFT]
〈if{pc} true then e1 else e2 | C〉 −→ 〈e1 at-pc pc | C〉

[E-IFF]
〈if{pc} false then e1 else e2 | C〉 −→ 〈e2 at-pc pc | C〉

[E-ATPC]
〈v at-pc pc | C〉 −→ 〈v | C〉

[E-REF]
ι /∈ dom(σ) Σσ ⊢ v : τ M = M′, ℓm ℓm ⊳ τ

〈ref v τ | C〉 −→ 〈ι | C[σ[ι 7→ (v, τ)]/σ]〉

[E-DEREF]
σ(ι) = (v, τ)

〈!ι | C〉 −→ 〈v | C〉

[E-ASSIGN]
Σσ(ι) = τ Σσ ⊢ v : τ M = M′, ℓm ℓm ⊳ τ

〈ι := v | C〉 −→ 〈() | C[σ[ι 7→ (v, τ)]/σ]〉

[E-CAST]
D <: C

〈(C)(new D(v)) | C〉 −→ 〈new D(v) | C〉

[E-FIELD]
〈new C(v).fi | C〉 −→ 〈vi | C〉

[E-CALL]

mbody(C,m) = (ℓm, x, τa, pc1≫pc2, e, τ)

M = M′, ℓ′m ℓ′m ⇒ pc1

∧

ℓ∈L

(pc1 ⇒ pc2 ∨ ℓ)

Σσ ⊢ w : τa e′ = e[x 7→ w, this 7→ new C(v)]

〈new C(v).m(w) | C〉 −→ 〈returnτ (e′ at-pc pc2) | C[M, ℓm/M]〉

[E-CALLATK]

mbody(C,m) = (ℓm, x, τa, pc1≫pc2, e, τ)
M = M′, ℓ′m ℓ′m ⇒ pc1 ℓA ⇒ pc2

Σσ ⊢ w : τa e′ = e[x 7→ w, this 7→ new C(v)]

〈new C(v).m(w) | C〉 −→ 〈returnτ (e′ at-pc pc2) | C[M, ℓm/M]〉

[E-RETURN]
Σσ ⊢ v : τ M = M′, ℓm

〈returnτ v | C〉 −→ 〈v | C[M′/M]〉

[E-LOCK]
〈lock ℓ in e | C〉 −→ 〈e with-lock ℓ | C[L, ℓ/L]〉

[E-UNLOCK]
L = L′, ℓ

〈v with-lock ℓ | C〉 −→ 〈v | C[L′/L]〉

[E-ENDORSE]
〈endorse v from ℓ′ to ℓ | C〉 −→ 〈v | C〉

[E-IGNORELOCKS]
〈ignore-locks-in v | C〉 −→ 〈v | C〉

Figure 9. Full small-step operational semantics for SeRIF.

30

Value Typing

[VAR]
Γ(x) = τ

Σ;Γ ⊢ x : τ
[UNIT]

Σ;Γ ⊢ () : unitℓ
[TRUE]

Σ;Γ ⊢ true : boolℓ
[FALSE]

Σ;Γ ⊢ false : boolℓ

[NEW]

fields(C) = f :τ
Σ;Γ ⊢ v : τ

Σ; Γ ⊢ new C(v) : Cℓ
[LOC]

Σ(ι) = τ

Σ;Γ ⊢ ι : (ref τ)ℓ
[NULL]

Σ; Γ ⊢ null : (ref τ)ℓ

[SUBTYPEV]
Σ; Γ ⊢ v : τ ′ τ ′ <: τ

Σ;Γ ⊢ v : τ

Core Expression Typing

[VAL]
Σ; Γ ⊢ v : τ

Σ;Γ; pc;λI ⊢ v : τ ⊣ λO

[ENDORSE]
Σ; Γ ⊢ v : tℓ

′

Σ;Γ; ℓ;λI ⊢ endorse v from ℓ′ to ℓ : tℓ ⊣ λO

[CAST]
Σ;Γ ⊢ v : Dℓ

Σ;Γ; pc;λI ⊢ (C)v : Cℓ ⊣ λO

[FIELD]

Σ; Γ ⊢ v : Cℓ

fields(C) = f :τ
τi <: τ ℓ ⊳ τ

Σ;Γ; pc;λI ⊢ v.fi : τ ⊣ λO

[CALL]

mtype(C,m) = τa
pc

1
≫pc

2
;λO

−−−−−−−−→ τ0

Σ;Γ ⊢ v : Cℓ Σ;Γ ⊢ va : τa
ℓ ⇒ pc1 pc1 ⇒ pc2 ∨ λI

τ0 <: τ pc2 ∨ ℓ ⊳ τ

Σ;Γ; pc1;λI ⊢ v.m(va) : τ ⊣ λO ∨ pc2

[IF]

Σ;Γ ⊢ v : boolℓ ℓ ⇒ pc ℓ ⊳ τ

Σ; Γ; pc;λI ⊢ e1 : τ ⊣ λO Σ;Γ; pc;λI ⊢ e2 : τ ⊣ λO

Σ;Γ; pc;λI ⊢ if{pc} v then e1 else e2 : τ ⊣ λO

[REF]
Σ;Γ ⊢ v : τ pc ⊳ τ

Σ;Γ; pc; λI ⊢ ref v τ : (ref τ)ℓ ⊣ λO

[DEREF]

Σ; Γ ⊢ v : (ref τ ′)ℓ

τ ′ <: τ ℓ ⊳ τ

Σ;Γ; pc;λI ⊢ !v : τ ⊣ λO

[ASSIGN]

Σ; Γ ⊢ v1 : (ref τ)ℓ

Σ; Γ ⊢ v2 : τ ℓ ⊳ τ

Σ;Γ; ℓ;λI ⊢ v1 := v2 : unitℓ
′

⊣ λO

[LOCK]

Σ;Γ; pc; λ′
I ⊢ e : τ ⊣ λ′

O

λ′
I ∧ ℓ ⇒ λI λ′

O ∧ ℓ ⇒ λO

Σ;Γ; pc; λI ⊢ lock ℓ in e : τ ⊣ λO

[LET]

Σ; Γ; pc; λI ⊢ e1 : τ1 ⊣ λ′
O λ′

O ⇒ λI

Σ;Γ, x :τ1; pc;λI ⊢ e2 : τ2 ⊣ λO

Σ;Γ; pc;λI ⊢ let x = e1 in e2 : τ2 ⊣ λO

[VARIANCE]

Σ; Γ; pc′;λ′
I ⊢ e : τ ′ ⊣ λ′

O

τ ′ <: τ pc ⇒ pc′

λ′
I ⇒ λI λ′

O ⇒ λO

Σ;Γ; pc;λI ⊢ e : τ ⊣ λO

Tracking Statement Typing

[ATPC]
Σ;Γ; pc;λI ⊢ s : τ ⊣ λO

Σ;Γ; pc′;λI ⊢ s at-pc pc : τ ⊣ λO

[WITHLOCK]

Σ; Γ; pc; λ′
I ⊢ s : τ ⊣ λ′

O

λ′
I ∧ ℓ ⇒ λI λ′

O ∧ ℓ ⇒ λO

Σ;Γ; pc;λI ⊢ s with-lock ℓ : τ ⊣ λO

[RETURN]

Σ; ·; pc;λ′
I ⊢ s : τ ⊣ λ′

O

λ′
I ∨ λ′

O ⇒ λO

Σ; Γ; pc; λI ⊢ returnτ s : τ ⊣ λO

Attacker-Model Expression Typing

[IGNORELOCKS]
Σ; Γ; pc; λ′

I ⊢ e : τ ⊣ λ′
O

Σ;Γ; pc;λI ⊢ ignore-locks-in e : τ ⊣ λO

Figure 10. Full typing rules for SeRIF values, expressions, and statements.

31

Class Typing

[METHOD-OK]

λI ⇒ pc2 ℓC ⇒ pc2 λI ∨ λ′
O ⇒ λO pc1 ⊳ τa

Σ; x :τa, this :C
pc2 ; pc2;λI ⊢ e : τ ⊣ λ′

O

CT (C) = class C[ℓC] extends D {· · ·} can-override(D,m, τa
pc

1
≫pc

2
;λO

−−−−−−−−→ τ)

Σ ⊢ τ m{pc1≫pc2;λO}(x :τa) {e} ok in C

[CLASS-OK]

fields(D) = g :τg
K = C(g :τg ; f :τf) {super(g) ; this.f = f}

Σ ⊢ M ok in C

Σ ⊢ class C[ℓC] extends D {f :τf ; K ; M} ok
[CT-OK]

C referenced in any type =⇒ C ∈ dom(CT)
∀C ∈ dom(CT).Σ ⊢ CT(C) ok

Σ ⊢ CT ok

Lookup Functions

CT (C) = class C[ℓC] extends D {f :τf ; K ; M}
fields(D) = g :τg

fields(C) = g :τg ; f :τf

CT(C) = class C[ℓC] extends D {f :τf ; K ; M}

τ m{pc1 ≫pc2; λO}(x :τa) {e} ∈ M

mtype(C,m) = τa
pc

1
≫pc

2
;λO

−−−−−−−−→ τ

mbody (C,m) = (ℓC , x, τa, pc1 ≫pc2, e, τ)

CT (C) = class C[ℓC] extends D {f :τf ; K ; M}

m not defined in M

mtype(C,m) = mtype(D,m)
mbody(C,m) = mbody(D,m)

(D,m) ∈ dom(mtype) =⇒ mtype(D,m) = τa
pc

1
≫pc

2
;λO

−−−−−−−−→ τ

can-override(D,m, τa
pc

1
≫pc

2
;λO

−−−−−−−−→ τ)

Subtyping

ℓ ⇒ ℓ′

tℓ <: tℓ
′

CT (C) = class C[ℓC] extends D {· · ·}

Cℓ <: Dℓ

τ1 <: τ2 τ2 <: τ3

τ1 <: τ3

Protection Heap Typing

ℓ ⇒ ℓ′

ℓ ⊳ tℓ
′

σ(ι) = (v, τ) =⇒ Σσ ⊢ v : τ

⊢ σ wt

Figure 11. Typing rules for SeRIF classes, auxiliary lookup functions, and relations.

32

• 〈s | (CT , σ,M, L)〉 −→ 〈s′ | (CT , σ′,M′, L′)〉,
• Σσ ⊢ CT ok,

• Σσ; Γ; pc;λI ⊢ s : τ ⊣ λO, and

• ⊢ σ wt,

then

• Σσ ⊆ Σσ′ ,

• ⊢ σ′ wt, and

• Σσ′ ; Γ; pc;λI ⊢ s′ : τ ⊣ λO.

The proof of Theorem 6 makes use of several simple lemmas.

Lemma 1 (Closed Value Typing). If v 6= x and Σ;Γ ⊢ v : tℓ, then Σ;Γ′ ⊢ v : tℓ
′

for any Γ′ and ℓ′.

Proof. By inspection on the value typing rules.

Lemma 2 (Value Substitution). The following rule is admissible

Σ;Γ, x :τ ′; pc;λI ⊢ s : τ ⊣ λO Σ;Γ ⊢ v : τ ′

Σ;Γ; pc;λI ⊢ s[x 7→ v] : τ ⊣ λO

Proof. By simple structural induction on the proof that Σ;Γ, x :τ ′; pc;λI ⊢ s : τ ⊣ λO.

Lemma 3 (Heap-type Extension). The following rules are admissible

Σ;Γ ⊢ v : τ Σ ⊆ Σ′

Σ′; Γ ⊢ v : τ

Σ;Γ; pc;λI ⊢ s : τ ⊣ λO Σ ⊆ Σ′

Σ′; Γ; pc;λI ⊢ s : τ ⊣ λO

Proof. By simple induction on the proofs of Σ;Γ ⊢ v : τ and Σ;Γ; pc;λI ⊢ s : τ ⊣ λO.

Lemma 4 (Heap Extension). The following rule is admissible

⊢ σ wt Σσ ⊢ v : τ ι /∈ dom(σ)

⊢ σ[ι 7→ (v, τ)] wt

Proof. For notational ease, let σ[ι 7→ (v, τ)] = σ′. First we note that because ι /∈ dom(σ), we have that

Σσ′ = Σσ ∪ {ι 7→ τ} with ι /∈ dom(Σσ) = dom(σ). Now assume σ′(ι′) = (v′, τ ′). If ι′ = ι, then the

premise of the rule gives us Σσ ⊢ v′ : τ ′, otherwise inversion on ⊢ σ wt gives us the same property. By

Lemma 3, Σσ′ ⊢ v′ : τ ′, thereby proving ⊢ σ′ wt.

Lemma 5 (Statement Substitution). If Σ;Γ; pc;λI ⊢ E[s1] : τ ⊣ λO then there is some Γ′, pc′, λ′
I, τ

′,

and λ′
O such that Σ;Γ′; pc ′;λ′

I ⊢ s1 : τ ′ ⊣ λ′
O and for any statement s2 and heap-type Σ′ ⊇ Σ, such that

Σ′; Γ′; pc ′;λ′
I ⊢ s2 : τ

′ ⊣ λ′
O, then Σ′; Γ; pc;λI ⊢ E[s2] : τ ⊣ λO.

Proof. By simple induction on the proof of Σ;Γ; pc;λI ⊢ E[s1] : τ ⊣ λO.

These lemmas are sufficient to prove type preservation.

Proof of Theorem 6. This will be a proof by induction on the typing rules and inversion on the operational

semantics.

Case VAL: Values cannot step, so this is impossible.

Case ENDORSE: Because v must be a closed value, it type-checks with any label, so VAL proves the result.

33

Case CAST: Inversion on the operational semantics requires that v = new C ′(v) and C ′ <: C . Therefore

NEW, SUBTYPEV, and VAL prove the case.

Case FIELD: Inversion on the operational semantics says v = newD(v) and the premise of FIELD requires

Σ;Γ ⊢ newD(v) : Cℓ. By inversion on the value typing rules, Dℓ <: Cℓ and Σ;Γ ⊢ vi : τi. Therefore,

SUBTYPEV is sufficient to prove Σ;Γ ⊢ vi : τ , and VAL competes the case.

