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Capacity Limits and Multiplexing Gains of
MIMO Channels with Transceiver Impairments

Emil Björnson, Per Zetterberg, Mats Bengtsson, and BjörnOttersten

Abstract—The capacity of ideal MIMO channels has a high-
SNR slope that equals the minimum of the number of transmit
and receive antennas. This letter analyzes if this result holds when
there are distortions from physical transceiver impairments. We
prove analytically that suchphysical MIMO channels have a finite
upper capacity limit, for any channel distribution and SNR. The
high-SNR slope thus collapses to zero. This appears discouraging,
but we prove the encouraging result that therelative capacity gain
of employing MIMO is at least as large as with ideal transceivers.

Index Terms—Channel capacity, high-SNR analysis, multi-
antenna communication, transceiver impairments.

I. I NTRODUCTION

In the past decade, a vast number of papers have studied
multiple-input multiple-output (MIMO) communications mo-
tivated by the impressive capacity scaling in the high-SNR
regime. The seminal article [1] by E. Telatar shows that the
MIMO capacity with channel knowledge at the receiver be-
haves asM log2(SNR)+O(1), whereSNR is the signal-to-noise
ratio (SNR). The slopeM satisfiesM = min(Nt, Nr), where
Nt andNr are the number of transmit and receive antennas,
respectively.M is the asymptotic gain over single-antenna
channels and is calleddegrees of freedomor multiplexing gain.

Some skepticism concerning the applicability of these re-
sults in cellular networks has recently appeared; modest gains
of network MIMO over conventional schemes have been
observed and the throughput might even decrease due to the
extra overhead [2], [3]. One explanation is the finite channel
coherence time that limits the resources for channel acquisition
[4] and coordination between nodes [3], thus creating a finite
fundamental ceiling for the network spectral efficiency—
irrespectively of the power and the number of antennas.
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Fig. 1. Block diagram of the generalized MIMO channel considered in this
letter. Unlike the classical channel model in [1], the transmitter distortion
generated by physical transceiver implementations is included in the model.

While these results concern large network MIMO systems,
there is another non-ideality that also affects performance and
manifests itself for MIMO systems of any size:transceiver im-
pairments[5]–[10]. Physical radio-frequency (RF) transceivers
suffer from amplifier non-linearities, IQ-imbalance, phase
noise, quantization noise, carrier-frequency and sampling-rate
jitter/offsets, etc. These impairments are conventionally over-
looked in information theoretic studies, but this letter shows
that they have a non-negligible and fundamental impact on the
spectral efficiency in modern deployments with high SNR.

This letter analyzes the generalized MIMO channel with
transceiver impairments from [7]. We show that the capacity
has a finite high-SNR limit for any channel distribution. The
multiplexing gain is thus zero, which is fundamentally differ-
ent from the ideal case in [1] (detailed above). Similar single-
antenna results are given in [5]. The practical MIMO gain—
therelativecapacity increase over single-antenna channels—is
however shown to be at least as large as with ideal transceivers.

II. GENERALIZED CHANNEL MODEL

Consider a flat-fading MIMO channel withNt transmit an-
tennas andNr receive antennas. The received signaly ∈ CNr

in the classical affine baseband channel model of [1] is

y =
√

SNRHx+ n, (1)

where SNR is the SNR,x ∈ CNt is the intended signal,
and n ∼ CN (0, I) is circular-symmetric complex Gaussian
noise. The channel matrixH ∈ CNr×Nt is assumed to be a
random variableH having any multi-variate distributionfH
with normalized gainE{tr(HHH)} = NtNr and full-rank
realizations (i.e.,rank(H) = min(Nt, Nr)) almost surely—
this basically covers all physical channel distributions.

The intended signalx in (1) is only affected by a mul-
tiplicative channel transformation and additive thermal noise,
thus ideal transceiver hardware is implicitly assumed. Physical
transceivers suffer from a variety of impairments that are
not properly described by (1) [5]–[10]. The influence of
impairments is reduced by compensation schemes, leaving a
residual distortion with a variance that scales withSNR [7].

http://arxiv.org/abs/1209.4093v3
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A generalized MIMO channel is proposed in [6], [7] and
verified by measurements. The combined (residual) influence
of impairments in the transmitter hardware is modeled by the
transmitter distortionηt ∈ CNt and (1) is generalized to

y =
√

SNRH (x+ ηt) + n. (2)

Note thatηt is the mismatch between the intended signalx

and the signal actually radiated by the transmitter; see Fig. 1.
It is well-modeled as uncorrelated Gaussian noise as it is the
aggregate residual of many impairments, whereof some are
Gaussian and some behave as Gaussian when summed up [7].

