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GPA-Teleoperation: Gaze Enhanced
Perception-aware Safe Assistive

Aerial Teleoperation
Qianhao Wang † 1,2, Botao He † 2,3, Zhiren Xun 1,2, Chao Xu 1,2, and Fei Gao1,2

Abstract—Gaze is an intuitive and direct way to represent the
intentions of an individual. However, when it comes to assistive
aerial teleoperation which aims to perform operators’ intention,
rare attention has been paid to gaze. Existing methods obtain
intention directly from the remote controller (RC) input, which
is unfriendly to non-professional operators, as the experimental
results show in Sec. VI-C. Further, most teleoperation works do
not consider environment perception which is vital to guarantee
safety. In this paper, we present GPA-Teleoperation, a gaze
enhanced perception-aware assistive teleoperation framework,
which addresses the above issues systematically. We capture the
intention utilizing gaze information, and generate a topological
path matching it. Then we refine the path into a safe and
feasible trajectory which simultaneously enhances the perception
awareness to the environment which the operator is interested in.
Additionally, the proposed method is integrated into a customized
quadrotor system. Extensive challenging indoor and outdoor
real-world experiments and benchmark comparisons verify that
the proposed system is reliable, robust and applicable to even
unskilled users. We will release the source code1 of our system
to benefit related researches.

Index Terms—Aerial Systems: Applications; Telerobotics and
Teleoperation; Motion and Path Planning

I. INTRODUCTION

W ITH the rapid development of aerial autonomy, UAV
assistive teleoperation gradually shows huge potentials

to reduce the difficulty of operations and raise the safety of
missions. Assistive teleoperation, which aims to accomplish
humans’ intention by machines, puts forward twofold require-
ments . Firstly, it should capture the intention of operators
precisely and timely. Secondly, it should be accompanied by
a proper acting strategy under the promise of safety.

Gaze fixations are strongly correlated to the operator’s inten-
tion, which has been observed in various fields, including car
driving [1], gaming [2], and drone racing [3]. Naturally, gaze
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Fig. 1: Illustration of the real-world drone-racing experiment, which
will be detailed in Sec. VI-C. Top: the composite long exposure
trajectory of quadrotor flying with our assistive teleoperation system.
Bottom: the operator with an eye tracker and the image he receives
now is from the first view of the quadrotor in the yellow box. Red
circles in the top and bottom figure represent gaze data in three
dimensions and the first view respectively.

has an non-negligible potential for representing intentions.
However, in the literature on aerial teleoperation, few works
try to utilize the gaze of humans. Instead, most existing works
[4]–[6] directly read the intention input from RC, which may
not be able to reflect the true intention of naive operators. This
is because using RC requires the operator to simultaneously
operate at least four channels to control drone’s direction and
speed, which is hard for those who do not have long-term prac-
tices. These unstable intentions are particularly obvious when
the drone is operated by an unskilled man in an unfamiliar
environment and may prevent the assistive flight system from
being truly accepted by consumers. In this paper, inspired by
the work [3] which finds the high correlation between gaze and
intention, we propose an aerial assistive teleportation system,
which stably captures the human intention by using the gaze
information, and react to this intention in a user-friendly way.

In addition to intention inference, safety is another pivotal
element for aerial assistive teleoperation. Since the intention
may originate from an unskilled operator, increasing the
safety margin in occluded and complex environments is vital.
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Therefore, a robust flying assistance system should not only
generate safe motions using operator’s intention, but also assist
operators to do timely decisions with environmental aware-
ness. Recently, many works [7], [8], including our previous
research [9] start to consider perception awareness by planning
the drone to observe and avoid unknown obstacles actively.
Nevertheless, these works cannot be directly applied to as-
sistive aerial teleoperation (details in Sec. II-C). To address
this issue, we propose a novel perception-aware planner by
improving our previous work [9] to enhance the visibility of
where the operator’s intention refers.

Furthermore, keeping the speed of the drone on par with
the operator’s expectation is also essential in a user-friendly
teleopeartion system. This is because frequent unexpected
speed changes will make the operator feel like they are losing
effective control of the drone. To address this problem, we
upgrade our trajectory planner to maintain consistent with the
operator’s expected speed as much as possible.