Case CALL: Inversion on the operational semantics says v = newD(v), and the premise of CALL requires

Σ;Γ ⊢ new D(v) : Cℓ. By inversion on the value typing rules, Dℓ <: Cℓ. By the restrictions

on overriding and the fact that mtype(C,m) = τa
pc1≫pc2;λO

−−−−−−−→ τ , we know that mbody(D,m) =
(ℓm, x, τa, pc1≫pc2, e, τ). METHOD-OK further requires Σ;x :τa, this :D̃

pc2 ; pc2;λ
′
I ⊢ e : τ ⊣ λ′

O

where λ′
I ∨ λ′

O ⇒ λO and D <: D̃. Therefore, using the premise that Σ;Γ ⊢ w : τa and Lemma 2,

it must be the case that Σ; ·; pc2;λ
′
I ⊢ e[x 7→ w, this 7→ new D(v)] : τ ⊣ λ′

O. This premise coupled

with RETURN and ATPC prove the desired result.

Case IF: Inversion on the operational semantics requires that the step must be E-IFT or E-IFF. The appro-

priate premise of IF requiring the branches to type-check in the same environment and ATPC prove

the case.

Case REF: By construction Σσ′(ι) = τ , so LOC and VAL prove the well-typed condition. Lemma 4 ensures

⊢ σ′ wt, and σ ⊂ σ′, so Σσ ⊂ Σσ′ .

Case DEREF: Inversion on the operational semantics shows the step uses E-DEREF, meaning v = ι and

σ(ι) = (v′, τ). The assumption that ⊢ σ wt means Σσ ⊢ v′ : τ , so that coupled with SUBTYPEV and

VAL proves the case.

Case ASSIGN: Inversion on the operational semantics shows the step must be E-ASSIGN, which means

v1 = ι, so inversion on the premise Σ;Γ ⊢ v1 : (ref τ)ℓ shows σ(ι) = (v, τ), so E-ASSIGN requires

Σσ ⊢ v2 : τ . Therefore, Σσ = Σσ′ and σ′ = σ[ι 7→ (v2, τ)] remains well-typed. Finally, UNIT and

VAL prove s′ properly type-checks.

Case LOCK: The semantic rule must be E-LOCK, so s′ = e with-lock ℓ, and the premises of WITHLOCK

are identical to LOCK, so WITHLOCK proves the case.

Case LET: Here we see s = let x = s1 in e2. We consider two sub-cases, if s1 = v is a value, and if it is

not. In the first sub-case, the operational semantic rule must be LET, and inversion on the typing rules

proves that Σσ; Γ ⊢ v : τ1, so Lemma 2 proves the sub-case.

In the second sub-case, inversion on the operational semantics proves that the step must be E-EVAL.

The LET rule’s first premise is that Σσ; Γ; pc;λI ⊢ s1 : τ1 ⊣ λ′
O. Coupled with the inductive step

in E-EVAL that 〈s1 | (CT , σ,M, L)〉 −→ 〈s′1 | (CT , σ′,M′, L′)〉, the inductive hypothesis proves

that Σσ′ ; Γ; pc;λI ⊢ s′1 : τ1 ⊣ λ′
O with Σσ ⊆ Σσ′ and ⊢ σ′ wt. Lemma 3 therefore shows that

Σσ′ ; Γ, x :τ1; pc;λI ⊢ e2 : τ2 ⊣ λO, so LET us sufficient to show Σσ′ ; Γ; pc;λI ⊢ let x = s′1 in e2 :
τ2 ⊣ λO, finishing the case.

Case VARIANCE: By induction on the typing rules.

Cases ATPC, WITHLOCK, and RETURN: Each of these cases has two sub-cases: where the sub-statement

is a value and where it is not. If the sub-statement is a value, the step must be E-ATPC, E-UNLOCK, or

E-RETURN, respectively. In each case VAL allows values to type-check with any pc and lock labels,

proving the case. If the sub-statement is not a value, the only step possible is E-EVAL. Here the proof

follows by induction on the typing rules in the same manner as the LET case above.

Several semantic steps (E-REF, E-ASSIGN, and E-CALL) include information-security checks to guar-

antee that the code performing the operation is sufficiently trusted. The type system guarantees that these

labels remain at least as trusted as the pc label of code executing. We formally define this property as a

relation between a label stack and a statement, denoted by M ! s, and then prove that the semantics

34

maintains this relation. The relation is formally defined on evaluation contexts and extended to statements

s = E[e] if M ! E.

ℓm ! [·]

M ! E

M ! let x = E in e

M ! E

M ! E with-lock ℓ

M ! E

M ! ignore-locks-in E

M ! E

ℓ,M ! returnτ E

ℓ,M ! E ℓ ⇒ pc

ℓ,M ! E at-pc pc

Proposition 1. For any statements s and s′ and configurations C = (CT , σ, (ℓm,M), L) and C′ =
(CT , σ′,M′, L′), if ⊢ CT ok and (ℓm,M) ! s and Σσ; Γ; ℓm;λI ⊢ s : τ ⊣ λO and 〈s | C〉 −→ 〈s′ | C′〉,
then M′ ! s′.

The proof of Proposition 1 relies on two lemmas.

Lemma 6. For any label list M and evaluation contexts E1 and E2, M ! E1[E2] if and only if there

exist M1, M2, and ℓm such that (1) M1, ℓm,M2 = M, (2) M1, ℓm ! E1, and (3) ℓm,M2 ! E2.

Proof. This is a proof by induction on E1.

Case E1 = [·]:
(⇒) Let M1 be empty and note that M cannot be empty, so M = ℓm,M2.

(⇐) By inversion on the rules, M1 must be empty, so M = ℓm,M2, proving the result.

Case E1 = (let x = E′
1 in e), E′

1 with-lock ℓ, or ignore-locks-in E′
1:

(⇒) By induction, there exist M1, M2, and ℓm such that M = M1, ℓm,M2, M1, ℓm ! E′
1, and

ℓm,M2 ! E2. Therefore, by the appropriate rule, M1, ℓm ! E1.

(⇐) By induction, M1, ℓm,M2 ! E′
1[E2], so by the appropriate rule, M1, ℓm,M2 ! E1[E2].

Case E1 = returnτ E
′
1:

(⇒) Inversion on the correspondence proves M = ℓ,M′ and M′ ! E′
1[E2]. By induction, there is

some M′
1, ℓm,M2 = M′ such that M′

1, ℓm ! E′
1 and ℓm,M2 ! E2. Letting M1 = ℓ,M′

1

completes the case.

(⇐) By inversion on the correspondence rules, if M1, ℓm ! E1, then M1 = ℓ,M′
1 for some ℓ and

M′
1 and M′

1, ℓm ! E′
1. By induction, M′

1, ℓm,M2 ! E′
1[E2], so therefore

M1, ℓm,M2 = ℓ,M′
1, ℓm,M2 ! returnτ E′

1[E2] = E1[E2].

Case E1 = E′
1 at-pc pc:

(⇒) By inversion on the rules, M ! E′
1[E2], so by induction M = M1, ℓm,M2 with the desired

properties. Moreover, M = ℓ,M′ and ℓ ⇒ pc. Because M1, ℓm is a non-empty prefix of M, it

must be the case that M1, ℓm = ℓ,M′
1, so therefore M1, ℓm ! E′

1 at-pc pc = E1, as desired.

(⇐) By inversion on the correspondence rules, M1, ℓm ! E′
1, so by induction, M = M1, ℓm,M2 !

E′
1[E2]. Moreover, M1, ℓm = ℓ,M′

1 and ℓ ⇒ pc. Therefore M = ℓ,M′
1,M2, satisfying the

requirements to prove M ! E′
1[E2] at-pc pc = E1[E2].

Lemma 7. For statements s and s′, configurations C = (CT , σ,M, L) and C′ = (CT , σ′,M′, L′), and

label lists M1 and M2, if M = M1,M2 and M2 is not empty, then 〈s | C〉 −→ 〈s′ | C′〉 if and only if

〈s | C[M2/M]〉 −→ 〈s′ | C′[M′
2/M]〉 for some M′

2 where M′ = M1,M
′
2.

Proof. By simple induction on the operational semantics.

Proof of Proposition 1. This will be a proof by induction on the operational semantics.

35

Case E-EVAL: In this case s = E[s̃], and by definition, s̃ = Ẽ[e]. By Lemma 6, there exist M1, M2,

and ℓ such that ℓm,M = M1, ℓ,M2 where M1, ℓ ! E and ℓ,M2 ! Ẽ. Therefore E-EVAL gives

〈s̃ | C〉 −→ 〈s̃′ | C′〉, and because ℓ,M2 is non-empty, Lemma 7 proves 〈s̃ | C[(ℓ,M2)/M]〉 −→
〈s̃′ | C′[M′

2/M]〉, and moreover M′ = M1,M
′
2. Induction on this step ensures that M′

2 ! s̃′, so

therefore M′
2 must be non-empty. As a single step can only add or remove one element from M, that

means M′
2 = ℓ,M′′

2 , so by Lemma 6, M′ = M1, ℓ,M
′′
2 ! E[s̃′] = s′.

Case E-IFT and E-IFF: Here s = if{pc} v then e1 else e2. By inversion on the correspondence rules,

M = ·, and by inversion on the typing rules ℓm ⇒ pc. Therefore ℓm ! [·] at-pc pc, so by definition

M′ = ℓm ! (ei at-pc pc) = s′.

Case E-ATPC: Here s = v at-pc pc and s′ = v. By inversion on the correspondence rules, M = · and

M′ = ℓm. Because ℓm ! v for any v, this completes the case.

Cases E-CALL and E-CALLATK: Here s = newC(v).m(w) and mbody(C,m) = (ℓ′m, x, τa, pc1≫pc2, e, τ).
By inversion on the correspondence rules, M = · and M′ = ℓm, ℓ′m. By METHOD-OK, ℓ′m ⇒ pc2.

Therefore, letting e′ = e[x 7→ w, this 7→ new C(v)],

ℓ′m ! e′ ℓ′m ⇒ pc2

ℓ′m ! e′ at-pc pc2

ℓm, ℓ′m ! returnτ (e′ at-pc pc2) .

Case E-RETURN: Here s = returnτ v, so inversion on the correspondence rules proves M = ℓ. Therefore

M′ = ℓm ! v = s′ proves the case.

No other operational semantic rules modify M or add or remove return or at-pc terms. Therefore the same

proofs apply before and after the step.

The progress theorem is not without caveats. SeRIF’s type system intentionally leaves checking of ex-

plicit casts, null dereferences, and dynamic reentrancy locks to run time. As a result, the progress theorem

states that these three are the only ways a well-typed program can get stuck.

Theorem 7 (Progress). For any statement s and configuration C = (CT , σ, (ℓm,M), L), if

• Σσ; ·; pc;λI ⊢ s : τ ⊣ λO,

• ℓm ⇒ pc, and

• (ℓm,M) ! s,

then one of the following holds:

1. s is a closed value,

2. 〈s | C〉 −→ 〈s′ | C′〉 for some s′ and C′,

3. s = E[(C)(new D(v))] where D 6<: C ,

4. s = E[!null] or s = E[null := v], or

5. s = E[new C(v).m(w)] for a C and m such that mtype(C,m) = τa
pc1≫pc2;λO

−−−−−−−→ τ and there is some

ℓm ∈ L such that pc1 6⇒ pc2 ∨ ℓm.

Proof. This is a proof by induction on the derivation that Σσ; ·; pc;λI ⊢ s : τ ⊣ λO.

Case VAL: Because Γ = ·, s is a closed value.

Case ENDORSE: Here s = endorse v from ℓ to ℓ′. Since Γ = ·, v is a closed value, so E-ENDORSE applies.

Case CAST: Here s = (C)v. Inversion on the value typing rules coupled with the fact that Γ = · proves

that v = new D(v). If D <: C , then E-CAST applies with C′ = C. Otherwise this is a bad cast.

Case FIELD: Here s = v.fi. Again, inversion on the value typing rules with Γ = · proves v = new C(v).
Moreover FIELD requires reference to a valid fields, so E-FIELD steps s with C′ = C.

36

Case CALL: Here s = v.m(v). If a step can be taken, it must use E-CALL or E-CALLATK. Because Γ = ·,
inversion on the premise that Σσ; Γ ⊢ v : Cℓ proves v = new C(w). The premise Σ;Γ ⊢ v : τa
also directly proves the corresponding premise of E-CALL/E-CALLATK. Inversion on the proof that

(ℓm,M) ! s proves that M is empty, so therefore the premise of E-CALL/E-CALLATK requiring

the caller’s integrity to act for pc1 is satisfied by ℓm ⇒ pc ⇒ pc1. At this point, E-CALLATK applies

if ℓA ⇒ pc2 and E-CALL applies if
∧

ℓ∈L(pc1 ⇒ pc2∨ℓ). Therefore, if the statement is stuck, neither

is satisfied, and the second is precisely the condition of a dynamic reentrancy lock blocking a call.

Case IF: Here s = if{pc ′} v then e1 else e2. Inversion on the value typing rules using Γ = · means v = true

or v = false. Therefore E-IFT or E-IFF apply.

Case REF: Here s = ref v τ . This step will be with E-REF. Since Γ = ·, the requirement that Σσ ⊢ v : τ
comes directly from REF. Moreover, inversion on the rules proving (ℓm,M) ! s shows that M = ·,
so the protection requirement of E-REF is ℓm ⊳ τ and ℓm ⇒ pc ⊳ τ , meaning the step applies with

some fresh ι /∈ dom(σ).

Case DEREF: Here s = !v. Since Γ = ·, inversion on the DEREF premise that Σ ⊢ v : (ref τ ′)ℓ means

v = ι with Σσ(ι) = τ ′ or v = null. In the first case, by definition this means σ(ι) = (v′, τ ′) for some

v′, so E-DEREF applies. In this second case, this is a null dereference.

