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VHetNets for AI and AI for VHetNets: An Anomaly
Detection Case Study for Ubiquitous IoT
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Abstract—Vertical heterogenous networks (VHetNets) and ar-
tificial intelligence (AI) play critical roles in 6G and beyond net-
works. This article presents an AI-native VHetNets architecture
to enable the synergy of VHetNets and AI, thereby supporting
varieties of AI services while facilitating automatic and intel-
ligent network management. Anomaly detection in Internet of
Things (IoT) is a major AI service required by many fields,
including intrusion detection, state monitoring, device-activity
analysis, security supervision and so on. Conventional anomaly
detection technologies mainly consider the anomaly detection as
a standalone service that is independent of any other network
management functionalities, which cannot be used directly in
ubiquitous IoT due to the resource-constrained end nodes and
decentralized data distribution. In this article, we develop an
AI-native VHetNets-enabled framework to provide the anomaly
detection service for ubiquitous IoT, whose implementation is
assisted by intelligent network management functionalities. We
first discuss the possibilities of VHetNets used for distributed
AI model training to provide anomaly detection service for
ubiquitous IoT, i.e., VHetNets for AI. After that, we study the
application of AI approaches in helping provide automatic and
intelligent network management functionalities for VHetNets,
i.e., AI for VHetNets, whose aim is to facilitate the efficient
implementation of anomaly detection service. Finally, a case
study is presented to demonstrate the efficiency and effectiveness
of the proposed AI-native VHetNets-enabled anomaly detection
framework.

I. INTRODUCTION

6G and beyond networks are expected to exhibit some
unique characteristics. First, satellites in low, medium and
geostationary Earth orbits, high altitude platform stations
(HAPSs), unmanned aerial vehicles (UAVs) and terrestrial
base stations are integrated into vertical heterogenous networks
(VHetNets) to provide a global coverage [1]. Second, ubiqui-
tous Internet of Things (IoT), which is playing an important
role in varieties of verticals including smart homes, health-
care wearables, environmental monitoring, industrial control,
agriculture and transportation, supports seamless connectivity
anytime, anywhere, and for everything [2], [3]. Third, intel-
ligence exists in every corner of networks, ranging from end
devices to the central network controller. Numerous network
nodes are endowed with built-in artificial intelligence (AI),
thereby supporting varieties of AI services while facilitating
automatic and intelligent network management [4].

Anomaly detection is defined as a process of automatically
detecting whether devices, components or systems are in their
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normal running states or not [5]. Anomaly detection is one of
the indispensable functionalities in 6G ubiquitous IoT system
for the following three reasons:

• 6G networks are envisioned to support new services while
satisfying their various and stringent QoS requirements,
including ultra-low latency and ultra-high reliability re-
quired by autonomous driving and industrial control
systems [4]. An efficient anomaly detection framework is
vital to detect or even predict possible abnormal running
states happened in these systems.

• Ubiquitous IoT devices provide many opportunities for
malicious attackers to degrade their performance includ-
ing denial of service, botnet, collusion, and many other
types of attacks. Anomaly detection could build a model
representing normal running states and identify abnormal
behaviors or attacks based on the deviation from the
model.

• Anomaly detection is the first step to recover networks
or systems from failures and compensate the degraded
service performance in an automatic and intelligent way,
which is expected to realize in 6G network management.

Sensing and communication are two fundamental func-
tionalities for the implementation of anomaly detection in
ubiquitous IoT. Traditional anomaly detection schemes in IoT
usually utilize static sensors to perform data sensing and IoT
gateways to forward the sensing data to a central server for
storage and analysis [6]. In this case, sensing and communica-
tion are separately accomplished by two standalone modules,
which causes high hardware cost, power consumption and
signaling latency. Besides, in situations where sensing targets
are placed in hard-to-reach regions, such as hazardous or
poisonous locations, traditional sensing solutions would be
invalid. The integrated sensing and communication design has
been recognized to be indispensable in ubiquitous IoT due
to its low hardware cost, power consumption and signaling
latency [7]. For implementing anomaly detection in ubiquitous
IoT, HAPSs and UAVs with integrated sensing and commu-
nication capacity are advanced approaches for smart sensing
and data collection [2], [6].