In this paper, we propose a Gaze enhanced Perception-
aware safe Assistive aerial teleoperation system called GPA-
Teleoperation. Based on eye movements and RC input, we
plan a topological path that matches operator’s intention.
Derived from this path, we further propose the back-end
optimizer which refines the path into a trajectory which
simultaneously ensures safety and increases the perception
awareness to environment of interest. Additionally, we inte-
grate our proposed system into a customized quadrotor.

Additionally, we compare our system with existing con-
sumer class assistive aerial teleoperation by several operators.
Extensive real-world experiments show our method performs
efficiently and safely. The contributions of this paper are:

1) A novel intention capture method utilizing gaze fixation,
which generates a guiding topological path for trajectory
optimization. Precise intention obtained from this method
makes the system more friendly to operators.

2) A perception-aware trajectory optimization method,
which simultaneously optimizes the visibility to envi-
ronments where the operator focuses, and maintains the
speed that the operator desires. It promotes the safety and
user experience of the proposed system.

3) A complete gaze enhanced assistive teleoperation system
with code open source. Extensive real-world tests validate
that our method is practical and effective.

II. RELATED WORKS

A. Gaze for Intention Inference

There have been many works, mainly for car driving sce-
narios, studying gaze-based intention inference. With Land et
al. [1] first illustrate the high relevance between gaze and
future trajectory, several works repeatedly confirm this both
in real-world [10], [11] and simulation [12]. For UAVs, the
phenomenon has also been observed. In [13], the authors
notice that eye movement patterns are specific in different
flight stages like take-off and landing. In [3], Pfeiffer et al. find
that gaze fixations are highly correlated with operator’s control
commands, which means eye movements can well reflect the
operator’s intention. These works provide solid evidence that

humans tend to use specific gaze patterns to indicate their
intents. However, none of these works integrates human gaze
into a closed control loop. While several works in visual
servoing [14], [15] indicate that using gaze to control robots
for specific tasks are intuitive and operators do not need any
long-term professional training.

B. Assistive Aerial Teleoperation

Several previous works [16], [17] formulate the assistive
teleoperation of UAVs as a local control problem to avoid
collisions. However, these works do not take operator’s in-
tention into account. In recent years, some works have been
proposed to incorporate operator’s intention into assistive
teleoperation. Yang et al. [4] handle the intention of an
operator by modeling it as an indicative direction and follow
it by generating trajectories from a set of motion primitives.
However, this sampling-based method is time-consuming and
cannot guarantee a promising trajectory due to the inherent
discretization error. Recently, Yang et al. [6] propose a hierar-
chical teleoperation framework considering global intentions.
They capture intention of the operator to generate a global path
and plan local safe trajectories while following it. The above
works capture intentions directly from the inputs of a RC,
which is unfriendly to operators without long-term training in
challenging environments. However, by capturing intentions
precisely and stably with gaze information, our system is
applicable to even naive users.

C. Perception-aware Navigation in Unknown Environments

For UAVs, generating safe flight trajectories is the key to
developing a navigation system. Richter et al. [18] propose a
learning-based method to plan for better visibility to unknown
areas. However, the huge amount of data and training prevents
it from being generalized to complex 3D environments. Zhou
et al. [8] propose a perception-aware planning strategy. They
use an iterative task-specific trajectory refinement method
to achieve risk awareness. This method guarantees sufficient
safe reaction distance for suddenly appeared obstacles. In
this paper, we extend our previous work [9] to equip our
assistive teleoperation system with environmental awareness.
Our method successfully increases confidence and safety when
operators teleoperate the drone in complex environments.

III. SYSTEM OVERVIEW

The problem statement of our work is: capturing operator’s
direction intention from gaze and speed intention from RC
input, our system generates a safe trajectory that conforms to
the intention for the UAV to execute. The pipeline of this work
is illustrated in Fig. 2. Our teleoperation system is divided
into two subsystems, operator interaction subsystem and UAV
subsystem.

For the operator interaction subsystem, eye tracker and RC
are used respectively to obtain operator’s expected direction
and speed. Since RC is only used for speed control, we only
need a single channel input from it, which is similar to the
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Fig. 2: A diagram of our teleoperation system architecture.

accelerator of a vehicle. Eye tracker receives the first view
image from the UAV’s onboard sensor.