Case ASSIGN: Here s = (v1 := v2). Again, Γ = · and inversion on the typing rules using the premise

Σ;Γ ⊢ v1 : (ref τ)ℓ proves that v1 = ι or v1 = null. If v1 = null, then this is a null dereference. If

v1 = ι, then the step must be E-ASSIGN. The requirement that Σσ(ι) = τ and Σ ⊢ v2 : τ stem from

inversion on the typing derivation of v1 and the second premise of ASSIGN. Finally, inversion on the

rules proving (ℓm,M) ! s shows that M = ·, and ASSIGN requires pc ∨ ℓ ⊳ τ , so the transitivity

of ⇒ proves ℓm ⊳ τ , as needed.

Case LOCK: E-LOCK always applies.

Case LET: Here s = let x = s̃ in e. The first hypothesis of LET proves Σσ; ·; pc;λI ⊢ s̃ : τ1 ⊣ λ′
O, and

(ℓm,M) ! s̃. Therefore, our inductive hypothesis applies to s̃. If s̃ is a closed value, then E-LET

applies to s, stepping to s′ = e[x 7→ s̃] letting C′ = C. If 〈s̃ | C〉 −→ 〈s̃′ | C′〉, then by E-EVAL,

〈s | C〉 −→ 〈let x = s̃′ in e | C′〉. For the other three cases where s̃ = E[e′] where e′ is a failure

condition, we note that let x = E in e is an evaluation context, so s falls into the same failure case.

Case VARIANCE: Because ℓm ⇒ pc ⇒ pc ′, this case follows directly by induction.

Case ATPC: Here s = s̃ at-pc pc ′. Inversion on the proof that (ℓm,M) ! s proves ℓm ⇒ pc ′. The

hypothesis of ATPC is Σσ; ·; pc
′;λI ⊢ s̃ : τ ⊣ λO, so the inductive hypothesis applies to s̃.

If s̃ is a closed value, then E-ATPC applies letting C′ = C. If s̃ steps to s̃′, then E-EVAL proves

〈s | C〉 −→ 〈s̃′ at-pc pc ′ | C′〉. For the other three cases, as with LET, s̃ = E[e] where e is a failure

condition, so E at-pc pc ′ is an evaluation context proving that s falls into the same failure case as s̃.

Cases WITHLOCK and IGNORELOCKS: The logic of these cases is the same as the logic of the ATPC case,

but using pc instead of pc ′.

Case RETURN: Here s = returnτ s̃. Inversion on the proof that (ℓm,M) ! s shows that M is not empty

and M ! s̃. Additionally, a premise of RETURN is Σσ; ·; pc;λ
′
I ⊢ s̃ : τ ⊣ λ′

O. Therefore, the

inductive hypothesis applies using Lemma 7 to replace (ℓm,M) with M in C.

If s̃ is a closed value, the well-typed premise of RETURN proves Σσ ⊢ v : τ , and since (ℓm,M) is

non-empty, E-RETURN applies. If s̃ steps to s̃′, then E-EVAL allows s to step as well. Again, for the

three failure cases where s̃ = E[e], simply replacing E with returnτ E creates the expected form.

Note that, for any invocation I = (ℓ, ι,m(v)), ℓ ! !ι.m(v). Therefore, if the invocation and class table

are well-typed in Σσ for a well-typed heap σ, Theorems 6 and 7 combine with Proposition 1 to prove that

the invocation either steps to a closed value with a well-typed heap or gets stuck on one of the three run-time

37

error checks.

D Proof of Noninterference

We now provide a proof of Theorem 1 presented in Section 6. We prove Theorem 1 using an erasure-based

construction. Specifically, we will erase low-integrity values in the heap and then execute the same program

using a modified semantics that continues to omit low-integrity values from the state and uses a special value,

•, when one would be read. We prove that, if the original execution terminated and the code is endorsement-

free, this modified execution must terminate and, critically, the high-integrity components of the state must

match. The theorem then follows by noting that if σ1 ≈ℓt σ2, then both executions must produce heaps that’s

high-integrity components are the same as the modified execution on a partially-erased heap.

Formally, we introduce a new value to denote erased data.

v ::= · · · | •

The typing and semantic rules that handle • are parameterized on a label ℓt defining high-integrity values.

For notational ease, we omit that label in our syntax. However, as our theorems are all parameterized over ℓt,
they remain true for any possible choice of ℓt.

The type system allows • to be any type, as long as that type is low-integrity. To simplify notation, we

define label(tℓ) = ℓ.

[BULLET]
label(τ) 6⇒ ℓt

Σ;Γ ⊢ • : τ

We introduce an expanded operational semantics to deal with these terms. To separate executions with

and without bullets, we define a new step function denoted •−→ when working with erased terms. We

also define a context B defining syntactic forms that normally require a decision based on the value. The

B-BULLETCTX rule simply erases the entire expression when the given value is •.

B ::= if{pc} [·] then e else e | ![·] | (C)[·] | [·].f | [·].m(v)

[B-PURESTEP]
〈s | (CT , σ,M, L)〉 −→ 〈s′ | (CT , σ,M′, L′)〉

〈s | (CT , σ,M, L)〉 •−→ 〈s′ | (CT , σ,M′, L′)〉
[B-EVAL]

〈s | C〉 •−→ 〈s′ | C′〉

〈E[s] | C〉 •−→ 〈E[s′] | C′〉

[B-BULLETCTX]
〈B[•] | C〉 •−→ 〈• | C〉

[B-TREF]

ι /∈ dom(σ) Σσ ⊢ v : τ
M = M′, ℓm ℓm ⊳ τ label(τ) ⇒ ℓt

〈ref v τ | C〉 •−→ 〈ι | C[σ[ι 7→ (v, τ)]/σ]〉

[B-UREF]

ι /∈ dom(σ) Σσ ⊢ v : τ
M = M′, ℓm ℓm ⊳ τ label(τ) 6⇒ ℓt

〈ref v τ | C〉 •−→ 〈ι | C[σ[ι 7→ (•, τ)]/σ]〉
[B-BASSIGN]

〈• := v | C〉 •−→ 〈() | C〉

[B-TASSIGN]

Σσ(ι) = τ Σσ ⊢ v : τ
M = M′, ℓm ℓm ⊳ τ label(τ) ⇒ ℓt

〈ι := v | C〉 •−→ 〈() | C[σ[ι 7→ (v, τ)]/σ]〉

[B-UASSIGN]

Σσ(ι) = τ Σσ ⊢ v : τ
M = M′, ℓm ℓm ⊳ τ label(τ) 6⇒ ℓt

〈ι := v | C〉 •−→ 〈() | C[σ[ι 7→ (•, τ)]/σ]〉

38

These semantics inherit from our original operation semantics whenever the step does not modify the

heap. When modifying the heap, however, •−→ omits any values that are in low-integrity memory locations,

while treating high-integrity memory locations normally. When reading from the heap, it produces • when-

ever it tries to read from a location that has a type but not a value. In our construction for our proof, these

will be precisely the low-integrity locations.

We now claim that, if CT is endorsement-free at ℓt, then any invocation with input state σ1 will, under

normal semantics, produce a state σ2 that is ℓt-equivalent to executing the same invocation under bullet

semantics with input state σ1|ℓt .

Lemma 8 (Label Stack Maintenance). For any expression e, if

〈e | (CT , σ,M, L)〉 −→∗ 〈v | (CT , σ′,M′, L′)〉,

then M′ = M and L′ = L.

Proof. This will be a proof by induction on the number of steps from e to v and on the operational semantics.

In the base case, there are zero steps, so the result trivially holds.

We now assume 〈e | (CT , σ,M, L)〉 −→∗ 〈v | (CT , σ′,M′, L′)〉 takes n ≥ 1 steps and the result

holds for all executions of k < n steps. We consider the following cases.

Case E-EVAL: If E = [·], we can replace this step with another, so without loss of generality, we assume

E 6= [·]. Since e = E[ẽ] is an expression, ẽ is also an expression and E = let x = x in E′e′′. By

inversion on the operational semantics, E-EVAL is the only rule that can apply until ẽ reaches some

value ṽ. Moreover, E[ṽ] is not a value, so 〈ẽ | C〉 −→∗ 〈ṽ | C̃〉 in fewer steps. By induction, we

therefore have that M̃ = M and L̃ = L. Moreover, since E[ẽ] was surface syntax, E[ṽ] must be as

well. Therefore, another application of our inductive hypothesis proves

〈E[ẽ] | (CT , σ,M, L)〉 −→∗ 〈E[ṽ] | (CT , σ̃,M, L)〉 −→∗ 〈v | (CT , σ′,M, L)〉

Cases E-IFT and E-IFF: Because e = if{pc} v′ then e1 else e2 was surface-syntax, ei must also be surface

syntax. Inspection on the semantic rules says that any expression of the form ẽ at-pc pc can only step

using E-EVAL if ẽ steps or E-ATPC if ẽ is a value. Therefore, we know that 〈ẽ | C〉 −→∗ 〈v | C′〉, and

then v at-pc pc steps once using E-ATPC. By induction on the number of steps, we therefore have

that M′ = M and L′ = L.

Case E-LOCK: This case is similar to the previous case. Again, we know that e = lock ẽ in ℓ and ẽ is

surface-syntax. We also know that 〈e | C〉 −→ 〈ẽ with-lock ℓ | C[L, ℓ/L]〉. By the same argument as

above, ẽ must step to a value in fewer steps, so by induction

〈ẽ | (CT , σ,M, (L, ℓ))〉 −→∗ 〈v | (CT , σ′,M, (L, ℓ))〉

A single application of E-UNLOCK then gives us the desired result.

Cases E-CALL and E-CALLATK: These cases are identical to the previous one, but modifying M instead

of L and using E-RETURN instead of E-UNLOCK.

Cases E-UNLOCK and E-RETURN: These are impossible because e is surface-syntax.

In all other cases, stepping e once continues to be surface syntax and leaves M and L unmodified. We can

therefore remove a single step and apply our inductive hypothesis.

Lemma 9 (Step Confinement). For a state σ1 where Σ ⊆ Σσ1
and a statement s1, if

1. Σ ⊢ CT ok is endorsement-free at ℓt,
2. ⊢ σ1 wt,

39

3. Σ;Γ; pc;λI ⊢ s1 : τ ⊣ λO,

4. pc 6⇒ ℓt,
5. for all sub-statements s at-pc pc′ of s1, pc ′ 6⇒ ℓt, and

6. 〈s1 | (CT , σ1,M1, L1)〉 −→ 〈s2 | (CT , σ2,M2, L2)〉,
then

• σ1 ≈ℓt σ2 and

• for all sub-statements s at-pc pc′ of s2, pc ′ 6⇒ ℓt.

Proof. This will be a proof by induction on the semantic rule used to take a step. The following are the

nontrivial cases.

Case E-EVAL: Here we have s1 = E[s̃1]. We claim by induction on E that Σ;Γ; pc ′;λ′
I ⊢ s̃1 : τ

′ ⊣ λ′
O for

some pc ′, λ′
I, τ

′, and λ′
O where pc ′ 6⇒ ℓt. If E = [·], this follows directly from our assumptions. If

E = let x = x in E′s′, returnτ E′, or E′ with-lock ℓ, we note that Σ;Γ; pc;λ′
I ⊢ E′[s̃1] : τ

′ ⊣ λ′
O for

some λ′
I, τ

′, and λ′
O, so by induction on E, we have the desired result. If E = E′ at-pc pc ′′, we note

that Σ;Γ; pc ′′;λ′
I ⊢ E′[s̃1] : τ ⊣ λO and, by assumption, pc ′′ 6⇒ ℓt. Thus induction on E again gets us

the desired typing judgment.

E-EVAL tells us 〈s̃1 | (CT , σ1,M1, L1)〉 −→ 〈s̃2 | (CT , σ2,M2, L2)〉 and s2 = E[s̃2]. Since s̃1 is a

sub-statement of s1, it must satisfy hypothesis 5, and the typing judgment above gives us hypotheses 3

and 4. Induction on the operational semantics therefore gives us σ1 ≈ℓt σ2 and, for all sub-statements

e at-pc pc′ of s̃2, pc′ 6⇒ ℓt. By hypothesis 5, the same must be true of E, so therefore E[s̃2] = s2
satisfies the required condition.

Cases E-IFT and E-IFF: Here s1 = if{pc ′} v then s′1 else s′2. We know that σ1 = σ2, so that condition

is trivially true. Both s′1 and s′2 are surface-syntax, so they contain no sub-statement of the form

e at-pc pc′′, meaning the only such sub-statement in s2 = s′i at-pc pc
′ is the outer one. By inversion

on the typing rules, we know that pc ⇒ pc ′, so by transitivity, pc ′ 6⇒ ℓt.

Case E-REF: Here s1 = ref v τ ′. By inversion on the typing rules, we know that pc ⊳τ ′, and by assumption,

pc 6⇒ ℓt. Therefore, since ι /∈ dom(σ1) and σ2 = σ1[ι 7→ (v, τ ′)], we know that σ1|ℓt = σ2|ℓt , which

is exactly the definition of σ1 ≈ℓt σ2. There are no sub-statements of the form e at-pc pc ′, so that

result is trivially true.

Case E-ASSIGN: Here s1 = ι := v. By inversion on the typing rules, we know Σ(ι) = τ ′ and pc ⊳ τ ′. By

assumption, pc 6⇒ ℓt, so therefore ι /∈ dom((|ℓtσ1)). Given this and the fact that Σσ2
= Σσ1

, again

σ1 ≈ℓt σ2, as desired. As in the previous case, there are no sub-statements of the form e at-pc pc ′.

Cases E-CALL and E-CALLATK: Here s1 = newC(v).m(w) with mbody(C,m) = (ℓm, x, τa, pc1≫pc2, e, τ).
Inversion on the typing rules proves that pc ⇒ pc1, and by assumption, pc 6⇒ ℓt. Therefore, by tran-

sitivity, pc1 6⇒ ℓt, so, by the definition of CT being endorsement-free at ℓt, it must be the case that

pc2 6⇒ ℓt. Moreover, e[x 7→ w, this 7→ new C(v)] is surface-syntax, so the only sub-statement of the

form s′ at-pc pc ′ on s2 is the outer one where pc ′ = pc2, and we just proved pc2 6⇒ ℓt. Finally, the

step leaves the heap and heap type unmodified, finishing the case.