Machine learning (ML) is the most commonly used tech-
nique to obtain the anomaly detection model. Based on
adopted ML approaches, anomaly detection models are clas-
sified as follows: clustering-based models (such as K-means,
DBSCAN, and local outlier factor), classification-based mod-
els (such as K-nearest neighbor, support vector machine, and
Bayesian network), dimension-reduction-based models (such
as principal component analysis (PCA), and recursive PCA),
and hybrid models that combine multiple approaches together
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[8]. Existing works mainly consider the anomaly detection as
a standalone service that is independent of any other network
management functionalities, such as network planning, device
association, resource scheduling, and so on. However, in ubiq-
uitous IoT system, the ML-based anomaly detection cannot
be implemented without the allocated computing resources
or sensing data from the associated devices. Therefore, we
propose an AI-native VHetNets-enabled anomaly detection
framework to provide the anomaly detection service for
ubiquitous IoT, whose implementation will be assisted by
intelligent network management functionalities.

AI-native means that, as a built-in component in VHet-
Nets, AI exists not only in VHetNets as services for the
implementation of anomaly detection, but also in the network
controller for providing automatic and intelligent network
management. Therefore, the synergy of AI and VHetNets is
two-fold. On one hand, HAPS and UAVs in VHetNets can
work as agents for distributed AI model training to provide
the anomaly detection service, namely VHetNets for AI. On
the other hand, AI techniques can be applied to provide
automatic and intelligent network management functionalities
(such as network planning, device association, and resource
scheduling) in VHetNets, namely AI for VHetNets. Moreover,
the two components of AI-native VHetNets, namely VHet-
Nets for AI and AI for VHetNets, are not independent but
complementary to each other. The former requires the latter
to provide adequate computing and bandwidth resources for
the implementation of anomaly detection service while the
latter relies on results of the former (such as finding degraded
devices) to improve the network management efficiency. The
contributions of this article are summarized as follows:

• Develop an AI-native VHetNets-enabled framework to
provide the anomaly detection service for ubiquitous IoT,
which is implemented through the hierarchical collabora-
tion among three layers, namely HAPS, UAVs and ground
IoT devices.

• Establish a distributed anomaly detection model based
on asynchronous federated learning (AFL), where UAVs
with integrated sensing and communication capacity are
responsible for the data sensing, storage and local model
training, and HAPS is responsible for the local model
aggregation. Local models are aggregated at HAPS asyn-
chronously considering UAVs’ mobility and heteroge-
neous remaining energy. The AFL-based anomaly detec-
tion model utilizes the communication, computing and
storage resources in VHetNets to conduct the distributed
AI model training.

• Design a deep reinforcement learning (DRL)-based net-
work management scheme to realize AI for VHetNets
through dynamic interactions with the network environ-
ment. Because the adopted actions for network manage-
ment include both continuous and discrete variables, a
compound-action actor-critic (CA2C) method is intro-
duced to combine the advantages of the deep determin-
istic policy gradient (DDPG) for handling continuous
action spaces and the deep Q-network (DQN) for han-
dling discrete action spaces.The CA2C-based network

management scheme will assist the implementation of the
AFL-based anomaly detection model.

In this article, we develop an AI-native VHetNets-enabled
anomaly detection framework to provide the anomaly detec-
tion service for ubiquitous IoT devices. First, the architec-
ture of the AI-native VHetNets-enabled anomaly detection
framework is introduced. Second, we present the techniques
of VHetNets for AI to implement anomaly detection and AI
for VHetNets to provide intelligent and automatic network
management functionalities. Then, we validate the efficiency
and effectiveness of the proposed framework through a case
study. Finally, the article is concluded and the future research
is presented.

II. AI-NATIVE VHETNETS-ENABLED ANOMALY
DETECTION FRAMEWORK

Traditional anomaly detection framework usually depends
on a centralized server to collect all raw data and train a
global AI model based on the collected data. However, due to
the data explosion in ubiquitous IoT, the privacy concern and
limited communication resources for data transmission have
invalidated the centralized framework [9]. As an emerging de-
centralized AI framework, federated learning (FL) is effective
to conquer the above challenges by training a shared model
in distributed participating agents [2].

As shown in Fig. 1, the proposed AI-native VHetNets-
enabled anomaly detection framework is established on the
FL and leverages the hierarchical collaboration among three
layers, namely HAPS, UAVs and ground IoT devices, whose
main roles are elaborated as follows:

Ground IoT devices. Ground IoT devices are kinds of
applications in a variety of verticals, from industry to envi-
ronments, from transportation to healthcare, from home area
to public venues, and so on. By collecting and analyzing
the sensing data indicating running states of different sys-
tems, anomaly detection model can be constructed to detect
abnormal behaviors of monitored systems and provide early
warnings before the occurrence of failure.