Under the normalized power constraint1 tr(Q) = 1 with
Q = E{xxH} (similar to [1]), the transmitter distortion is

ηt ∼ CN
(

0,Υt(Q)
)

with Υt=diag(υ1(q1), . . . , υNt(qNt)).

The distortion depends on the intended signalx in the sense
that the varianceυn(qn) is an increasing function of the signal
power qn at thenth transmit antenna (i.e., thenth diagonal
element ofQ). We neglect any antenna cross-correlation in
Υt.2 In multi-carrier (e.g., OFDM) scenarios, (2) can describe
each individual subcarrier. However, there is some distortion
leakage between subcarriers that makesqn less influential on
υn(qn). For simplicity, we model the leakage as proportional
to the average signal power per antenna (i.e., the direct impact
of what is done on individual antennas/subcarriers averages out
when having many subcarriers). To capture a range of cases
we propose

υn(qn) = κ2
(

(1−α)qn + α

∑Nt

i=1 qi

Nt

)

, (3)

where the parameterα ∈ [0, 1] enables transition from one
(α=0) to many (α=1) subcarriers. The parameterκ > 0 is the
level of impairments.3 This model is a good characterization of
phase noise and IQ-imbalance, while the impact of amplifier
non-linearities grows non-linearly inSNR [6]. We assume to
operate in the dynamic range where the impact is almost linear.

III. A NALYSIS OF CHANNEL CAPACITY

The transmitter knows the channel distributionfH, while
the receiver knows the realizationH. The capacity of (2) is

CNt,Nr(SNR) = sup
fX: tr(E{xxH})=tr(Q)=1

I(x;y|H) (4)

wherefX is the PDF ofx andI(·; ·|·) is conditional mutual
information. Note thatI(x;y|H) = EH{I(x;y|H = H)}.

Lemma1. The capacityCNt,Nr(SNR) can be expressed as

sup
Q: tr(Q)=1

EH

{

log2 det
(

I+SNRHQHH(SNRHΥtH
H+I)−1

)

}

1The power constraint is only defined on the intended signal, although
distortions also contribute a small amount of power. However, this extra power
is fully characterized by the SNR and we therefore assume that SNR is selected
to make the total power usage fulfill all external system constraints.

2Correlation between antennas is predicted in [8], but it is typically small.
3The error vector magnitude,EVM =

E{‖ηt‖
2}

E{‖x‖2}
, is a common measure

for quantifying RF transceiver impairments. Observe that the EVM equals
κ2 for the consideredυn(qn) in (3). EVM requirements in the rangeκ ∈
[0.08, 0.175] occur in Long Term Evolution (LTE) [9, Section 14.3.4].

and is achieved byx ∼ CN (0,Q) for some feasibleQ � 0.

Proof: For any realizationH = H and fixed SNR,
(2) is a classical MIMO channel but with noise covariance
(SNRHΥtH

H+I). The given expression and the sufficiency
of using a Gaussian distribution onx follow from [1].

Although the capacity expression in Lemma 1 looks similar
to that of the classical MIMO channel in (1) and [1], it behaves
very differently—particularly in the high-SNR regime.

Theorem1. The asymptotic capacity limitCNt,Nr(∞) =
limSNR→∞ CNt,Nr(SNR) is finite and bounded as

M log2

(

1 +
1

κ2

)

≤ CNt,Nr(∞) ≤ M log2

(

1 +
Nt

Mκ2

)

(5)

whereM =min(Nt, Nr). The lower bound is asymptotically
achieved byQ = 1

Nt
I. The two bounds coincide ifNt ≤ Nr.

Proof: The proof is given in the appendix.
This theorem shows that physical MIMO systems have a

finite capacity limit in the high-SNR regime—this is funda-
mentally different from the unbounded asymptotic capacity
for ideal transceivers [1]. Furthermore, the bounds in (5) hold
for any channel distribution and are only characterized by the
number of antennas and the level of impairmentsκ.