All other cases leave the heap and heap type unmodified and do not add sub-statement of the form e at-pc pc′,
making the result trivial in those cases.

Corollary 1 (Confinement). Given a class table CT and an expression (not statement) e, if

• CT and e are both endorsement-free at ℓt,
• Σσ ⊢ CT ok,

• Σσ; Γ; pc;λI ⊢ e : τ ⊣ λO for some pc 6⇒ ℓt, and

• 〈e | (CT , σ,M, L)〉 −→∗ 〈v | (CT , σ′,M′, L′)〉,
then σ ≈ℓt σ

′, M = M′, and L = L′.

40

Proof. We apply Lemma 8 and inductively apply Lemma 9 using the fact that expressions cannot contain

any subexpressions of the form e′ at-pc pc ′.

We aim to prove something about execution in our regular semantics through execution in our semantics

with bullets, so we need a way to relate terms with and without bullets. We do this using a syntactic relation

denoted e1 ≥• e2 to indicate that e2 is just e1 but possibly with some information erased. On values, the

relation is defined as follows.

v 6= •

v ≥• v

v /∈ {x, •}

v ≥• •

v ≥• w

new C(v) ≥• new C(w)

We extend this relation to typing proofs. We first relate typing proofs of closed values (so proofs that do

not use VAR) to value typing proofs using BULLET. Note that we do not mandate that the heap types be the

same at every location so long as they are the same at the locations used in the typing proof. That is

[LOC]
Σ1(ι) = τ

Σ1; Γ ⊢ ι : (ref τ)ℓ
≥•

Σ2(ι) = τ

Σ2; Γ ⊢ ι : (ref τ)ℓ
[LOC]

whenever Σ1(ι) = Σ2(ι), even if Σ1 and Σ2 differ on other locations. Notably, if Σ1(ι) = τ 6= Σ2(ι)
(possibly because ι /∈ dom(Σ2)) and ℓ 6⇒ ℓt, then,

[LOC]
Σ1(ι) = τ

Σ1; Γ ⊢ ι : (ref τ)ℓ
≥•

ℓ 6⇒ ℓt

Σ2; Γ ⊢ • : (ref τ)ℓ
[BULLET].

We finally extend the relation to typing proofs of expressions and statements by extending it structurally.

That is, if the typing proofs of each sub-statement is related, then the typing proof of the whole statement is

related. For example,

π1

Σ1; Γ ⊢ v1 : τ
≥•

π2

Σ2; Γ ⊢ v2 : τ

π1

Σ1; Γ ⊢ v1 : τ pc ⊳ τ

Σ1; Γ; pc;λI ⊢ ref v τ : (ref τ)ℓ ⊣ λO

≥•

π2

Σ2; Γ ⊢ v2 : τ pc ⊳ τ

Σ2; Γ; pc;λI ⊢ ref v τ : (ref τ)ℓ ⊣ λO

We usually denote this relation Σ1; Γ; pc;λI ⊢ s1 : τ ⊣ λO ≥• Σ2; Γ; pc;λI ⊢ s2 : τ ⊣ λO.

We now use this relation to relate executions in the regular semantics and the erasure semantics. For this

we use a slightly modified erasure procedure on heaps, σ|•ℓt . Instead of simply removing all low-integrity

mappings, it instead replaces the values with •.

σ|•ℓt(ι) ,

{

(v, tℓ) if σ(ι) = (v, tℓ) and ℓ ⇒ ℓt

(•, tℓ) if σ(ι) = (v, tℓ) and ℓ 6⇒ ℓt

Lemma 10 (Bullet Semantics Completeness). Let Ci = (CT , σi,M, L). If

• Σσ1
; Γ; pc;λI ⊢ s1 : τ ⊣ λO ≥• Σσ2

; Γ; pc;λI ⊢ s2 : τ ⊣ λO,

• 〈s1 | C1〉 −→ 〈s′1 | C
′
1〉,

then 〈s2 | C2〉 •−→ 〈s′2 | C
′
2〉.

Proof. This is a proof by induction on the operational semantics of s1 −→ s′1.

Case E-EVAL: By induction on E, if s1 = E[s̃1], then s2 = E′[s̃2] where s̃1 ≥• s̃2. By induction on the

operational semantics, 〈s̃2 | C2〉 •−→ 〈s̃′2 | C
′
2〉, and B-EVAL applies to complete the case.

41

Cases E-IFT and E-IFF: Here we have s1 = if{pc} ṽ then ẽ1 else ẽ2, and s2 = if{pc} v• then e•1 else e
•
2.

We consider two sub-cases. First, if v• = •, we see that 〈s2 | C2〉 •−→ 〈• | C2〉 by B-BULLETCTX . If

v• 6= •, then v• = ṽ, and therefore B-PURESTEP allows s2 to step, as desired.

Cases E-CAST, E-FIELD, E-CALL, and E-CALLATK: These cases follow the same logic as the previous

case, with their corresponding syntax.

Case E-REF: Here we have s1 = ref v1 τ so therefore s2 = ref v2 τ where v1 ≥• v2. Inversion on E-REF

proves M = M′, ℓm where ℓm⊳τ . Since M is the same in C1 and C2, if label(τ) ⇒ ℓt, then B-TREF

applies, and if not, B-UREF applies.

Case E-DEREF: Here s1 = !ι and s2 = !v where either v = • or v = ι. If v = •, then B-BULLETCTX

applies. Otherwise, we know that Σσ2
; Γ; pc, λI ⊢ !ι : τ ⊣ λO. By inversion on the expression typing

rules, we know that Σσ2
; Γ ⊢ ι : (ref τ)ℓ, and by inversion on the value typing rules, we therefore

have Σσ2
(ι) = τ . In other words, ι ∈ dom(σ2), so B-PURESTEP applies with E-DEREF.

Case E-ASSIGN: In this case s1 = ι := v and s2 = v1 := v2 where v1 = • or v1 = ι. If v1 = •,

then B-BASSIGN applies. Otherwise, because s1 is well-typed with Σσ1
, inversion on the typing rules

proves Σσ1
(ι) = τ ′. Because s1 steps with E-ASSIGN, inversion on E-ASSIGN proves M = M′, ℓm

where ℓm⊳τ ′. By inversion on the ≥• relation, it must be the case that Σσ2
(ι) = τ ′ and Σσ2

; Γ ⊢ v2 : τ
′.

Since M is the same in C1 and C2, this is sufficient to apply one of B-TASSIGN or B-UASSIGN ,

depending on label(τ ′).

For all other cases, the heap remains unmodified and no decisions are made based on a value that may be •,

so B-PURESTEP applies to s2 using the same step that applied to s1.

Lemma 11 (Bullet Step Correspondence). For any class table CT , statements s1 and s2, heaps σ1 and σ2,

and heap-type Σ, if

• Σ ⊢ CT ok is endorsement-free at ℓt,
• s1 and s2 are endorsement-free at ℓt,
• ⊢ σi wt for both i = 1, 2,

• σ1 ≈ℓt σ2 with σ2 ⊆ σ1|
•
ℓt

,

• Σ ⊆ Σσ2
,

• Σσ1
; Γ; pc;λI ⊢ s1 : τ ⊣ λO ≥• Σσ2

; Γ; pc;λI ⊢ s2 : τ ⊣ λO, and

• 〈s1 | (CT , σ1,M, L)〉 −→+ 〈v | C〉,
then there exists statements s′1 and s′2, heaps σ′

1 and σ′
2, and label stacks M′ and L′ such that

• 〈s1 | (CT , σ1,M, L)〉 −→+ 〈s′1 | (CT , σ′
1,M

′, L′)〉,
• 〈s2 | (CT , σ2,M, L)〉 •−→ 〈s′2 | (CT , σ′

2,M
′, L′)〉,

• s′1 and s′2 are endorsement-free at ℓt,
• ⊢ σ′

i wt for both i = 1, 2,

• σ′
1 ≈ℓt σ

′
2 with σ′

2 ⊆ σ′
1|
•
ℓt

, and

• Σσ′
1
; Γ; pc;λI ⊢ s′1 : τ ⊣ λO ≥• Σσ′

2
; Γ; pc;λI ⊢ s′2 : τ ⊣ λO.

Proof. By Lemma 10, the fact that s1 −→+ v means that s2 •−→ s′2. This will be a proof by induction on

the rule used to prove s2 •−→ s′2, though in the case of B-TREF, we may need to construct a new, different

s′2.

Case B-PURESTEP: We have that s1 −→ s′1 by whatever step was used in the hypothesis of B-PURESTEP.

To prove the typing proofs correspond, we note that, for most possible steps, both s′1 and s′2 type-

check by the same logic as in the proof of Theorem 6, meaning the typing proofs transform in the

same way. The exception is E-ENDORSE. Here let s2 = endorse v2 from ℓ′ to ℓ and consider two

cases: if v2 = • and if v2 6= •. When v2 6= •, the same argument as in Theorem 6 applies, and

s1 = endorse v1 from ℓ′ to ℓ follows the same step by the same argument. When v2 = •, inversion

42

on the typing rules gives us that ℓ′ 6⇒ ℓt. Because we know s2 is endorsement-free at ℓt, this means

ℓ 6⇒ ℓt, so therefore Σ;Γ ⊢ • : tℓ. Again, s1 follows E-ENDORSE and the typing proofs correspond.

For the heap correspondence and well-typed conditions, we note that the heaps and their types remain

unchanged for both executions. To maintain endorsement-freedom at ℓt, most possible steps cannot

add new terms, so they cannot add new endorse terms. E-CALL and E-CALLATK, however, can

introduce new terms into s′1 and s′2 that may not have been present in s1 and s2. Because CT is

endorsement-free at ℓt, any new sub-statements of the form endorse v from ℓ′ to ℓ must have the

required property.

Case B-EVAL: In this case s2 = E2[s̃2] and s̃2 •−→ s̃′2. By inversion on s1 ≥• s2, it must be the case that

s1 = E1[s̃1] where s̃1 ≥• s̃2. By inversion on the set of evaluation contexts, s1 can only step through

E-EVAL and no other steps. Therefore, by induction, on the •−→ relation, s̃1 −→ s̃′1 with the required

properties, so E-EVAL gives us everything except correspondence of the typing proof. We get that by

noting that we can apply Lemma 5 in exactly the same way to both proofs.

Case B-BULLETCTX with B = ![·], (C)[·], or [·].f : Here we have that s2 = B[•], so by inversion on

s1 ≥• s2, we know that s1 = B[v1] for some non-bullet value v1. By the fact that s1 −→+ v,

we know that s1 must step, so by inspection on the operational semantics, it must step with E-DEREF,

E-CAST, or E-FIELD, depending on the syntactic form. In each case the result is a non-variable value

v′1, so therefore s′1 = v′1 ≥• • = v′2 with typing proofs using VAL to get to a value typing judgment

that allows them to differ on •. The heap does not change.

Case B-BULLETCTX with B = if{pc ′} [·] then e21 else e
2
2: First we note that s′2 = • and σ′

2 = σ2. We also

note that inversion on the typing rules shows Σσ2
; Γ ⊢ • : boolℓ for some ℓ 6⇒ ℓt and ℓ ⊳ τ , meaning

BULLET gives us Σσ2
; Γ ⊢ • : τ . We now examine s1 and the corresponding steps.

Because Σσ1
; Γ; pc;λI ⊢ s1 : τ ⊣ λO ≥• Σσ2

; Γ; pc;λI ⊢ s2 : τ ⊣ λO, we know s1 = if{pc ′} v1 then e
1
1 else e

1
2.

This syntactic structure means s1 must step with one of E-IFT or E-IFF. Because we have assumed

that 〈s1 | (CT , σ1,M, L)〉 −→+ 〈v | C〉, we further know that

〈s1 | (CT , σ1,M, L)〉 −→ 〈e1i at-pc pc
′ | (CT , σ1,M, L)〉 −→∗ 〈v at-pc pc ′ | C〉 −→ 〈v | C〉.

By inspection on the semantic rules, we know that E-EVAL must apply in each of the steps in the

middle segment, meaning 〈e1i | (CT , σ1,M, L)〉 −→∗ 〈v | C〉.
The correspondence of the typing proof with s1 proves that Σσ1

; Γ ⊢ v1 : boolℓ for some ℓ 6⇒ ℓt.
Inversion on that typing rules therefore tells us ℓ ⇒ pc ′ and Σσ1

; Γ; pc ′;λI ⊢ e1i : τ ⊣ λO. By

Corollary 1, M′ = M and L′ = L, and σ′
1 ≈ℓt σ1 ≈ℓt σ2 = σ′

2. By inductively applying Theorem 6,

we get σ′
1 ⊇ σ1, so

σ′
2 = σ2 ⊆ σ1|

•
ℓt
⊆ σ′

1|
•
ℓt
.

By letting s′1 = v and noting that all values are endorsement-free at ℓt, we complete the case.

Case B-BULLETCTX with [·].m(v): This case is very similar to the previous case. Again, s′2 = • and

σ′
2 = σ2. Also, inversion on the typing rules gives us Σσ2

; Γ ⊢ • : Cℓ for some ℓ 6⇒ ℓt, and ℓ ⊳ τ ,

again allowing BULLET to prove Σσ2
; Γ ⊢ • : τ . We again turn to s1.

The typing correspondence now means s1 = v1.m(w), so it must step using E-CALL or E-CALLATK.

Therefore v1 = new C(w′) and mbody(C,m) = (ℓm, x, τa, pc1≫pc2, e, τ). Again, we know that it

steps to a value, so now

〈s1 | (CT , σ1,M, L)〉 −→ 〈(returnτ e′) at-pc pc2 | (CT , σ1, (M, ℓm), L)〉

−→∗ 〈(returnτ v) at-pc pc2 | (CT , σ′
1,M

′
1, L

′
1)〉

where e′ = e[x 7→ w, this 7→ new C(w′)] is an expression. Additionally, Σσ1
; Γ; pc2;λ

′
I ⊢ e′ : τ ⊣ λ′

O.