UAVs. Each UAV with integrated sensing and communi-
cation capacity plays roles of a sensor, computing node and
storage node. It is responsible for sensing ground IoT devices
within its coverage and training the local anomaly detection
model based on its sensing data. Using UAVs as aerial nodes
to provide wireless sensing support from the sky is a promising
paradigm for its three advantages. First, its elevated altitude
and reduced signal blockage contribute to a wider field of
view for the UAV-based sensing compared to ground sensors.
Second, the highly flexible and controllable 3D UAV mobility
facilitates the deployment of UAV sensors in hard-to-reach
regions, such as hazardous or poisonous locations. Finally, the
high mobility of UAVs allows the performance optimization
of sensing through dynamic UAV trajectory planning [10].

Traditional FL commonly uses a synchronous learning
framework to aggregate the local model parameters from all
participating agents. Due to UAVs’ mobility and heteroge-
neous remaining energy, waiting for all UAVs to finish their
local training before aggregation will inevitably increase the
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Fig. 1. VHetNets for AI and AI for VHetNets.

global learning delay. Therefore, AFL is utilized among UAVs
to improve the learning efficiency.

HAPS. A HAPS is a quasi-stationary network node that
operates in the stratosphere at an altitude of around 20 km
[11]. HAPS, which provides line-of-sight communication and
wide coverage with a radius of 60-500 km, has been regarded
as an indispensable component for 6G networks. By adopting
the AI technique of deep reinforcement learning, HAPS can
control and manage the whole network in an intelligent and
automatic way through unintermittent interactions with the
network environment. In the proposed AI-native VHetNets-
enabled anomaly detection framework, HAPS is responsible
for the dynamic UAV trajectory planning, UAV selection
for AFL, device association strategies, and the parameter
aggregation uploaded by UAVs.

III. VHETNETS FOR AI: AN AFL-BASED ANOMALY
DETECTION SCHEME FOR UBIQUITOUS IOT

Instead of uploading all sensing data from UAVs to HAPS
and training the anomaly detection model at HAPS in a
centralized manner, AFL enables selected UAVs to execute
local training on their own sensing data and avoid raw data
transmission to HAPS for privacy preservation and commu-
nication resource savings. Specifically, each UAV uploads its
local model to HAPS periodically if it is selected to participate
in this global aggregation round. After that, HAPS aggregates
local models and broadcast the global model to all associated
UAVs for another global training round.

AFL framework needs an efficient UAV selection strategy to
decrease the effect of UAVs with low energy and low quality of

model to the global model’s learning efficiency and accuracy.
The UAV selection strategy could be explored by the DRL
technique elaborated in the next section.

Network anomalies are usually rare events, which will cause
the historical sensing data forming an imbalanced dataset.
Therefore, we implement the anomaly detection through build-
ing the normal behavior model and determining abnormal
behaviors according to their degree of deviation from normal
ones. In this article, we use the generative adversarial network
(GAN) to capture the distribution of normal data in UAVs for
its powerful ability in capturing the distribution from high-
dimensional complex real-world data [12].

GAN. GAN consists of two models: the generator and the
discriminator, which are usually built with neural networks.
The generator attempts to generate new (fake) samples from
latent variables to fool the discriminator, and the discriminator
attempts to distinguish fake samples from real ones. By train-
ing the generator and discriminator through the adversarial
learning, the Nash equilibrium can be achieved theoretically.
After convergence, the generator can generate fake samples
sharing the same distribution with real ones and the dis-
criminator is unable to distinguish them. Fig. 2 illustrates
the training processes of the AFL-based anomaly detection
scheme assisted by GAN, whose workflow consists of nine
steps as follows:

1) HAPS distributes initial global model parameters and
UAV selection indicators to each UAV as local model
parameters and update indicators, respectively;

2) Each UAV sets its local model parameters as global ones,
and then checks the selection indicator to determine
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Fig. 2. Training processes of the AFL-based anomaly detection scheme assisted by GAN.

whether to implement the local training step or not;
3) If a UAV is selected to participate in this aggregation

round, then activate training processes of the local
generator and discriminator;

4) Sample a mini-batch of fake data and real data to train
the local discriminator;

5) Based on the local discriminator model, sample a mini-
batch of noise to train the local generator every N
discriminator training rounds;

6) Upload local parameters to HAPS for model aggregation
every K local training rounds;

7) HAPS obtains global generator and discriminator models
by the federated averaging;

8) HAPS implements the DRL-based UAV selection to
determine the optimal UAV subset for the next global
aggregation round;

9) HAPS distributes model parameters and UAV selection
indicators to all UAVs for their further updates.