For the UAV subsystem, state estimation, mapping, planning
and control modules are all working onboard. Based on
expected direction and speed, the planner generates a local
target and the operator’s desired topological path, which will
be detailed in Sec. IV. Then by refining this topological path,
the planner optimizes a perception-aware trajectory that makes
the UAV keep at operator’s desired speed, as presented in
Sec. V. Additionally, to allow operator to view the intended
topology better, we control the yaw of UAV to place the
topology around the center of the view.

Algorithm 1: Topological Path Generation

let Q be a queue; label gD as explored;
Q.enqueue(gD);
while Q is not empty do

v := Q.dequeue();
if v.depth in perception range and v is

unclustered then
ctemp := DBSCAN(v,D);
label ctemp as clustered;
if gD ∈ BoundingBox(ctemp) then
C.enqueue(ctemp);

else
if c1m is empty then

c1m = (ctemp);
C.enqueue(c1m);

else
M = Merge(c1m, ctemp);
if gD ∈ BoundingBox(M) then

c2m = ctemp;
C.enqueue(c2m);
Break;

Q.enqueue(VisitNeighbours(v)); // BFS

return C;

IV. GAZE ENHANCED INTENTION GUIDING TOPOLOGICAL
PATH GENERATION

In order to optimize a perception-aware trajectory, we need
to firstly generate a topological path that is consistent with the
operator’s intention. In this section, we propose an intention

Depth (m) 5.02.5

Gaze Topological Waypoint

BFS

𝑴

(a) (b)

(c) (d)𝒄𝒎
𝟏 𝒄𝒎

𝟏𝒄𝒎
𝟐

𝒄𝟏

Fig. 3: Working principle of our topological path generation algo-
rithm. (a): BFS is conducted on D with gaze as the origin. (b): Object
is clustered and signed as ci(i = 1, 2...) if the bounding-box of it
contains the gaze point. (c): The first object that does not contain the
gaze point is clustered and marked as c1m. (d): BFS is continued until
the bounding box of M includes the gaze point.

guiding topological path generation module utilizing gaze
fixation. An illustration of this section can be found in Fig.
3. The input of the proposed module is a control signal from
RC, a gaze point gI on the first person view (FPV) image
plane I and a depth image D. For gaze, we register gI to
D according to the intrinsic and extrinsic matrix of D and I ,
sign as gD. Notably, since gI is a 2-D vector, it cannot be
directly projected to 3-D space. Therefore, we use the the
depth of maximum reliable perception range as its depth and
project it to 3-D space as a local target. After that, we apply a
smoothing filter for the past ten inputs to eliminate the noise
of gaze like blink and glance.

After all the pre-processes, we have captured the operator’s
intention. To ensure that the planned path is consistent with
intention, we need to utilize the intention to constrain the
topological structure of the path. To achieve this, Algorithm 1
is proposed. Firstly, gD is utilized as the origin for Breadth
First Search (BFS) [19] on D. The BFS would halt once it
visits a pixel with its depth in the perception range and is
unclustered before. Then, we take the pixel as the anchor point
for DBSCAN [20] clustering, resulting in a cluster ctemp, as
illustrated in Fig. 3(b). For each pixel in ctemp, we label it
as clustered. If gD is in the boundingbox of ctemp, meaning
the gaze hit the object, we enqueue ctemp into the cluster-
set C and label it as ci(i = 1, 2...). Otherwise, we check
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if it is the first object that is not hit by the gaze, if so, we
labeled ctemp as the first margin cluster c1m, as is shown in
Fig. 3(c). After assign c1m, for each cluster that is not hit by
the gaze, we merge it with the margin object as M, like Fig.
3(d) does, and check if gD locates in the bounding-box of
M . If so, the latest clustered object is signed as c2m and the
BFS is stopped. Then, we project gD as a line to Body Frame,
signed as gB . Finally, we project the central points of clusters
C = {c1, c2...ci, c1m, c2m} to gB as topological waypoints and
gB as the topological path.

V. PERCEPTION-AWARE SPATIAL-TEMPORAL
TRAJECTORY OPTIMIZATION

In this section, we refine the topological path planned in
Sec. IV to generate a perception-aware trajectory, which is
also expected to keep the UAV at the operator’s desired speed.
For perception-awareness, based on our previous work [9], we
describe an analytical visibility metric (Sec. V-A) that can be
easily formulated into a differentiable penalty (Sec. V-C3). For
keeping desired speed, we penalize the trajectory execution
time (Sec. V-C1) and limit the speed by constraining the
maximum allowed speed (Sec. V-C2). To directly control both
the spatial and temporal profile of trajectory, we adopt MINCO
[21] representation (Sec. V-B).