By the correspondence of the typing proofs of s1 and s2, we know that Σσ2
; Γ; pc;λI ⊢ •.m(v) : τ ⊣

43

λO interpreting • as Σσ2
; Γ ⊢ • : Cℓ. Inversion on the typing rules therefore gives us that ℓ 6⇒ ℓt and

ℓ ⇒ pc1. By transitivity, we know that pc1 6⇒ ℓt, so by the fact that CT is endorsement-free at ℓt, we

have that pc2 6⇒ ℓt. Therefore, we can apply Corollary 1 to our above semantic steps, giving:

• σ′
1 ≈ℓt σ1 ≈ℓt σ2 = σ′

2,

• M′
1 = M, ℓm, and

• L′
1 = L.

Again, Theorem 6’s result tells us σ′
1 ⊇ σ1, meaning σ′

2 ⊆ σ′
1|
•
ℓt

. Applying E-ATPC and E-RETURN

while letting s′1 = v completes the case.

Case B-TREF: Here we take the s̃′2 from Lemma 10 as a candidate, which we may modify. In particular,

we note that s2 = ref v2 τ
′, so by the typing correspondence, s1 = ref v1 τ

′. Therefore, s1 must step

using E-REF, giving s′1 = ι for some ι /∈ dom(σ1) and σ′
1 = σ1[ι 7→ (v1, τ

′)].
For s′2, we know that dom(σ2) ⊆ dom(σ1), so ι /∈ dom(σ2). We also know that s2 could step using

B-TREF, so we can use the same step, setting the location to ι. Therefore, σ′
2 = σ2[ι 7→ (v2, τ

′)]. The

fact that s′2 is well-typed in Σσ′
2

follows directly from this extension.

Endorsement-freedom of s′1 and s′2, typing correspondence, and that σ′
1 ≈ℓt σ

′
2 are now straightfor-

ward. To show that σ′
2 ⊆ σ′

1|
•
ℓt

, we note that the typing correspondence between v1 and v2 means that

either v2 = v1 or v2 = •. The second case is impossible because label(τ ′) ⇒ ℓt, so inversion on

the typing rules demonstrates Σσ2
; Γ ✓⊢ • : τ ′. With v2 = v1, the relation between σ′

1 and σ′
2 follows

directly from their definitions and the corresponding relation between σ1 and σ2.

Case B-UREF: Using the same logic as the previous case, s1 must step using E-REF, and we can make

s′2 = s′1 = ι for some ι /∈ dom(σ1) ⊇ dom(σ2). We again have that s′1 and s′2 correspond and are

well-typed and that σ′
1 ≈ℓt σ

′
2. Finally, we note that, by assumption from B-UREF, s2 = ref v2 τ ′

where label(τ ′) 6⇒ ℓt. Therefore, σ′
1|
•
ℓt

= σ1[ι 7→ τ ′]|•ℓt = σ1|
•
ℓt
[ι 7→ (•, τ ′)], and correspondingly,

σ′
2 = σ2[ι 7→ (•, τ ′)]. The correspondence follows from the correspondence between σ1 and σ2.

Case B-BASSIGN: Here s2 = • := v2, so s1 = ι := v1 where v1 ≥• v2. By inversion on the typing rules

and the ≥• relation, we know that Σσ1
; Γ ⊢ ι : ref τ ′ℓ and Σσ2

; Γ ⊢ • : ref τ ′ℓ. Moreover, we know

that ℓ 6⇒ ℓt and ℓ ⊳ τ . Since s1 steps, it must step with E-ASSIGN, meaning σ′
1 = σ1[ι 7→ (v1, τ

′)].
Therefore σ′

1|
•
ℓt
= σ1|

•
ℓt
⊇ σ2 = σ′

2. Letting s′1 = s′2 = () completes the case.

Case B-TASSIGN: This is similar to the B-TREF case, but we do not need to construct a new location, as

s2 = ι := v. We also know by the same logic as in that case that v 6= •, so s1 = s2. B-TASSIGN and

E-ASSIGN produce precisely the same output on the same input, proving the case.

Case B-UASSIGN: Here we note that s2 = ι := v2, meaning s1 = ι := v1 where v1 ≥• v2 and i ∈
dom(σ2). By inversion on the typing rules, we know that Σσi

(ι) = τ ′ for both i = 1, 2 and some

τ ′ where label(τ ′) 6⇒ ℓt. Therefore, s1 steps using E-ASSIGN, so σ′
1 = σ1[ι 7→ (v1, τ

′)] where

σ1(ι) = (v, τ ′) for some v. As a result, σ′
2 = σ2 ⊆ σ1|

•
ℓt
= σ′

1|
•
ℓt

. The two steps result in s′1 = s′2 = (),
so the statements type-check with corresponding rules.

Corollary 2. For any class table CT , heap type Σ, and expression (not statement) e, if

• Σ ⊢ CT ok is endorsement-free at ℓt,
• e is endorsement-free at ℓt,
• Σ ⊆ Σσ1

,

• Σ;Γ; pc;λI ⊢ e : τ ⊣ λO,

• ⊢ σ1 wt, and

• 〈e | (CT , σ1,M, L)〉 −→∗ 〈v | (CT , σ′
1,M

′, L′)〉,
then there is some value v′, heap σ′

2, and heap type Σ′
2 such that

• 〈e | (CT , σ1|
•
ℓt
,M, L)〉 •−→∗ 〈v′ | (CT , σ′

2,M
′, L′)〉 and

• σ′
1 ≃ℓt σ

′
2.

44

Proof. This proof follows from Lemma 11 and induction on the number of steps, letting s1 = s2 = e and

σ2 = σ1|
•
ℓt

to start. If there are zero steps—that is e = s1 = v—then we are done. Otherwise Lemma 11

allows us to step s2 once using •−→ and provides a corresponding set of steps using −→ for s1. The result

may have differently-named locations from the original, but Theorem 5 allows us to continue stepping a

location-name isomorphic expression. The steps therefore maintain all requirements to apply Lemma 11

again until s1 reaches a value. At that point, we are assured σ′
2 ⊆ σ′′

1 |
•
ℓt

and σ′
1 ≈ℓt σ

′′
1 for some σ′′

1 ≃ σ′
1.

Therefore σ′
1 ≃ℓt σ

′
2.

Theorem 1 (Noninterference). Let CT be a class table where Σ ⊢ CT ok is endorsement-free at ℓt. For any

well-typed heaps σ1 and σ2 such that Σ ⊆ Σσi
and any invocation I such that Σ ⊢ I and (I,CT , σi) ⇓ σ′

i,

if σ1 ≃ℓt σ2, then σ′
1 ≃ℓt σ

′
2.

Proof. First we note that since Σ ⊆ Σσi
, Lemma 4 means Σσi

⊢ CT ok for both i = 1, 2, meaning our

various lemmas apply in both cases. Without loss of generality, we assume σ1 ≈ℓt σ2, since we can permute

the location names in one to match the other and permute the results back later. There exists a unique

σ̃ = σ1|
•
ℓt
= σ2|

•
ℓt

Let I = (ι,m(v), ℓ). Note that !ι.m(v) is an expression with no endorse statements and Σ ⊢ !ι.m(v) : τ
for some τ . Therefore, by Corollary 2,

〈!ι.m(v) | (CT , σ̃, ℓ, ·)〉 •−→∗ 〈v | (CT , σ̃′, ℓ, ·)〉

where σ̃′ ≃ℓt σ
′
i for both i = 1, 2. Transitivity of ≃ℓt then proves σ′

1 ≃ℓt σ
′
2.

E Proof of Reentrancy Security

We now prove Theorem 2. As discussed in Section 6.3, we do this by first proving Theorem 3 saying all

reentrancy is tail-reentrancy and Theorem 4 that says tail reentrancy is secure according on Definition 9.

E.1 SeRIF Allows Only Tail Reentrancy

We start by proving Theorem 3. We prove this theorem using the general formulation of “trusted” and “un-

trusted” labels. In particular, we partition L into a downward-closed sublattice T and the attacker-controlled

labels A = T . Notationally, we will use ℓt to denote some trusted label (ℓt ∈ T), rather than a distinguished

one. We refer to code complying with locks in T -code, to mean it complies with locks in ℓt-code for all

ℓt ∈ T .

Finally, we will prove the result for two adversarial models: one where E-CALLATK is admissible and

A is a sublattice, and the other where E-CALLATK is not admissible, but A has no restrictions beyond

A = T . These two proofs are extremely similar. Indeed, they differ only in a single case of Lemma 15 and

Lemma 16 on which it relies. We will specifically call out the differences when they arise.

The proof follows the following general structure. First we show that high-integrity code maintains all

of the input locks λI it claims to and the operational semantics maintain all dynamic locks. Second, we will

show that, if a statement that complies with locks steps to an auto-endorse call, it cannot comply with a

lock on any label that call endorses through (i.e., one that does not trust pc1 but does trust pc2). Finally,

we connect these to show that, for low-integrity call from a high-integrity context that proceeds to make a

reentrant call, the original low-integrity call must have been in tail position form the original high-integrity

execution.

45

To discuss the security of an invocation mid-evaluation, we need to discuss the security of a statement s
with respect to locks. We do this using several different tools. First, we extend our notion of lock compliance

in T -code to statements. We do this with a judgment pc ⊢T s cwl. The nontrivial rules are as follows.

pc ⊢T e1 cwl pc ⊢T e2 cwl

pc ⊢T (if{pc ′} v then e1 else e2) cwl

pc ⊢T e cwl

pc ⊢T (lock ℓ in e) cwl

pc ⊢T s cwl

pc ⊢T (s with-lock ℓ) cwl

pc ⊢T s cwl pc ⊢T e cwl

pc ⊢T (let x = s in e) cwl

pc ⊢T s cwl

pc ⊢T (returnτ s) cwl

pc ′ ⊢T s cwl

pc ⊢T (s at-pc pc′) cwl

pc ⊢T s cwl pc /∈ T

pc ⊢T (ignore-locks-in s) cwl

If s has none of the syntactic forms in the rules defined above, then pc ⊢T s cwl for any pc and T . Note

that, because at-pc terms are statements but not expressions, for any expression e, pc ⊢T e cwl if one of

two conditions holds: either pc /∈ T or e has no subexpressions of the form ignore-locks-in e′. As a result,

we can also specify our definition of lock compliance from class tables using this judgment. Specifically,

CT complies with locks in T -code ⇐⇒

CT (C) = class C[ℓC] extendsD {f :τf ; K ; M}
τ m{pc1≫pc2;λO}(x :τa) {e} ∈ M

ℓC ⊢
T
e cwl

is admissible for CT

Lemma 12. If pc ⊢T s cwl and pc ⇒ pc ′, then pc ′ ⊢T s cwl.

Proof. By simple induction on the definition of pc ⊢T s cwl.

We will also be considering statements in the middle of evaluation, so we need a way to extract the pc

label that we expect sub-statements to type-check with, and similarly we need to extract the list of dynamic

locks that will be present when a sub-statement completes executing. We do that using the following two

recursive functions defined on evaluation contexts.

getLocks(L,E) =











L if E = [·]

getLocks((L, ℓ), E′) if E = E′ with-lock ℓ

getLocks(L,E′) if E = let x = E′ in e, returnτ E′, or E′ at-pc pc

innerPc(pc, E) =











pc if E = [·]

innerPc(pc ′, E′) if E = E′ at-pc pc ′

innerPc(pc, E′) if E = let x = E′ in e, returnτ E
′, or E′ with-lock ℓ

We extend both of these to statements by getLocks(L,E[e]) = getLocks(L,E), and similarly for innerPc.

Definition 12 (Configuration Safety). A statement-configuration pair 〈s | (CT , σ,M, L)〉 is T -safe with

pc and L̂ if

1. Σσ ⊢ CT ok complies with locks in T -code,

2. ⊢ σ wt,

3. Σσ; Γ; pc;λI ⊢ s : τ ⊣ λO,

4. pc ⊢T s cwl,

5. L = getLocks(L̂, s), and

6. for any E and s′ where E 6= E′[returnτ [·]] and pc ′ = innerPc(pc, E) ∈ T , if s = E[s′] then there

is some λ′
I such that Σσ; Γ

′; pc ′;λ′
I ⊢ s′ : τ ′ ⊣ λ′

O and (
∧

getLocks(L̂, E)) ∧ λ′
I ⇒ pc′.

46

Lemma 13. If 〈E[s] | C〉 is T -safe at pc and L, then 〈s | C〉 is T -safe at innerPc(pc, E) and getLocks(L,E).

Proof. By induction on E and the definitions of innerPc and getLocks .

Lemma 14 (Preservation of T -Safety). If 〈s | C〉 is T -safe with pc and L̂, and 〈s | C〉 −→ 〈s′ | C′〉, then

〈s′ | C′〉 is T -safe with pc and L̂.

Proof. Condition 1 follows from Lemma 3 and the fact that CT must remain unchanged. Conditions 2

and 3 follow directly from Theorem 6. We prove the other three conditions by induction on the operational

semantics. Notationally, we let C = (CT , σ,M, L) and C′ = (CT , σ′,M′, L′). Also, by assumption, there

is some λ′
I such that Σσ; Γ; pc;λ

′
I ⊢ s : τ ⊣ λO and (

∧

L̂) ∧ λ′
I ⇒ pc. We assume without loss of generality

that λI has this property.

Case E-EVAL: In this case s = E[s̃], 〈s̃ | C〉 −→ 〈s̃′ | C′〉, and s′ = E[s̃′]. Let pc ′ = innerPc(pc, E) and

L̂′ = getLocks(L̂, E). By Lemma 13, we know that s̃ is T -safe at pc ′ and L̂′, so by induction on the

operational semantics, 〈s̃′ | C′〉 is as well. We also note that Σσ; Γ
′; pc ′;λ′

I ⊢ s̃ : τ ′ ⊣ λ′
O.