The above steps are implemented repeatedly until global
models converge. After the global generator and discriminator
are well trained, an anomaly score, which is defined as the
weighted combination of the generator loss and discriminator
loss, can be constructed to measure the abnormality of new
sensing data.

IV. AI FOR VHETNETS: DRL-BASED INTELLIGENT AND
AUTOMATIC NETWORK MANAGEMENT

Existing works mainly consider the anomaly detection as
a standalone functionality that is independent of any other

network management functionalities. However, the efficiency
of the AFL-based anomaly detection scheme depends heavily
on the network management functionalities of UAV selection,
device association and UAV trajectory planing, whose func-
tions are presented as follows:

Device association. The device association strategy is ap-
plied to decide which UAV a ground IoT device should
associate with to maximize its successful sensing probability
and the whole networks’ coverage, which are closely related
to the data abundance for establishing an accurate and robust
anomaly detection model.

UAV selection. The UAV selection strategy is used to
select the UAV subset participating in each global aggregation
round, whose objective is to minimize the federated execution
time and learning accuracy loss. The federated execution time
consists of local model update latency, local model upload
latency, global model aggregation latency, and global model
broadcast latency, which mainly rely on UAVs’ locations,
remaining energy and computing resources.

UAV trajectory planning. Because a part of IoT devices
randomly move with a rapid speed, UAVs also need to move
correspondingly to complete sensing processes. However, the
energy capacity of UAVs is limited, so the efficient UAV
trajectory planning strategy is vital to balance the energy usage
in flying for coverage and in computation and transmission for
the training of the anomaly detection model.

Intelligent and automatic network management functionali-
ties consist of sequential decision-making processes with the
time-varying network environment. Reinforcement learning
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(RL) is an effective solution to make sequential decisions
through unintermittent interactions with the network envi-
ronment, which comprises a decision-making agent, network
state, action, and reward [13]. Based on the network state,
the agent takes an action and then obtains an instant reward.
The network environment will enter into a new state after an
action is taken on it. The state transition and instant reward will
guide and reinforce the adaption of the agent’s policy, which
determines the sequential actions taken in each decision period
with the evolution of the network environment. The learning
process continues until the optimal policy that maximizes
the accumulated reward is found, which can be expressed
by a state-value or an action-value function. The state-value
function represents the total expected reward starting from
an initial network state, while the action-value function, also
known as the Q-value function, maps each state-action pair to
the accumulated reward.

RL is hard to train to converge and obtain the optimal
policy when facing large state and action spaces in large-scale
networks. DRL overcomes this challenge by adopting deep
neural networks (DNNs) as function approximators to predict
different components in RL, including the value function,
policy, and the network state transition model.

A. DRL Approaches

DQN. DQN is an extension of the traditional value-based
Q-learning method, which utilizes DNNs as function approx-
imators to predict Q-values. The success of DQN depends on
two key techniques, namely fixed target Q-network and expe-
rience replay, to stabilize the learning process with large state
and actions spaces. The fixed target Q-network means that
parameters of the target network only update with Q-network
parameters every C steps and keep unchanged between two
individual updates, so the challenge of non-stationary target
values in DQN training can be overcome. The experience
replay keeps a replay memory to buffer historical transition
experience. In each DQN training round, a random mini-batch
of samples are sampled from the replay buffer to break the
sample correlation and improve the learning efficiency [14].
The convergence of DQN training is achieved by minimizing
the mean squared error between the Q-value estimated by Q
network and the target value obtained from target Q-network.
However, the DQN with fixed target Q-network and experience
replay only can handle sequential decision-making processes
with discrete action spaces.

DDPG. Policy gradient-based RL methods can be utilized to
handle sequential decision-making processes with continuous
action spaces by learning deterministic/stochastic policies. The
classical actor-critic framework stems from the policy gradient
principle by establishing connections between the Q-value
and the policy gradient. The critic function evaluates the
quality of the policy by estimating the Q-value and the actor
function adopts the policy gradient method to update the policy
parameters. To speed up the convergence of policy gradient-
based methods, DDPG is proposed to combine the policy-
based approach with the value-based approach to estimate the
policy gradient more efficiently [13]. To adapt to the complex

networks with large state and action spaces, DNNs are used
as function approximators for actor and critic networks. In
addition, DDPG also uses two key techniques, namely target
actor and critic networks, and experience replay to make the
learning process more stable and efficient.