A. Analytical Visibility Metric
As the two-dimension profile Fig. 4 shows, pvis is a point

on the quadrotor’s trajectory and v is the position of the target
which depends on the gaze. Since the attitude of quadrotor
is controlled by the direction of gaze as mentioned in Sec.
III, we assume that the aircraft is always facing the target.
The blue range represents the FOV of quadrotor. The blue
dashed enveloped area represents the confident FOV which
is desired to be obstacle-free. But it is hard and costly to
represent this requirement analytically. Therefore, we generate
a sequence of spherical areas {B1,B2, ...,BN} to approximate
the confident FOV. The Bk is shown as the red circle, and its
center vk and radius rk are calculated by

vk = pvis + ψk(v − pvis), rk = ρ · ψk · ||v − pvis||, (1)

where ψk = k/N, k ∈ {1, 2, ..., N}, and ρ is a constant
parameter that determines size of the confident FOV.

Then we can enhance the visibility of target analytically by
requiring each ball to satisfy

Ξ(vk) > rk, Ξ(ci) : R3 → R, (2)

which is used to construct visibility penalty function in [9]
and Ξ(ci) is the distance to the closest obstacle. However, in
this paper we transform the requirement of visibility Eq.2 into

(Ξ(vk)/lk) > ρ, lk = ψk||v − pvis||, (3)

based on which we design the visibility penalty in this work.
This penalty performs better than [9] in terms of enhancing
visibility, which is detailed in Sec. V-C3.

As shown in Fig. 4(b), by expelling obstacles from the
spherical area, this method effectively increase the visibility
of the target.

FOV

Confident FOV

Trajectory

Free Threshold 

Range

Target Point

Obstacle

𝐯𝑘

𝑟𝑘
𝐯 𝐯

(a) (b)

𝐯𝑘

𝐩𝑣𝑖𝑠
𝐩𝑣𝑖𝑠

Fig. 4: Illustration of the visibility metric definition. (a): the trajectory
ignoring visibility. (b): the trajectory considering visibility.

B. Trajectory Representation

In this paper, we adopt the MINCO [21] to conduct spatial-
temporal deformation of the flat-output trajectory. An s-order
MINCO trajectory is indeed a 2s-order polynomial spline with
constant boundary conditions, which is defined as:

TMINCO =
{
p(t) : [0, T ] 7→ Rm

∣∣∣ c =M(q,T),

q ∈ Rm(M−1), T ∈ RM>0

}
,

(4)

where p(t) is an m-dimensional M -piece polynomial tra-
jectory. c = (cT1 , . . . , c

T
M )T ∈ R2Ms×m is the polynomial

coefficient and M(q,T) is a linear-complexity smooth map
from intermediate points q and a time allocation T for all
pieces to the coefficients of splines. A spline with c =
M(q,T) is exactly the unique control effort minimizer of an
s-integrator that passes q. For any penalty function F (c,T)
with available gradients, MINCO can also serve as a linear-
complexity differentiable layer H(q,T) = F (M(q,T),T).
Then ∂H/∂q and ∂H/∂T can be obtained efficiently from
the corresponding ∂F/∂c and ∂F/∂T.

The i-th piece pi(t) of trajectory is defined by

p(t) = pi(t− ti−1), ∀t ∈ [ti−1, ti]. (5)

pi(t) = cTi β(t), ∀t ∈ [0, Ti], (6)

where β(t) := [1, t, · · · , tN ]T is the natural basis, ci the
coefficient matrix, Ti = ti − ti−1 and T =

∑M
i=1 Ti.

Specifically, we define constraint points p̊i,j which
are sampled on each piece of the trajectory by p̊i,j =
pi((j/κi)Ti), j ∈ {0, 1, 2, ..., κi}, where κi is the sample
number on the i-th piece. These points are used to transform
the time integral of some constraint functions, such as the
Dynamical Feasibility Penalty in Sec. V-C2, into weighted sum
of sampled penalty functions.