The bounds in (5) coincide forNt ≤ Nr, while only the
upper bound grows with the number of transmit antennas when
Nt > Nr. Informally speaking, the lower and upper bounds
are tight when the high-SNR capacity-achievingQ is isotropic
in a subspace of sizeNt and sizemin(Nr, Nt), respectively.
The following corollaries exemplify these extremes.

Corollary 1. Suppose the channel distribution is right-
rotationally invariant (e.g.,H ∼ HU for any unitary matrix
U). The capacity is achieved byQ = 1

Nt
I for any SNR andα.

The lower bound in (5) is asymptotically tight for anyNt.

Proof: The right-rotational invariance implies that the
Nt dimensions ofHHH are isotropically distributed, thus
the concavity ofE{log det(·)} makes an isotropic covariance
matrix optimal. The lower bound in (5) is asymptotically tight
as it is constructed using this isotropic covariance matrix.

This corollary covers Rayleigh fading channels that are
uncorrelated at the transmit side, but also other channel
distributions with isotropic spatial directivity at the transmitter.

The special case of a deterministic channel matrix enables
stronger adaptivity ofQ and achieves the upper bound in (5).

Corollary 2. Supposeα = 1 and the channelH is determinis-
tic and full rank. LetHHH = UMΛMUH

M denote a compact
eigendecomposition, whereΛM = diag(λ1, . . . , λM ) contains
the non-zero eigenvalues and the semi-unitaryUM ∈ CNt×M

contains the corresponding eigenvectors. The capacity is

CNt,Nr(SNR) =

M
∑

i=1

log2

(

1 +
SNRλidi

SNRλi
κ2

Nt
+ 1

)

(6)

for di =
[

µ− 1
λi

]

+
whereµ is selected to make

∑M
i=1 di = 1.

The capacity is achieved byQ = UMdiag(d1, . . . , dM )UH
M .

The upper bound in (5) is asymptotically tight for anyNt.

Proof: The capacity-achievingQ is derived as in [1],
using the Hadamard inequality. The capacity limit follows
sinceQ = 1

MUMUH
M achieves the upper bound in (5).
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Although the capacity behaves differently under impair-
ments, the optimal waterfilling power allocation in Corollary 2
is the same as for ideal transceivers (also noted in [7]). When
Nt ≥ Nr, the capacity limitM log2(1 + Nt

Mκ2 ) is improved
by increasingNt, because a deterministicH enables selective
transmission in theNr non-zero channel dimensions while the
transmitter distortion is isotropic over allNt dimensions.

We conclude the analysis by elaborating on the fact that the
lower bound in (5) is always asymptotically achievable.

Corollary 3. If the channel distributionfH is unknown
at the transmitter, the worst-case mutual information
minfH I(x;y|H) is maximized byQ= 1

Nt
I (for any α) and

approachesM log2
(

1 + 1
κ2

)

as SNR→∞.

A. Numerical Illustrations

Consider a channel withNt = Nr = 4, α = 1, and
varying SNR. Fig. 2 shows the average capacity over different
deterministic channels, either generated synthetically with
independentCN (0, 1)-entries or taken from the measurements
in [11]. The level of impairments is varied asκ ∈ {0.05, 0.1}.

Ideal and physical transceivers behave similarly at low and
medium SNRs in Fig. 2, but fundamentally different at high
SNRs. While the ideal capacity grows unboundedly, the capac-
ity with impairments approaches the capacity limitC4,4(∞) =
4 log2(1 + 1

κ2 ) in Theorem 1. The difference between the
uncorrelated synthetic channels and the realistically correlated
measured channels vanishes asymptotically. Therefore, only
the level of impairments,κ, decides the capacity limit.

Next, we illustrate the caseNt ≥ Nr and differentα. Fig. 3
considersNt ∈ {4, 12} with Nr = 4, κ = 0.05, and two
different channel distributions: deterministic (averagecapacity
with known i.i.d.CN (0, 1)-entries) and uncorrelated Rayleigh
fading. We showα ∈ {0, 1} in the deterministic case, while
the random case givesQ = 1

Nt
I and same capacity for anyα.