CA2C. As wireless networks become increasingly large-
scale and complicated, the network management problems face
kinds of decision variables, including both discrete indicators
(such as device association, handover, sleep strategy, and
so on) and continuous variables (such as power allocation,
trajectory planning, and so on). Besides, the allocation of
bandwidth, computing and storage resources can be considered
as either discrete or continuous decision variables. Most of
the time, discrete indicators and continuous variables are not
independent and can be solved through establishing standalone
decision-making models, but highly correlated to reach a
common objective or multiple common objectives. Thus the
CA2C approach is introduced to realize intelligent and auto-
matic network management,which combines the advantages of
DDPG approach for dealing with continuous decision variables
and DQN approach for dealing with discrete decision variables
[14].

B. CA2C-based intelligent and automatic network manage-
ment

For the implementation of AI-native VHetNets-enabled
anomaly detection framework, the decision-making processes
of CA2C-based intelligent and automatic network management
are defined as follows:

Decision-making agent: HAPS is worked as the decision-
making agent due to its quasi-stationary position, the line-
of-sight communication, wide coverage and multiple energy
sources, including conventional energy (such as electrical
batteries and fuel tanks), energy beams, and solar energy [11].

State: In each decision period, HAPS interacts with the
network environment to observe its network state, including
current locations of ground IoT devices and UAVs, device
association indicators and selected UAV subset in last decision
period, and UAVs’ remaining energy.

Action: HAPS is responsible for taking corresponding
actions based on the observed network state, where actions
include discrete actions of device association and UAV se-
lection indicators, and continuous actions of UAV positions.
The network environment will enter into a new state after
corresponding actions are taken on the current network state.

Reward: The reward represents a numerical value obtained
by the agent from the environment to quantify its satisfaction
with taken actions. The objective of the defined decision-
making processes is to maximize the coverage capacity for
ground IoT devices while minimize the execution time and
learning accuracy loss of the AFL-based anomaly detection
model. Therefore, the instant reward is defined as the weighted
sum of the coverage capacity, execution time and learning
accuracy loss in one decision period.

Learning processes of the CA2C approach are illustrated
in Fig. 3 and explained as follows, which include three main
sub-procedures.
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Fig. 3. Learning processes of the CA2C approach.

1. Environment interactions:
1) Observe the network state;
2) Execute mixed actions with both discrete and continuous

ones determined by the actor and critic networks in each
decision period;

3) Calculate the instant reward as the feedback of selected
actions;

4) The environment enters into a new network state.
The quadruple <State, Action, Reward, Next state> will be
stored in the replay buffer as experience.

2. Critic network training: First, sample a mini-batch of
experience as the training data.

1) Based on the actor network and the sampled experience,
obtain the UAV locations (continuous actions) for the
observed state;

2) Determine the device association and UAV selection
actions (discrete actions) based on the Q-function value
estimated by the target critic network;

3) The target actor network calculates UAV locations based
on the observed state and discrete actions;

4) Calculate the target value by adding the instant reward
in experience and the Q-function value estimated by the
target critic network;

5) Update parameters of the critic network using Adam
optimizer;

6) Share parameters of the critic network with the target
critic network;

7) Update parameters of the target critic network using the
soft update method, namely the weighted sum of critic

network’s parameters and its own parameters, where the
sum of weights is equal to 1.

3. Actor network training: First, sample a mini-batch of
experience as the training data.

1) Calculate gradients of the Q-value function with respect
to the UAV locations (continuous actions) for all sam-
pled experience;

2) Update parameters of the actor network using Adam
optimizer;

3) Share parameters of the actor network with the target
actor network;

4) Update parameters of the target actor network using the
soft update method, which is same as the update of the
target critic network.

The above three sub-procedures are executed alternately
until all training episodes end. The integration between the
AFL-based anomaly detection scheme and the CA2C-based
intelligent and automatic network management approach con-
tributes to an efficient AI-native VHetNets-enabled anomaly
detection framework.

V. A CASE STUDY

In this section, a case study is presented to evaluate the
performance of the proposed AI-native VHetNets-enabled
anomaly detection framework.