C. Problem Formulation

Inspired by [8], first we generate an intermediate warm-up
trajectory as the initial trajectory utilizing the topological path
from Sec. IV. Then taking our requirements into account, we
formulate the trajectory optimization problem as

min
q,T

[Je, Jd, Jt, Jvis, Jc, Ju] · λ, (7)
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where λ is the a weighting vector to trade off each penalty
which will be described below. In this paper, we use the quasi-
Newton method proposed in [22] which supports nonsmooth
cost functions to solve this unconstrained optimization prob-
lem.

1) Execution Time Penalty Jt: To increase the speed of
UAV, we penalty the total execution time Jt =

∑M
i=1 Ti. Its

gradient is ∂Jt/∂c = 0, ∂Jt/∂T = 1.
2) Dynamical Feasibility Penalty Jd: To prevent the speed

from increasing excessively introduced by Jt, we use the
desired speed to set the value of the maximum allowed speed.
Additionally violent shifts of speed will lead to a blurred first

view, which is unfriendly to operator. Thus not only velocity,
we also limit the amplitude of acceleration and jerk. The
constraints are written by

G∗ = p
(n)
i (t)2 −max2∗, ∀t ∈ [0, Ti], (8)

where ∗ = {v, a, j}, n = {1, 2, 3}, and t = jTi/κi,
respectively. maxv,maxa,maxj are maximum allowed ve-
locity, acceleration and jerk. Inspired by the method in [23],
the dynamical feasibility penalty is obtained by computing
weighted sum of sampled constraint function:

(Jd)∗ =

M∑
i=0

Ti
κi

κi∑
j=0

ω̄j max (G∗(p̊i,j),0)3, (9)

where (ω̄0, ω̄1, . . . , ω̄κi−1, ω̄κi
) = (1/2, 1, · · · , 1, 1/2) are the

quadrature coefficients following the trapezoidal rule [24] and
p̊i,j are constrain points. The gradient can be written by

∂(Jd)∗
∂ci

=
∂(Jd)∗
∂G

∂G
∂ci

, (10)

∂(Jd)∗
∂Ti

=
∂(Jd)∗
∂G

∂G
∂t

∂t

∂Ti
+

κi∑
j=0

ω̄j
κi
κi max (G∗(p̊i,j),0)3,

(11)
∂G∗
∂ci

= 2β(n)(t)p
(n)
i (t)T,

∂G∗
∂t

= 2β(n+1)(t)Tcip
(n)
i (t),

(12)
3) Visibility Penalty Jvis: To achieve the visibility demand

defined in Sec. V-A, we design visibility penalty as

Jvis =

M∑
i=0

Ti
κi

κi∑
j=0

ω̄jFvis(p̊i,j). (13)

where these constraint points p̊i,j are selected as the visibility
points pvis. For each visibility point pvis, we define

Fvis(pvis) =

N∑
k=1

max (fvis((vk), 0)
3
, (14)

fvis(vk) = (ρ− Ξ(vk)/lk), (15)

where N,vk, lk and ρ are the parameters of spherical areas
mentioned in Sec. V-A and Ξ(vk) is obtained from ESDF.

Then the gradient of fvis cost can be calculated by

∂fvis
∂pvis

=
1

l2k

[
ψk
lk

Ξ(vk)(pvis − vk)− (1− ψk)lk
∂Ξ(vk)

∂vk

]
,

(16)

where ∂Ξ(vk)/∂vk can be efficiently acquired from ESDF.
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Fig. 5: Comparison of [9] and this work. The gray square is an
obstacle, the black quadrotor is the initial position of the drone, the
green ball indicates the target, the red curve indicates the trajectory
and the points on it indicate the constraint points, and the light blue
arrows indicate the negative gradients of the visibility costs.

Note that each visibility point pvis is a constraint point
p̊i,j = pi(t), t = jTi/κi, whose gradient is written by

∂p̊i,j
∂ci

= β(t),
∂p̊i,j
∂t

= β̇(t)Tci. (17)

Then with the above Eq. 16, 17 the gradient of the visibility
penalty Jvis can be calculated easily using the chain rule.

Notably, in this work, we upgrade the formulation of the vis-
ibility requirements compared to [9]. Specifically, compared to
Eq. 3, the method in [9] formulates the visibility requirement
into Ξ(vk) > rk, in which the visibility cost for each visibility
point is designed as

F̃vis(pvis) =

N∑
k=1

max (f̃vis((vk), 0)
3
, (18)

f̃vis(vk) = (rk
2 − Ξ(vk)

2
). (19)

Comparing Eq. 15 and Eq. 19, the key improvement is that in
Eq. 15 the direct effect of ||v − pvis|| on the cost function is
weakened, which makes the cost more focused on occlusion,
rather than directly shortening ||v − pvis|| to reduce the cost.