By the safety of 〈s | C〉, for every pair of sub-contexts E1 and E2 such that E = E1[E2], either

p̃c = innerPc(pc, E1) /∈ T , E1 = E′
1[returnτ [·]], or Σσ; Γ̃; p̃c; λ̃I ⊢ E2[s̃] : τ1 ⊣ λ̃O for some λ̃I

where (
∧

getLocks(L̂, E1))∧ λ̃I ⇒ p̃c. By Theorem 6, Σσ′ ; Γ′; pc ′;λ′
I ⊢ s̃′ : τ ′ ⊣ λ′

O, so by Lemma 5,

we also have that Σσ′ ; Γ̃; p̃c; λ̃I ⊢ E2[s̃
′] : τ1 ⊣ λ̃O. As this holds for every choice of E1 and E2, this

proves the case.

Cases E-IFT and E-IFF: In both cases we have s = if{pc ′} v then e1 else e2 and s′ = ei at-pc pc′ for

either i = 1 or 2. By inversion on the typing rules, pc ⇒ pc ′ and Σσ; Γ; pc
′;λI ⊢ ei : τ ⊣ λO for both

i = 1, 2. Moreover, by Lemma 12, pc′ ⊢T ei cwl, so Condition 4 holds for s′. Because e1 and e2 are

expressions, we know that if ei = E[s̃], then E consists entirely of let and ignore-locks-in statements

and s̃ is an expression. Therefore, if pc′ /∈ T , then Condition 6 is trivial.

If pc ′ ∈ T , then because T is downward-closed, pc ∈ T . Because pc ⊢T ei cwl, ignore-locks-in cannot

appear in e in this sub-case, so E consists entirely of let statements. As a result, Σσ; Γ
′; pc ′;λI ⊢ s̃ :

τ ′ ⊣ λO for some Γ′ ⊇ Γ and τ ′. Because (
∧

L̂) ∧ λI ⇒ pc ⇒ pc′, this proves that 〈ei | C
′〉 is T -safe

at pc′ and L̂. Since s′ = ei at-pc pc
′, the T -safety transfers to 〈s′ | C′〉.

Case E-LET: Here s = (let x = v in e) and s′ = e[x 7→ v]. Theorem 6 proves Σσ; Γ; pc;λI ⊢ s′ : τ ⊣ λO.

Moreover, because s′ is an expression, by the same logic as in the previous case, 〈s′ | C′〉 must be

T -safe at pc and L̂.

Case E-LOCK: Here s = lock ℓ in e. First we note that L′ = (L, ℓ) = (L̂, ℓ) = getLocks(L̂, e with-lock ℓ),
as is required by Condition 5.

Next, inversion on the typing rules tells that Σσ; Γ; pc;λ
′
I ⊢ e : τ ⊣ λ′

O where λ′
I ∧ ℓ ⇒ λI and

λ′
O ∧ ℓ ⇒ λO. Further, we know that s′ = e with-lock ℓ, L = L̂, and L′ = (L, ℓ) By Condition 4 on s,

first Condition 4 holds trivially on s′, and second, either pc ∈ T or e contains no ignore-locks-in terms,

as e is an expression. Therefore, by the same logic as in the previous two cases, it suffices to show

Condition 6 holds when pc ∈ T and E = [·] with-lock ℓ. Here we know that Σσ; Γ; pc;λ
′
I ⊢ e : τ ⊣ λ′

O

with λ′
I defined as above. As a result,

(

∧

getLocks(L̂, E)
)

∧ λ′
I =

(

∧

(L̂, ℓ)
)

∧ λ′
I

=
(

∧

L̂
)

∧ ℓ ∧ λ′
I

⇒
(

∧

L̂
)

∧ λI

⇒ pc.

47

Case E-UNLOCK: Here s = v with-lock ℓ and s′ = v, so Condition 4 is trivial. Condition 5 follows from

the semantic rule that requires L = (L′, ℓ), so if getLocks(L̂, s) = L, then L̂ = L′ = getLocks(L̂, v).
Condition 6 follows from the fact that values type-check with any λI, including pc.

Cases E-CALL and E-CALLATK: Here s = newC(v).m(w) If we let mbody(C,m) = (ℓm, x, τa, pc1≫pc2, e, τ),
then s′ = (returnτ e′) at-pc pc2 where e′ = e[x 7→ w, this 7→ new C(v)]. By Condition 1 on s, we

know that ℓC ⊢T e′ cwl. The METHOD-OK rule requires that ℓC ⇒ pc2, so therefore by Lemma 12

proves pc2 ⊢T e′ cwl, proving Condition 4.

Since the body of the method is an expression and L = L′, Condition 5 holds trivially.

For Condition 6, we consider multiple possible evaluation contexts E. If E = [·], note that returnτ s
′′

type-checks with any λI. If E = returnτ [·], then this is precisely the caveat that Condition 6 does

not restrict. If E = returnτ [·] at-pc pc2, METHOD-OK ensures that Σσ; ·; pc2;λ
′
I ⊢ e′ : τ ⊣ λ′

O for

some λ′
I ⇒ pc2. In particular, this means (

∧

L̂)∧λ′
I ⇒ pc2 regardless of the contents of L̂. Moreover,

because we know that pc2 ⊢T e′ cwl and e′ is an expression, either pc2 /∈ T , in which case Condition 6

is trivial in e′, or pc2 ∈ T and e′ does not contain ignore-locks-in terms. In the second case, the same

logic as in several previous cases completes the proof that Condition 6 holds, and thus the case.

In all other cases the step leaves L unchanged and produces a value. All well-typed value type check with

any λI and pc ⊢T v cwl for any label pc and value v, so all conditions hold.

Lemma 15. For any label ℓt ∈ T , statement s, configuration C = (CT , σ,M, L), lock list L̂, if

1. 〈s | C〉 is T -safe with pc and L̂ for some label pc,

2. s contains no sub-statements of the form ignore-locks-in s′,
3. 〈s | C〉 −→∗ 〈E[new C(v).m(w)] | C′〉 −→ 〈s′ | C′′〉, and

4. mtype(C,m) = τa
pc1≫pc2;λ̂O

−−−−−−−→ τ̂ with pc1 6⇒ ℓt and pc2 ⇒ ℓt,
then for any λI and λO such that Σσ; Γ; pc;λI ⊢ s : τ ⊣ λO, then (

∧

L̂) ∧ (λI ∨ λO) 6⇒ ℓt.

Proof. This is a proof by induction on the number of steps in premise 3. For the base case of zero steps,

s = E[new C(v).m(w)]. We prove this case by induction on E. For these cases, we will use the notational

short-hand s′ = E′[new C(v).m(w)] where E′ will be defined in each inductive case.

Case E = [·]: The T -safety of 〈s | C〉 with pc and L̂ ensures Σσ; Γ; pc;λI ⊢ new C(v).m(w) : τ ⊣ λO. By

inversion on the typing rules, we know that pc1 ⇒ pc2 ∨ λI. We also know that this expression steps

again, so by inversion on the operational semantics, it must step using E-CALL, meaning
∧

ℓ∈L(pc1 ⇒
pc2 ∨ ℓ). Therefore, by the fact that ∧ produces the greatest lower bound and the distributive property

of the lattice,

pc1 ⇒
∧

ℓ∈L

(pc2 ∨ ℓ) ∧ (pc2 ∨ λI) = pc2 ∨
((

∧

L
)

∧ λI

)

.

Moreover, because pc1 6⇒ ℓt, transitivity of ⇒ tells us that this label does not act for ℓt. Yet pc2 ⇒ ℓt,
so by the definition of join, it must be the case that ((

∧

L) ∧ λI) 6⇒ ℓt. Because λI ⇒ λI ∨ λO, and

L = L̂ in this case, transitivity of ⇒ and equality substitution proves (
∧

L̂) ∧ (λI ∨ λO) 6⇒ ℓt, as

desired.

Case E = let x = E′ in e: By inversion on the typing rules, we note that Σσ; Γ; pc;λI ⊢ s′ : τ ′ ⊣ λ′
O where

λ′
O ⇒ λI. Premises 1 and 2 are clearly true for 〈s′ | C〉, so by induction on E, (

∧

L̂)∧ (λI ∨λ′
O) 6⇒ ℓt.

Since λ′
O ⇒ λI, we know that λI ∨ λ′

O = λI ⇒ λI ∨ λO. Transitivity of ⇒ then proves the desired

result.

Case E = returnτ E′: Here inversion on the typing rules tells us Σσ; ·; pc;λ
′
I ⊢ s′ : τ ⊣ λ′

O for some λ′
I

and λ′
O where λ′

I ∨λ′
O ⇒ λO. As with the previous case, our inductive hypothesis on E applies, giving

us (
∧

L̂) ∧ (λ′
I ∨ λ′

O) 6⇒ ℓt. Since λ′
I ∨ λ′

O ⇒ λO ⇒ λI ∨ λO, transitivity of ⇒ again gives us the

desired result.

48

Case E = E′ with-lock ℓ: Here inversion on the typing rules tells us Σσ; Γ; pc;λ
′
I ⊢ s′ : τ ⊣ λ′

O where

λ′
I ∧ ℓ ⇒ λI and λ′

O ∧ ℓ ⇒ λO. By the definition of getLocks , we know that 〈s′ | C〉 must be T -safe

with pc and (L̂, ℓ). Premise 2 is clearly true of s′ since we have not added new syntax, so induction

on E tells us (
∧

(L̂, ℓ)) ∧ (λ′
I ∨ λ′

O) 6⇒ ℓt. Using the above facts and the distributive property of the

lattice,

(

∧

(L̂, ℓ)
)

∧ (λ′
I ∨ λ′

O) =
(

∧

L̂
)

∧ ℓ ∧ (λ′
I ∨ λ′

O)

=
(

∧

L̂
)

∧
(

(λ′
I ∧ ℓ) ∨ (λ′

O ∧ ℓ)
)

⇒
(

∧

L̂
)

∧ (λI ∨ λO).

Transitivity of ⇒ finishes the case.

Case E = E′ at-pc pc ′: Here 〈s′ | C〉 is T -safe at pc ′ and L̂ and premise 2 clearly holds, so induction on

E proves the case.

Case E = ignore-locks-in E′: This case is impossible by assumption 2.

We now move on to the inductive case on the number of steps. For all cases, Lemma 14 ensures that

premise 1 remains true after a single step. By inspection on the operational semantics, we can introduce

ignore-locks-in terms in only two ways: directly through E-CALL and E-CALLATK and indirectly through

E-EVAL. Thus premise 2 inductively holds for all other steps. Similarly, premises 3 and 4 remain true

by assumption at top-level. We can therefore directly apply our inductive hypothesis for all steps except

E-EVAL, E-CALL, and E-CALLATK. We handle those cases explicitly.

For the case of E-EVAL where s = Ẽ[s̃], we induct on Ẽ and the operational semantics.

Case Ẽ = [·]: Here induction on the operational semantic rule proves the case.

Case Ẽ = let x = Ẽ′ in e: We now consider two sub-cases: if 〈Ẽ′[s̃] | C〉 −→∗ 〈Ẽ′′[new C(v).m(w)] | C′〉
or not. If there is such an evaluation, then all of the inductive hypotheses hold for Ẽ′[s̃], so induction

on Ẽ prove the case. If there is no such evaluation, inspection on the operational semantics tells us

that we can only step s using E-EVAL stepping Ẽ′[s̃] until it steps to a value. Therefore, premise 3,

ensures that there is some value v and context Cv such that 〈Ẽ′[s̃] | C〉 −→+ 〈v | Cv〉. Using E-EVAL

on each step gives us

〈s | C〉 −→+ 〈let x = v in e | Cv〉 −→
∗ 〈E[new C(v).m(w)] | C′〉 −→ 〈s̃ | C′′〉.

Therefore, 〈let x = v in e | Cv〉 satisfies our inductive hypothesis, so induction completes the case.

For the other three possible cases of Ẽ, the same logic as in the base-case proof above applies.

We now turn to when the step is E-CALL or E-CALLATK. In both cases s = new D(v′).m′(w′) and

mbody(D,m′) =
(

ℓm, x, τ ′a, pc
′
1≫pc ′2, e, τ

)

. If we let e′ = e[x 7→ w′, this 7→ new D(v′)], this steps to

(returnτ e′) at-pc pc ′2. We handle this in two sub-cases: if pc ′2 ∈ T and if pc′2 /∈ T .

If pc′2 ∈ T , then METHOD-OK proves that ℓm ⇒ pc′2 and therefore ℓm ∈ T . Because 〈s | C〉 is T -safe,

the method body e, and hence e′, cannot have any subexpressions of the form ignore-locks-in e′′. Therefore

the new statement satisfies premise 2 of this lemma, allowing us to apply the inductive hypothesis.

If pc ′2 /∈ T , we claim that (
∧

L̂) ∧ pc′2 6⇒ ℓt, which we prove differently based on the security as-

sumptions of the system: either A = T is a sublattice, or E-CALLATK is not admissible. In both cases

we will apply Lemma 16 to the configuration after taking this step. To meet the requirement of hte lemma

that there is no sub-statement of the form s′ at-pc pc ′, we use 〈e′ | (CT , σ, (M, ℓm), L)〉, noting that this

configuration is T -safe with pc ′2 and L̂.

Because pc ′2 /∈ T , Lemma 16 proves that (
∧

L̂) ∈ A. When A is a sublattice, it is closed under join, so

(
∧

L̂) ∧ pc ′2 ∈ A. By the downward-closed property of T , that means (
∧

L̂) ∧ pc ′2 6⇒ ℓt.

49

If E-CALLATK is not admissible, Lemma 16 proves that pc ′2 ⇒ pc2 ∨ (
∧

L̂). By the definition of meet

and the distributive property of the lattice,

pc ′2 =
(

pc2 ∨
(

∧

L̂
))

∧ pc ′2 = (pc2 ∧ pc′2) ∨
((

∧

L̂
)

∧ pc ′2

)

.