We consider a 1 km × 1 km area with a HAPS, 5 UAVs
and 30 ground IoT devices. The energy budgets of a UAV for
each local model upload and each local training round are set
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Fig. 4. Convergence performance of the AFL-based GAN model.

as 30 J and 1 J, respectively. The flying energy consumption
of a UAV is assumed to be proportional to the flying distance,
whose rate is set as 300 J/km. The considered scenario is
simulated in pytorch (Python 3.7) and the proposed scheme is
conducted by a computer with a CPU capacity of 12 Intel(R)
Core(TM) i7-10750H CPU × 2.6 GHz and a RAM of 16 GB.

We choose a well-known dataset published by Inter Berke-
ley Research Lab [15] as sensing data from ground IoT
devices. The dataset includes temperature, humidity, light
and voltage features collected from 54 distributed Mica2Dot
sensors every 31 seconds during the period of February 28th to
April 5th, 2004. Each UAV trains its local anomaly detection
model based on the sensing data from its associated IoT
devices. HAPS is responsible for aggregating local models
to obtain the global anomaly detection model every K local
training rounds, where K is set as 30 in this article.

The AI-native VHetNets-enabled anomaly detection frame-
work is established on the AFL-based GAN model, where
the subset of UAVs that participate in every global training
episode is determined by the CA2C approach. As shown in
Fig. 4, we first present the convergence performance of global
generator and discriminator in the AFL-based GAN model. In
the simulation, socket is used to realize the communication
between emulated UAVs and HAPS. It can be seen that the
AFL-based GAN model has converged after 80 global training
episodes.

We have compared the detection performance and the en-
ergy consumption of the AFL-based GAN model with the FL-
based GAN model and standalone GAN model. In FL-based
GAN model, each UAV participates in all global aggregation
rounds and the UAV selection process is not included. In
standalone GAN approach, each UAV trains its own anomaly
detection model without any data or parameter exchange.
Metrics used for evaluating the detection performance include
precision, recall, accuracy and F1-score. Their comparison
results are presented in Fig. 5.

Fig. 5(a) shows the average energy consumption of UAVs
as the global training proceeds. One global training episode
includes 30 local training rounds. We can observe that the
standalone GAN model consumes the minimum energy, and

(a)

(b)

Fig. 5. Performance comparison of different methods: (a) energy consump-
tion; (b) detection performance.

the AFL-based GAN model with UAV selection process can
reduce the energy consumption compared to the FL-based
GAN model without UAV selection process. The reason is
that in the AFL-based GAN model, UAVs are not required to
participate in every global aggregation, and hence more energy
is saved. Fig. 5(b) shows the detection performance of different
methods. It can be seen that the proposed model achieves the
best detection performance compared to the FL-based GAN
model and standalone GAN model. This is because the UAV
selection process in the AFL-based GAN model can avoid
UAVs with less learning accuracy participating in the global
aggregation. Therefore, the AFL-based GAN model can obtain
a more accurate anomaly detection model with less energy
consumption in UAVs.

VI. CONCLUSION AND FUTURE RESEARCH

In this article, we have proposed an AI-native VHetNets-
enabled anomaly detection framework for ubiquitous IoT
through hierarchical coordination among HAPS, UAVs and
ground IoT devices. The framework aims to enable the synergy
of VHetNets and AI. VHetNets for AI considers VHetNets
with communication and computation capacity as agents for
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distributed AI model training to provide the anomaly detec-
tion service. AI for VHetNets helps provide automatic and
intelligent network management functionalities to facilitate
the efficient implementation of anomaly detection service.
The proposed AI-native VHetNets-enabled anomaly detection
framework is established on the AFL-based GAN model,
where the subset of UAVs that participate in every global
training episode is determined by the CA2C approach. In the
case study, we have validated that the proposed framework
achieves a more accurate anomaly detection model with less
energy consumption in UAVs.

For future research, the proposed framework can be ex-
tended by involving the blockchain technology to improve
the privacy and security during distributed AI model training.
First, although FL has distinct privacy advantages, it still
faces two security threats: poisoning participants and inference
attacks. These two threats may result in the convergence
failure of global AI models or privacy leakage of sensitive
information. Second, because UAVs and HAPS are operating
in the sky and communicate through wireless communica-
tion technologies, they are more vulnerable to these privacy
and security risks. Therefore, the recognition of malicious
participants and secure transmission during aggregation are
major concerns in constructing secure FL framework. With
the advantages of decentralization, immutability, anonymity,
and security, integrating blockchain with the FL framework
can defend against numerous threats and attacks.
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