These channels perform similarly and have the same capac-
ity limit when Nt = 4. The convergence to the capacity limit
becomes faster for the random distribution whenNt increases,
but the value of the limit is unchanged. Contrary, the capacity
limits in the deterministic cases increase withNt (and with
α since it makes the distortion more isotropic). Fig. 3 shows
that there is a medium SNR range where the capacity exhibits
roughly the sameM -slope as achieved asymptotically for
ideal transceivers. Following the terminology of [3], thisis the
degrees-of-freedom (DoF) regimewhile the high-SNR regime
is the saturation regime; see Fig. 3. This behavior appeared
in [3] for large cellular networks due to limited coherence
time, but we demonstrate its existence for any physical MIMO
channel (regardless of size) due to transceiver impairments.

IV. GAIN OF MULTIPLEXING

The MIMO capacity with ideal transceivers behaves as
M log2(SNR) + O(1) [1], thus it grows unboundedly in the
high-SNR regime and scales linearly with the so-called multi-
plexing gainM = min(Nt, Nr). On the contrary, Theorem 1
shows that the capacity of physical MIMO channels has a
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finite upper bound, giving a very different multiplexing gain:

Mclassic
∞ = lim

SNR→∞

CNt,Nr(SNR)

log2(SNR)
= 0. (7)

In view of (7), one might think that the existence of a non-
zero multiplexing gain is merely an artifact of ignoring the
transceiver impairments that always appear in practice. How-
ever, the problem lies in the classical definition, because also
physical systems can gain in capacity from employing multiple
antennas and utilizing spatial multiplexing. A practically more
relevant measure is the relative capacity improvement (at afi-
nite SNR) of anNt×Nr MIMO channel over the corresponding
single-input single-output (SISO) channel.

Definition 1. The finite-SNR multiplexing gain, M(SNR), is
the ratio of MIMO to SISO capacity at a givenSNR. For (2),

M(SNR) =
CNt,Nr(SNR)

C1,1(SNR)
. (8)

This ratio between the MIMO and SISO capacity quantifies
the exact gain of multiplexing. The concept of a finite-SNR
multiplexing gain was introduced in [12] for ideal transceivers,
while the refined Definition 1 can be applied to any channel
model. The asymptotic behavior ofM(SNR) is as follows.
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Theorem2. Let h denote the SISO channel. The finite-SNR
multiplexing gain,M(SNR), for (2) and anyα satisfies

E{‖H‖2F}
Nt E{|h|2}

≤ lim
SNR→0

M(SNR) ≤ E{‖H‖22}
E{|h|2} , (9)

M ≤ lim
SNR→∞

M(SNR) ≤ M
log2(1 +

Nt

Mκ2 )

log2(1 +
1
κ2 )

, (10)

where‖·‖F and‖·‖2 denote the Frobenius and spectral norm,
respectively. The upper bounds are achieved for deterministic
channels (with full rank andα = 1). The lower bounds are
achieved for right-rotationally invariant channel distributions.

Proof: The low-SNR behavior is achieved by Taylor
approximation:Q = 1

Nt
I gives the lower bound, while the

per-realization-optimalQ = uuH (whereu is the dominating
eigenvector ofHHH) gives the upper bound. The high-SNR
behavior follows from Theorem 1 and its corollaries.

This theorem indicates that transceiver impairments have
little impact on the relative MIMO gain, which is a very
positive result for practical applications. The low-SNR be-
havior in (9) is the same as for ideal transceivers (since
SNRHΥtH

H + I ≈ I), while (10) shows that physical MIMO
channels can achieveM(SNR) > M in the high-SNR regime
(although ideal transceivers only can achieveM(SNR) = M ).

A. Numerical Illustrations

The finite-SNR multiplexing gain is shown in Figs. 4 and 5
for uncorrelated Rayleigh fading and deterministic channels,
respectively, withNt ∈ {4, 8, 12}, Nr = 4, κ = 0.05, α = 1.

The limits in Theorem 2 are confirmed by the simulations.
Although the capacity behavior is fundamentally differentfor
physical and ideal transceivers, the finite-SNR multiplexing
gain is remarkably similar—not unexpected since the asymp-
totic limits in Theorem 2 are almost the same for any level
of transceiver impairments. The main difference is in the
high-SNR regime, where (a) there is a faster convergence to
the limits under impairments and (b) deterministic channels
achieve an asymptotic gain higher thanM whenNt > Nr.