By assumption on this sub-case, pc ′2 /∈ T and therefore pc ′2 6⇒ ℓt, so at least one of the two sides of the join

cannot act for ℓt. However, the definition of meet gives pc2∧pc′2 ⇒ pc2 ⇒ ℓt. Therefore (
∧

L̂)∧ pc ′2 6⇒ ℓt.
By inversion on the typing rules, if Σσ; Γ; pc;λI ⊢ s : τ ⊣ λO, then λ′

O ∨ pc ′2 ⇒ λO where λ′
O is the

lock label on D.m. In particular, pc′2 ⇒ λO ⇒ λI ∨ λO. As a result, (
∧

L̂) ∧ pc ′2 ⇒ (
∧

L̂) ∧ (λI ∨ λO), so

transitivity of ⇒ proves (
∧

L̂) ∧ (λI ∨ λO) 6⇒ ℓt.

Lemma 16. For any statement s, configuration C = (CT , σ,M, L), label pc, and lock list L̂, if

• 〈s | C〉 is T -safe with pc and L̂,

• s contains no sub-statements of the form s′ at-pc pc ′,
• 〈s | C〉 −→∗ 〈E[new C(v).m(w)] | C′〉 −→ 〈s′ | C′′〉, and

• mtype(C,m) = τa
pc1≫pc2;λO

−−−−−−−→ τ with pc2 ∈ T ,

then pc /∈ T implies (
∧

L̂) /∈ T , and pc ⇒ pc2 ∨ (
∧

L̂) if no step uses E-CALLATK.

Proof. This proof follows by induction on the number of steps. For the base case where s = E[newC(v).m(w)],
we induct on E to prove pc ⇒ pc2 ∨ (

∧

L̂).

Case E = [·]: Inversion on the typing rules tells us pc ⇒ pc1 and inversion on the operational semantics

tell us pc1 ⇒ pc2 ∨ (
∧

L). By the definition of getLocks , L̂ = L, so transitivity proves the case.

Case E = E at-pc pc′: This case is impossible by assumption.

Case E = E′ with-lock ℓ: In this case we note that if s = E[s̃], then 〈E′[s̃] | C〉 must be T -safe with pc

and (L̂, ℓ). Therefore, by induction on E, pc ⇒ pc2 ∨ (
∧

(L̂, ℓ)). However,

∧

(L̂, ℓ) =
(

∧

L̂
)

∧ ℓ ⇒
∧

L̂.

Therefore, by transitivity, pc ⇒ pc2 ∨ (
∧

L̂).

All other cases: The pc remains unmodified and getLocks(L̂, E′[s̃]) = getLocks(L̂, E[s̃]) = L, so a sim-

ple inductive application completes the case.

This directly proves the second conclusion in this case. When pc /∈ T , the fact that T is downward-closed

means pc2 ∨ (
∧

L̂) /∈ T . However, pc2 ∈ T and T is a sublattice, so therefore it must be the case that

(
∧

L̂) /∈ T .

We now move to the inductive step. Lemma 14 ensures that T -safety is retained. By inspection on the

operational semantic rules, we can introduce new syntax only with E-EVAL, E-IFT, E-IFF, E-CALL, and

E-CALLATK. For all other steps, a direct application of the inductive hypothesis proves the lemma. We now

prove those cases.

Case E-EVAL: This case is by induction on Ẽ where s = Ẽ[s̃]. If Ẽ = [·], induction on the operational

semantics completes the case. When Ẽ = let x = Ẽ′ in e, we must consider whether Ẽ′[s̃] steps to

the relevant method call or not. If it does, a direct inductive application proves the case. If it does not,

we note that 〈Ẽ′[s̃] | C〉 −→+ 〈v | Cv〉 for some value v and configuration Cv. This new expression

satisfies the premises of our top-level inductive hypothesis, so we can apply that.

By assumption, Ẽ 6= Ẽ′ at-pc pc ′, and the other possible options are the same as in the base case.

Cases E-IFT and E-IFF: In this case we note that s = if{pc ′} v then e1 else e2. Inversion on the typing

rules proves that Σσ; Γ; pc
′;λI ⊢ ei : τ ⊣ λO for both i = 1, 2 and pc ⇒ pc ′. Therefore, 〈ei | C〉

is T -safe with pc ′ and L̂. Moreover, e1 and e2 are expressions, so they contain no sub-statements of

50

the form s′′ at-pc pc′′, allowing us to apply our inductive hypothesis. If pc /∈ T , then because T is

downward-closed, pc′ /∈ T , so induction proves that (
∧

L̂) /∈ T . If E-CALLATK is not admissible,

induction proves pc ′ ⇒ pc2 ∨ (
∧

L̂), so transitivity gets us the desired result.

Case E-CALL: In this case s = newD(v′).m′(w′) with mbody(D,m′) =
(

ℓm′ , x, τ ′a, pc
′
1≫pc ′2, e, τ

′
)

, and

pc ′1 ⇒ pc ′2 ∨ (
∧

L). Inversion on the typing rules proves that pc ⇒ pc′1. Additionally, the statement

after the step is returnτ ′ (e
′ at-pc pc′2) for some expression e′.

By Lemma 14 the new configuration is T -safe at pc and L̂, so inductively, replacing the statement

with e′ is T -safe at pc ′2 and L̂. If pc′2 /∈ T , then by induction (
∧

L̂) /∈ T . If pc /∈ T but pc ′2 ∈ T , then

the same logic as in the base case proves (
∧

L̂) /∈ T .

If E-CALLATK is never used, induction on the number of steps proves pc ′2 ⇒ pc2∨(
∧

L̂). Combining

this with the flow above, we get

pc ⇒ pc ′2 ∨
(

∧

L̂
)

⇒
(

pc2 ∨
(

∧

L̂
))

∨
(

∧

L̂
)

= pc2 ∨
(

∧

L̂
)

.

Case E-CALLATK: Inversion on the semantic rules proves pc ′2 ∈ A = T . Using the same argument as in

the E-CALL case to apply the inductive hypothesis, induction proves that (
∧

L̂) /∈ T regardless of

the value of pc. This case is impossible by assumption when E-CALLATK is not taken.

We formalize the concept of a tail call, which is a call initiated in a tail position of some expression, by

defining a tail context T which, by construction, does nothing after the call returns.

Definition 13 (Tail Context).

T ::= [·] | returnτ T | T with-lock ℓ | T at-pc pc

The following lemma captures our intuition that a tail context “does nothing”.

Lemma 17. If 〈T [v] | (CT , σ,M, L)〉 −→ 〈s | (CT , σ′,M′, L′)〉, then for some tail context T ′, s = T ′[v]
and σ = σ′.

Proof. By simple induction on the operational semantics, noting for E-EVAL that, if T [v] = E[s′], then

E = T1 and s′ = T2[v] for some tail contexts T1 and T2.

Definition 14 (Tail Reentrancy). We say a statement s is in an ℓt-tail-reentrant state if s is ℓt-reentrant—that

is, s = E0[E1[E2[s
′ at-pc pc3] at-pc pc2] at-pc pc1] where pc1, pc3 ⇒ ℓt and pc2 6⇒ ℓt—and there is some

tail context T , evaluation context Ẽ2, and label pc ′2 such that pc ′2 6⇒ ℓt and

E1[[·] at-pc pc2] = T [Ẽ2 at-pc pc
′
2]

Theorem 3. For any label ℓt ∈ T , class table CT , and well-typed heap σ1, if Σσ1
⊢ CT ok complies

with locks in T -code, then for any invocation I and heap σ2 where Σσ1
⊢ I and (I,CT , σ1) ⇓ σ2, all

ℓt-reentrant states in the execution are ℓt-tail-reentrant.

Proof. By Definition 5, if I = (ι,m(v), ℓ) is an ℓt-reentrant invocation in σ1, there must exists a statement

s such that

s = E0

[

E1

[

E2[s
′ at-pc pc3] at-pc pc2

]

at-pc pc1

]

where pc1, pc3 ⇒ ℓt but pc2 6⇒ ℓt, and 〈!ι.m(v) | (CT , σ1, ℓ, ·)〉 −→∗ 〈s | C〉. We prove by induction

on E1 that s is ℓt-tail-reentrant according to Definition 14. Specifically, we claim the following.

Claim. If s = E′
0[E1[s

′′ at-pc pc2]] where innerPc(ℓ, E′
0) ⇒ ℓt, then there is some Ẽ2, T , and pc ′2 such

that E1[[·] at-pc pc2] = T [Ẽ2 at-pc pc
′
2] and pc′2 6⇒ ℓt.

51

Proof of claim. This is a proof by induction on E1.

Case E1 = [·]: Because pc2 6⇒ ℓt by assumption, letting pc′2 = pc2, Ẽ2 = [·], and T = [·] proves the case.

Case E1 = E′
1 at-pc pc

′ : There are two sub-cases to consider. If pc ′ ⇒ ℓt, then the inductive hypothesis

applies by replacing E′
0 with E′

0[[·] at-pc pc
′] and E1 by E′

1. It then proves that E′
1 = T ′[Ẽ2 at-pc pc

′
2]

for some pc′2 6⇒ ℓt. Letting T = T ′ at-pc pc ′ completes the sub-case.

If pc′ 6⇒ ℓt, then letting Ẽ2 = E′
1, pc ′2 = pc′, and T = [·] proves the case.

Case E1 = E′
1 with-lock ℓ: Replacing E′

0 with E′
0[[·] with-lock ℓ] and E1 with E′

1, the inductive hypothesis

proves E′
1 = T ′[Ẽ2 at-pc pc

′
2] for some pc ′2 6⇒ ℓt. Letting T = T ′ with-lock ℓ completes the case.

Case E1 = returnτ E
′
1: This case follows from the same logic as the previous case.

Case E1 = (let x = E′
1 in e): Let pc = innerPc(ℓ, E′

0). Lemma 14 and induction on the number of steps

to get to s, proves that if 〈!ι.m(v) | (CT , σ1, ℓ, ·)〉 −→
∗ 〈s | (CT , σ,M, L)〉 then it must be the case

that each configuration encountered along the way is ℓt-safe with ℓ and ·.
To step to s, there must be some expression e1 such that

〈!ι.m(v) | (CT , σ1, ℓ, ·)〉 −→
∗ 〈E′

0[let x = e1 in e] | (CT , σ′,M, L)〉
and

〈e1 | (CT , σ′,M, L)〉 −→∗ 〈E[new D(v′).m′(w)] | C′〉

where mtype(D,m′) = τa
p̃c1≫p̃c2;λ̃O

−−−−−−−→ τ̃ such that p̃c1 6⇒ ℓt and p̃c2 ⇒ ℓt. Inversion on the typing

rules and the safety of 〈E′
0[let x = e1 in e] | (CT , σ′,M, L)〉 prove that Σ;Γ; pc;λI ⊢ e1 : τ1 ⊣ λO

for some Σ, Γ, λI, τ1, and λO, where λO ⇒ λI and (
∧

getLocks(·, E′
0)) ∧ λI ⇒ pc ⇒ ℓt. Moreover,

the safety of the configuration guarantees that getLocks(·, E′
0) is a prefix of L, so in particular,

∧

L ⇒
∧

getLocks(·, E′
0).

However, Lemma 15 mandates that, since Σ;Γ; pc;λI ⊢ e1 : τ1 ⊣ λO, (
∧

L) ∧ (λI ∨ λO) 6⇒ ℓt. Yet

we know already that λO ⇒ λI, meaning λI ∨ λO = λI, and
∧

L ⇒
∧

getLocks(·, E′
0). Therefore,

this proves that (
∧

getLocks(·, E′
0)) ∧ λI 6⇒ ℓt. This contradicts the safety result, so this case is

impossible.

Case E1 = ignore-locks-in E′
1: Safety of the configuration, as argued in the previous case, proves that ℓ ⊢T

s cwl. Because, by assumption, innerPc(ℓ, E′
0) ⇒ ℓt, inversion on the proof rules for ℓ ⊢T s cwl

demonstrates that this case is impossible.

Letting E′
0 = E0[[·] at-pc pc1] clearly satisfies the assumptions of the claim. Therefore,

s = E0[T [Ẽ2[s
′′] at-pc pc ′2] at-pc pc1]

for some pc ′2 6⇒ ℓt. This form satisfies Definition 14 and proves the theorem.

E.2 All Tail Reentrancy is Secure

We now present a proof for Theorem 4, proving that all tail reentrancy is secure. The proof follows the

structure outlined in the proof sketch in Section 6.3. It requires one simple lemma and follows essentially as

a corollary from a more complicated statement.

Lemma 18. For any type τ and heap-type Σ, there exists a value v such that Σ ⊢ v : τ .

Proof. This proof is by induction on the structure of τ . If τ = unitℓ, v = (). If τ = boolℓ, v = true. If

τ = (ref τ ′)ℓ, v = null. If τ = Cℓ, let fields(C) = x :τ . For each τi, by induction, there is some vi such

that Σ ⊢ vi : τi. Therefore, by NEW, Σ ⊢ new C(v) : Cℓ.

52

For the main proof, we assume the existence of an nat type and constant nat values. This assumption is

without loss of generality as natural numbers are simple to encode using objects. The class simply has isZero

and previous methods. There are two implementations: zero returns true and this, respectively, while non-

zero values have a single field pointing to the previous nat and return false and the value of their one field.

We will only use nat to increment and check the value, each of which is simple with this implementation.

Lemma 19. For any class table CT , invocation I , and heaps σ1 and σ2, if

• Σσ1
⊢ CT ok complies with locks in ℓ-code,

• ⊢ σ1 wt,
• Σσ1

⊢ I , and

• (I,CT , σ1) ⇓ σ2 where all ℓ-reentrant states are ℓ-tail-reentrant,

then there exist CT ′, I , σ′
1, and σ′

2 such that

1. Σσ′
1
⊢ CT ′ ok complies with locks in ℓ-code,

2. CT ≈ℓ CT
′,

3. ⊢ σ′
1 wt,

4. Σσ′
1
⊢ I ,

5. (I,CT ′, σ′
1) ⇓ σ′

2 are all non-ℓ-reentrant, and

6. σi ≈ℓ σ
′
i with σi ⊆ σ′

i for both i = 1, 2.