To show the significance of the improvement intuitively, in
Fig. 5 we visualize these two visibility cost functions’ negative
gradients, which are −∂F̃vis/∂pvis and −∂Fvis/∂pvis. We
use these two costs separately for comparison in the trajectory
optimization problem in Sec. V-C. Both of them are set up with
the same optimization parameters, and each penalty functions
of the optimization is the same except for the visibility penalty.
To fairly compare these two methods, two visibility costs are
adjusted to the same order of magnitude.

As shown in Fig. 5(a) and Fig. 5(c), the gradient of visibility
cost in [9] has a very large component in the direction of
(v − pvis), which leads to the trajectory after optimization
with less effective visibility improvement. As shown Fig. 5(b)
and Fig. 5(d), compared to [9], the visibility cost in this work
can enhance visibility more remarkably.

4) Other Penaltise: In order to guide trajectory with a
collision-free path, we adopt the collision evaluation of EGO-
Planner [25] to construct Collision Avoidance Penalty Jc. We
also formulate Control Effort Je and Uniform Distribution
Penalty Ju to make trajectory smooth and reliable. Readers
can refer to [25] and [26] for more detailed explanations.
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start

end

Ego-planner trajectory

Our method trajectory

Fig. 6: Comparison of the trajectory of Ego-planner and our method
in a complex environment, which has an obstacle density of 0.625
obs/m2. The size of the environment is 60× 20× 2m.

Fig. 7: Speed comparison between Ego-planner and our method.

VI. EVALUATION AND EXPERIMENT

A. Implementation Details

All real-world evaluations are completed by multiple vol-
unteers and most of them have little flight experience. The
experimental procedure is as follows. Upon arrival at the
experiment site, participants are informed of the task. Then
they are invited to practice three times before each experiment.
Finally, they are asked to perform each experiment three times
repeatedly and the relevant data is recorded.

Our quadrotor system’s hardware setups is based on our
previous work [25]. The parameters of visibility metric are
N = 20, ρ = 0.8. Our method can run in real time and cost
about 5 ms to solve the optimization problem formulated in
Sec. V on an onboard computer DJI Manifold 2C. Readers
can get a better understanding of each experiment from the
attached video2.

B. Evaluation for Keeping Desired Speed

To show the significance of the improvement in our trajec-
tory optimization for maintaining the operator’s desired speed,
as Fig 6 shows, we compare our method with Ego-planner
[25], which is the basis of the trajectory planning in [9]. We
set the same start and end points, and the same desired speed
as 1.5 m/s. Since only the performance of keeping expected
speed is compared, in this experiment, we set the Visibility
Penalty (Sec. V-C3) to 0 in our method.

As Fig. 7 shows, with the aids the newly added Exe-
cution Time Penalty (Sec. V-C1) and Dynamical Feasibility
Penalty (Sec. V-C2), our method performs remarkably better
at keeping desired speed. However, Ego-planner often requires
a change in speed for obstacle avoidance due to the limitations
of the uniform B-spline curve.

C. Evaluation for Gaze Enhanced Intention Capture

To demonstrate the significance of gaze in intention in-
ference and topological path generation, we implement this
experiment in a challenging drone racing scenario as shown in
Fig. 1 and Fig. 8. We compare our gaze enhanced method with

2https://www.youtube.com/watch?v=WYujLePQwB8
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Fig. 8: Trajectories executed by the quadrotor and online generated
map which is colored by height in drone racing experiment.
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Fig. 9: Results of the comparisons in drone racing experiment.

the commonly used RC method: assistive teleoperation system
which captures intention directly from RC. Note that both
methods use the same perception-aware trajectory optimization
method which is described in Sec. V.

To evaluate the stability and accuracy of intention inference,
we proposed three independent indicators: average success rate
of passing rings S, topological stability Ts and average finish
time T . We define S and Ts as

S =
Nsuccess
Nsum

, Ts =
Nsum∑Nsum

i=0 (Nswitch)i
, (20)

where (Nswitch)i counts times the topology of the planned
path is inconsistent with the intent as it passes through the i-
th ring. Nsuccess is the number of rings that quadrotor passes
through successfully and Nsum is the total number of rings.