V. CONCLUDING REMARKS

Unlike conventional capacity analysis, the capacity of phys-
ical MIMO systems saturates in the high-SNR regime (see
Theorem 1) and the finite capacity limit is independent of the
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Fig. 5. Average finite-SNR multiplexing gain of deterministic channels
(generated with independentCN (0, 1)-entries) withNr = 4 andNt ≥ 4.

channel distribution. This fundamental result is explained by
the distortion from transceiver impairments and that its power
is proportional to the signal power. The classic multiplexing
gain is thus zero (see Eq. (7)). Nevertheless, the MIMO
capacity grows roughly linearly withM = min(Nt, Nr) (see
Theorem 2) over the whole SNR range, thus showing the
encouraging result that also physical systems can achieve great
gains from employing MIMO and spatial multiplexing.

Technological advances can reduce transceiver impairments,
but there is currently an opposite trend towards small low-cost
low-power transceivers where the inherentdirty RF effectsare
inevitable and the transmission is instead adapted to them.

The point-to-point MIMO capacity limit in Theorem 1 is an
upper bound for scenarios with extra constraints; for example,
network MIMO, which is characterized by distributed power
constraints and limited coordination both between transmit
antennas and between receive antennas. The capacity in such
scenarios therefore saturates in the high-SNR regime—evenin
small networks where the analysis in [3] is not applicable.

Finally, note that the finite-SNR multiplexing gain decreases
when adding extra constraints [10] and that impairments limit
the asymptotic accuracy of channel acquisition schemes.

APPENDIX: PROOF OFTHEOREM 1

As a preliminary, consider any full-rank channel realization
H. Let HHH = UMΛMUH

M denote acompacteigendecom-
position (withUM ∈ C

Nt×M , ΛM ∈ C
M×M ; see Corollary

2). The mutual information increases withSNR (since it reduces
the noise term andlog2 det(·) is concave) and satisfies

log2 det
(

I+SNRHQHH(SNRHΥtH
H+I)−1

)

= log2 det
(

I+SNRUH
M (Q+Υt)UMΛM

)

− log2 det
(

I+SNRUH
MΥtUMΛM

)

→
log2 det

(

UH
M (Q+Υt)UMΛM

)

− log2 det
(

UH
MΥtUMΛM

)

= log2 det
(

I+UH
MQUM (UH

MΥtUM )−1
)

(11)

= log2 det
(

I+Υ
−1/2
t QΥ

−H/2
t ΠΥ

H/2
t UM

)

=

M
∑

i=1

log2

(

1+µi(Υ
−1/2
t QΥ

−H/2
t ΠΥ

H/2
t UM)

)

(12)

as SNR → ∞. The first equality follows from expanding the
logarithm and from the ruledet(I+AB) = det(I+BA). This
enables lettingSNR → ∞ and achieve an expression where
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the impact ofΛM cancels out. We then identify the projec-
tion matrixΠΥ

H/2
t UM = Υ

H/2
t UM (UH

MΥtUM )−1UH
MΥ

1/2
t

ontoUH
MΥ

1/2
t . The ith strongest eigenvalue is denotedµi(·).

As the convergenceSNR → ∞ is uniform, we can achieve
bounds by showing that all realizations have the same asymp-
totic bound. A lower bound is given by any feasibleQ; we
selectQ = 1

Nt
I as it givesΥt =

κ2

Nt
I and makes (11) indepen-

dent ofH. Since (12) is a Schur-concave function in the eigen-
values, an upper bound is achieved by replacingµi(·) with
the average eigenvalue1M tr(Υ

−1/2
t QΥ

−H/2
t ΠΥ

H/2
t UM ) ≤

1
M tr(Υ

−1/2
t QΥ

−H/2
t ) = Ntκ

2

M , where the inequality follows
from removing the projection matrix (sinceΠΥ

H/2
t UM � I).

Note that the upper and lower bounds coincide whenNt ≤ Nr,
thusQ = 1

M I is asymptotically optimal in this case.
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