Proof. For notation, let I = (ℓI , ιI ,mI(vI)).
Step through the execution of (I,CT , σ1) ⇓ σ2 and create a log of the following relevant events:

1. Calls from low-integrity environments into high-integrity environments.

2. Calls from high-integrity environments into low-integrity environments.

3. Returns from low-integrity environments into high-integrity environments.

4. State modifications from low-integrity environments.

For most events, we will only need to reply the event later, so logging the type of event and the statement

that is evaluated is sufficient. For event 2, however, CT ′ will need to have different code than CT , so there

must be a link to the original piece of code. Method calls already have a name and clear location in the

code, but if statements can also move from high-integrity to low-integrity and have no names. To allow

for unique tracking, we attach a unique name a to each branch of each conditional statement in CT . They

have the same typing and semantic rules as before, but syntactically include this new annotation, denoted

if{pc} v thena1 e1 elsea2 e2.

For a semantic step 〈s | (CT , σ,M, L)〉 −→ 〈s′ | (CT , σ′,M′, L′)〉, let pcs = innerPc(ℓI , s) and

pcs′ = innerPc(ℓI , s
′). The following formally defines when each type of event is emitted.

1. When s = E[new C(v).m(w)] and mtype(C,m) = τa
pc1≫pc2;λO

−−−−−−−→ τ , if pcs 6⇒ ℓ and pc2 ⇒ ℓ, emit

up(pcs, new C(v).m(w), σ).

2. - When s = E[new C(v).m(w)] and mtype(C,m) = τa
pc1≫pc2;λO

−−−−−−−→ τ , if pcs ⇒ ℓ but pc2 6⇒ ℓ,
emit down(pc2, C.m).

- When s = E[if{pc} v thena1 e1 elsea2 e2], if pcs ⇒ ℓ but pc 6⇒ ℓ, emit down(pc, a1) if v = true

and down(pc, a2) if v = false.

3. When σ′ = σ[ι 7→ (v, τ)] 6= σ, emit set(ι 7→ (v, τ)).

4. When s = E[v at-pc pcs], if pcs 6⇒ ℓ and pcs′ ⇒ ℓ, emit ret(v).

By inspection on the operational semantics, each step will emit at most one of the above events.

There are several important properties to note about the log. First, the only semantic steps that can change

the value of innerPc(ℓI , s) are E-CALL, E-CALLATK, E-IFT, E-IFF, and E-ATPC. Type preservation

(Theorem 6) ensures that each statement is well-typed, so if statements can only lower the integrity of the

53

pc, not raise it. Therefore, whenever pcs ⇒ ℓ and pcs′ 6⇒ ℓ, the log will contain a down event, and whenever

pcs 6⇒ ℓ and pcs′ ⇒ ℓ, the log will contain either a up event or ret event. As a result, any two down events

must be separated by either an up event or a ret event.

Additionally, the down and ret events must follow a stack discipline as the represent calls and returns.

This stack discipline creates a correspondence between each down and exactly one ret, which we will refer

to as the “corresponding ret” event.

We now use the log constructed from the execution of (I,CT , σ1) ⇓ σ2 to construct CT ′, I , and σ′
1.

We will ensure by construction that all conditions hold aside from Condition 6 with σ2 and σ′
2. We will then

argue Condition 6 on σ2 holds.

Constructing CT ′, I , and σ′
1. Initialize I = I if ℓI ⇒ ℓ and empty otherwise, and initialize σ′

1 = σ and

CT ′ = CT . We will add to I and σ′
1 and modify CT ′ as the construction progresses.

Step through the log. When a down(pc, a) event appears, where a can either be C.m or a unique name

for the branch of an if statement, note that the log must be of the form . . . , down, set, ev , . . . where ev is

either up or ret. If this is the first down event at location a, add a new mapping ιa 7→ (0, natpc) to σ′
1 where

ιa is fresh, meaning ιa /∈ dom(σ′
1)∪ dom(σ2). Also modify the code at location a in CT ′. If this is the first

time encountering a, replace the existing code with code that increments ιa and conditions on it. If this is

the nth down(pc, a) event in the log for n > 1, add a new branch to the code in CT ′ for if ιa 7→ n.

The code in the conditional branch for ιa 7→ n will do different things depending on ev . If ev = ret(v),
the code in CT ′ performs all state modification in set and then returns v. Making these state modification

may require constructing new low-integrity methods if pc does not have sufficient integrity for each. Since

we know that none of the modified cells are trusted by ℓ, however, making the modifications is always

possible using low-integrity code. Moreover, because the state modifications were possible in the original

execution without violating locks or entering high-integrity code (there was no up prior to ev = ret(v)), a

call graph with the same pc labels where pc 6⇒ ℓ for each label must be possible. This guarantees that CT ′

continues to type-check.

If ev is an up event and this is the nth down(pc, a) event for location a, then the nth entry into a in CT ′

simply returns some value v of the appropriate type. By Lemma 18, some such well-typed v must exist.

When a up(pc, new C(v).m(w), σ) event appears in the log, modify both σ′
1 and I . For σ′

1, add a

mapping ι 7→ (new C(v), Cpc) for a fresh location ι /∈ dom(σ′
1)∪dom(σ2). For I , add two new invocations.

The first performs all state modifications from all set events in the log prior to this up that have not already

been performed by a previous invocation. As before, constructing such an invocation may require adding

new low-integrity code to CT ′. The second invocation added to I is (pc, ι,m(w)) where ι is the new location

added to σ′
1.

Finally, after completing all up and down events in the log, include one final invocation with associated

new code to apply any set events not included in any previous invocations.

The construction satisfies all requirements. By construction, the resulting invocations I are non-reentrant

in CT ′ with initial state σ′
1. All code changes in CT ′ were low-integrity and remained well-typed, so Σσ′

1
⊢

CT ′ ok complies with locks in ℓ-code and CT ≈ℓ CT
′. We constructed σ′

1 by adding new well-typed low-

integrity mappings to σ1, meaning ⊢ σ′
1 wt, σ1 ≈ℓ σ

′
1, and σ1 ⊆ σ′

1, as desired. It remains to show that there

is a σ′
2 such that (I,CT ′, σ′

1) ⇓ σ′
2 with σ2 ≈ℓ σ

′
2 and σ2 ⊆ σ′

2.

Let σ̃1, . . . , σ̃n be the sequence of heaps appearing in the up events in the log. Let I1, . . . , In be the

elements of I that call into high-integrity code (note that these are every other element of I), and let σ̃′
k be

the heap provided as input to Ik when executing (I,CT ′, σ′
1) ⇓ σ′

2. We now argue by induction on k that

σ̃k ≈ℓ σ̃
′
k and σ̃k ⊆ σ̃′

k.

For the base case let k = 1. There are two sub-cases to consider: if ℓI ⇒ ℓ and if it does not. If ℓI ⇒ ℓ,
then I1 = I and there are no elements of I before it, so σ̃1 = σ1 and σ̃′

1 = σ′
1, meaning the conditions

on σ1 and σ′
1 proved above are precisely the goal. If ℓI 6⇒ ℓ, there is one invocation I0 in I before I1,

54

and it executes only low-integrity code to set mappings. By construction, the code invoked by I0 performs

exactly the modifications to σ′
1 that occurred to σ1 prior to the up event in the original invocation. Note that

some of these modifications may be adding new mappings through using E-REF, which is non-deterministic.

Because all mappings in σ′
1 not in σ1 were taken to be fresh with respect to σ2 as well, the names used in the

original invocation must be free, so we can pick the same names when evaluating to σ̃′
1. Therefore, for some

set of mappings ι 7→ (v, τ), σ̃1 = σ1[ι 7→ (v, τ)] and σ̃′
1 = σ′

1[ι 7→ (v, τ)]. Since σ1 ≈ℓ σ
′
1 and σ1 ⊆ σ′

1,

the same must therefore be true of σ̃1 and σ̃′
1, as desired.

Now assume k > 1 and, by induction, that σ̃k−1 ≈ℓ σ̃
′
k−1 with σ̃k−1 ⊆ σ̃′

k−1. There are two sub-cases

to consider depending on whether or not kth up event stems from a ℓ-reentrant call inside the call resulting

in the (k − 1)st up event.

If Ik does not correspond to a reentrant call, then Ik−1 corresponds to a high-integrity call that executed

to completion without reentrancy in the original execution. By construction of CT ′, any part of that execu-

tion that operated at low-integrity corresponds to a down in the log, and since none of those produced any

high-integrity calls (that would cause reentrancy), they modified the state by incrementing new low-integrity

counters and otherwise making the same modifications and returning the same values as the original exe-

cution. In particular, the changes to σ̃′
k−1 needed to achieve the state σ̂′ after completing Ik−1, are updates

to new low-integrity counters and the changes to σ̃k−1 to achieve the state σ̂ after completing the original

high-integrity call. Because σ̃k−1 ≈ℓ σ̃
′
k−1 and σ̃k−1 ⊆ σ̃′

k−1, it must be that σ̂ ≈ℓ σ̂
′ and σ̂ ⊆ σ̂′.

Further, any state modifications made after the high-integrity call returns (and thus after Ik−1 completes)

but before the kth up event (the beginning of Ik) must be made in a low-integrity environment. By the same

logic as Lemma 9 from the proof of Noninterference, they must be updates to low-integrity state. As a result,

each has a corresponding set event in the log, which we denote set(ι 7→ (v, τ)). The extra low-integrity

invocation added to I before Ik makes exactly these modifications to the state. Therefore, σ̃k = σ̂[ι 7→
(v, τ)] and σ̃′

k = σ̂′[ι 7→ (v, τ)]. The desired result follows from the above-proved correspondence of σ̂ and

σ̂′.

Lastly, consider the case where Ik corresponds to a reentrant call inside the call that Ik−1 corresponds

to. That is, the log must have the form . . . , upk−1, ev , down(pc, a), set, upk, . . . where ev contains no up

events. In this case, the code created to replace the down(pc, a) event in CT ′ simply returns an arbitrary

value of the correct type without modifying the state. Because we assumed all reentrancy was tail-reentrancy,

this means upk occurred when stepping a term of the form

E0[T [E2[new C(v).m(w)] at-pc pc2] at-pc pc1]

where pc1 ⇒ ℓ, pc2 6⇒ ℓ, and mtype(C,m) = τa
pc′2≫pc3;λO

−−−−−−−→ τ with pc3 ⇒ ℓ.
In CT ′, we replaced the code corresponding to E2[new C(v).m(w)] with code that returns an arbitrary

value of the correct type, and splitting the invocations means inside Ik−1, E0 will be empty. Therefore, by

Lemma 17, once E2[new C(v).m(w)] evaluates to some value v, T [v] will evaluate to v with no changes to

the state. Similarly, Ik−1 will return the arbitrary value returned in CT ′ without examining it or modifying

the state at all. That means that the change from σ̃′
k−1 to σ̂′, the heap when Ik−1 returns, is, as before,

updates to new low-integrity counters coupled with exactly the change from σ̃k−1 to the heap σ̂ when the

down(pc, a) event occurred. The low-integrity state modifications in the extra invocation before Ik are again

those made by the low-integrity code in CT before the call corresponding to up(pc ′, new C(v).m(w), σ̃k).
By the same argument as before, σ̃k ≈ℓ σ̃

′
k and σ̃k ⊆ σ̃′

k, as desired.

We have now shown that the state before each Ik is a ℓ-equivalent superset of the state before the

corresponding call in the original execution. To see that this result extends to σ2 and σ′
2, note that the logic

above for non-reentrant calls applies to show that the state after completing In is a ℓ-equivalent superset

of the state after completing the call that generated the final up event in the original execution. There may

be further low-integrity code in the original execution that modifies the state, but all such modifications

55

generate set events and are updated by the final invocation in I as described above. Therefore, again, σ2 and

σ′
2 are acquired by making identical modifications to the heap after the return of the final high-integrity call,

thereby proving σ2 ≈ℓ σ
′
2 and σ2 ⊆ σ′

2.

Theorem 4. Let CT be a class table, σ1 and σ2 be well-typed heaps, and I be an invocation such that

(I,CT , σ1) ⇓ σ2 where all ℓ-reentrant states are ℓ-tail-reentrant. For any ℓ-integrity predicates P and Q, if

Σσ1
�1
ℓ {P} CT {Q} and P (σ1), then Q(σ2).

Proof. Lemma 19 proves that there exists CT ′, I , σ′
1, and σ′

2 with the properties stated in the lemma.

Because P is a ℓ-integrity predicate and σ1 ≈ℓ σ
′
1, the assumption that P (σ1) means P (σ′

1). The definition of

Σσ1
�1
ℓ {P}CT {Q}, coupled with CT ≈ℓ CT

′ and Σσ1
⊆ Σσ′

1
mean that since P (σ′

1) holds, Q(σ′
2) must

hold. Finally, since σ2 ≈ℓ σ
′
2, the fact that Q is also a ℓ-integrity predicate proves Q(σ2), as desired.

56

	1 Introduction
	2 Motivation
	2.1 Uniswap
	2.2 Key–Value Store
	2.3 Town Crier

	3 Information Flow Control
	3.1 Label model
	3.2 Endorsement

	4 Reentrancy and Security
	4.1 Defining Reentrancy
	4.2 Reentrancy Security
	4.3 Enforcing Reentrancy Security

	5 A Core Calculus for Secure Reentrancy
	5.1 SeRIF Operational Semantics
	5.2 Type System for SeRIF
	5.3 Modeling Application Operation
	5.4 Examples Revisited

	6 Formalizing Security Guarantees
	6.1 Attacker Model
	6.2 Noninterference
	6.3 Formalizing Reentrancy

	7 Implementation
	8 Related Work
	9 Conclusion
	A Full SeRIF Rules
	B Location–Name Isomorphism
	C Preservation and Progress
	D Proof of Noninterference
	E Proof of Reentrancy Security
	E.1 SeRIF Allows Only Tail Reentrancy
	E.2 All Tail Reentrancy is Secure