As the results show in Fig. 9, benefit from gaze, our
method capture precise intention, which helps us have better
topological stability and a higher success rate. However, for
the RC method, inaccurate intention causes operators to adjust
the RC input repeatedly. This leads to low topological stability,
which is the major cause of the low success rate.

D. Evaluation for Perception-aware Trajcetory Optimization

To validate the superiority of the proposed perception-aware
trajectory optimization method for flight safety, we compare it
with the one which is not equipped with this feature. And PA
and NoPA are used to refer to whether the perception-aware
method is used in our system or not.

The volunteers are asked to fly quadrotor following the
white route (from 1 to 4 ) in the maze, as Fig. 11 shows.
There are three corners where we place surprise obstacles
(SO) right behind, and these surprise obstacles (SO1, SO2 and
SO3) are marked by green, yellow and blue boxes respectively
in Fig. 11 and Fig. 10. As Fig. 10 shows, PA always turns on a
safer trajectory that enhances the visibility of the target, which
allows the quadrotor to see SO earlier.

Additionally, we record the distance between SO and the
quadrotor when volunteers see SO for the first time. In
Fig. 12, the results presented as box charts show that our
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Fig. 10: Comparison of PA (perception-aware) and NoPA (without perception-aware). Top: the visualization of the experiment.
The orange curve denotes the executed trajectory, the red curve denotes the planned trajectory, and the red pyramid stands
for FOV. (a) and (b) show the quadrotor flies from ¬ to ­. (c) and (d) show the quadrotor flies from ­ to ®. Bottom: the
first-person perspective of the quadrotor, the obstacles marked by green and yellow are corresponding to to SO1 (surprise
obstacle) and SO2 in Fig. 11. The colored numbers indicate the distance between the quadrotor and the obstacles.

①
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Fig. 11: Two third-person views of the experiment. Volunteers are
asked to fly the quadrotor from ¬ to ¯, and through ­ and ® in turn.
SO1, SO2 and SO3 are marked in green, yellow and blue respectively.

PA method significantly increases the distance between SO
and the quadrotor when SO is seen the first time, which
demonstrates that our method assists operators to fly safer and
makes more time for operators to do decisions.

E. System-level Comparison

In this section, experimental scenarios have been divided
into indoor flight and outdoor flight. Although there are some
previous works on assistive teleoperation [4]–[6], none of them
have runnable software available. To prove that our system
is practical and robust, we compare our system with the
industry-leading consumer UAV, DJI Mavic Air 23, which is
equipped with three-direction perception, and DJI’s APAS 3.0
(Advanced Pilot Assistance Systems). Note that Mavic Air 2
obtain operator’s intention from the input of RC only.

1) Indoor Flight Test: We conduct challenging indoor flight
experiments, as shown in Fig. 14, to prove the high control-
lability and robustness of our system.

3https://www.dji.com/cn/mavic-air-2
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Fig. 12: Results of comparisons between NoPA and PA, the indicator
refers to the distance that SO first appears fully in the field of view.

In the first half of the experiment, as Fig. 14(a) shows, the
obstacle is densely placed with less than 1.5m away from each
other. The task of the scene is to achieve the goal, 11m away
from the start point, within the prescribed topological path
as soon as possible. The results are presented in TABLE I.
Both the average time consumption and maximum speed of our
system outperform Mavic Air 2 significantly. For Mavic Air
2, redundant sensors and limited computing power lead to a
conservative performance. Furthermore, this RC-only assistive
teleoperation system cannot obtain precise intention, which is
unfriendly to operator in a dense environment.

In the second half of the experiment, as Fig. 14(b) shows,
we set several 2m-width gates, 1m-diameter rings and 0.8m-
diameter rings. Note that our quadrotor’s diameter is 0.4m and
Mavic Air 2’s diameter is about 0.5m. As Fig. 13 shows, our
system can pass through various types of obstacles flexibly and
fast. However, Mavic Air 2 can only pass through 2m-width
gates. The result proves that our system has more applicability
and robustness for different environments.

2) Outdoor Flight Test: Finally, to illustrate the reliability
and potentiality of this work, we test in the large-scale outdoor
environment, which is 35×35m in scale. Volunteers are asked
to go through several gates and rings in order. The average time
consumption and maximum speed are 49.5s and 1.96 m/s for
the proposed system. For the consumer UAV, the respective
data is 83s and 1.60 m/s. The attached video shows our method
is more smooth and fast.
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startend

Direction
Executed Trajectory

W用1

Fig. 13: Trajectories executed by the quadrotor and online generated
map which is colored by height in the system-level indoor experiment.

Fig. 14: Two third-person views of the indoor experiment. (a): the
first half of the experiment. The blue line is the prescribed topological
path. (b): the second half of the experiment.

VII. CONCLUSION

In this paper, we investigate the high correlation between
gaze and intent and propose a gaze-enhanced perception-aware
assistive aerial teleoperation. With the gaze-enhanced intent
capture method, we can capture the intent more precisely. Then
we generate a perception-aware trajectory that accompanies
the intent timely and safe. Extensive indoor and outdoor
experiments and benchmark comparisons validate that our
method is robust and friendly to even unskilled users.
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S. Behnke, “Multimodal obstacle detection and collision avoidance for
micro aerial vehicles,” in 2013 European Conference on Mobile Robots.
IEEE, 2013, pp. 7–12.

[17] M. Odelga, P. Stegagno, and H. H. Bülthoff, “Obstacle detection, track-
ing and avoidance for a teleoperated uav,” in 2016 IEEE international
conference on robotics and automation (ICRA). IEEE, 2016, pp. 2984–
2990.

[18] C. Richter and N. Roy, “Learning to plan for visibility in navigation of
unknown environments,” in International Symposium on Experimental
Robotics. Springer, 2016, pp. 387–398.

[19] A. Bundy and L. Wallen, “Breadth-first search,” in Catalogue of artificial
intelligence tools. Springer, 1984, pp. 13–13.

[20] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise.”
in kdd, vol. 96, no. 34, 1996, pp. 226–231.

[21] Z. Wang, X. Zhou, C. Xu, and F. Gao, “Geometrically constrained tra-
jectory optimization for multicopters,” arXiv preprint arXiv:2103.00190,
2021.

[22] A. S. Lewis and M. L. Overton, “Nonsmooth optimization via quasi-
newton methods,” Mathematical Programming, vol. 141, no. 1, pp. 135–
163, 2013.

[23] L. S. Jennings and K. L. Teo, “A computational algorithm for functional
inequality constrained optimization problems,” Automatica, vol. 26,
no. 2, pp. 371–375, 1990.

[24] W. H. Press, H. William, S. A. Teukolsky, A. Saul, W. T. Vetterling,
and B. P. Flannery, Numerical Recipes 3rd Edition: The Art of Scientific
Computing. Cambridge University Press, 2007.

[25] X. Zhou, Z. Wang, H. Ye, C. Xu, and F. Gao, “Ego-planner: An esdf-
free gradient-based local planner for quadrotors,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 478–485, 2021.

[26] X. Zhou, Z. Wang, X. Wen, J. Zhu, C. Xu, and F. Gao, “Decentralized
spatial-temporal trajectory planning for multicopter swarms,” arXiv
preprint arXiv:2106.12481, 2021.

https://books.google.com.hk/books?id=1aAOdzK3FegC
https://books.google.com.hk/books?id=1aAOdzK3FegC

	I Introduction
	II Related Works
	II-A Gaze for Intention Inference
	II-B Assistive Aerial Teleoperation
	II-C Perception-aware Navigation in Unknown Environments

	III System Overview
	IV Gaze Enhanced Intention Guiding Topological Path Generation
	V Perception-aware Spatial-Temporal Trajectory Optimization
	V-A Analytical Visibility Metric
	V-B Trajectory Representation
	V-C Problem Formulation
	V-C1 Execution Time Penalty Jt
	V-C2 Dynamical Feasibility Penalty Jd
	V-C3 Visibility Penalty Jvis
	V-C4 Other Penaltise


	VI Evaluation and Experiment
	VI-A Implementation Details
	VI-B Evaluation for Keeping Desired Speed
	VI-C Evaluation for Gaze Enhanced Intention Capture
	VI-D Evaluation for Perception-aware Trajcetory Optimization
	VI-E System-level Comparison
	VI-E1 Indoor Flight Test
	VI-E2 Outdoor Flight Test


	VII Conclusion
	References

