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Abstract—The capacity of ideal MIMO channels has a high-
SNR slope that equals the minimum of the number of transmit
and receive antennas. This letter analyzes if this result Hds when
there are distortions from physical transceiver impairmerts. We
prove analytically that suchphysical MIMO channels have a finite
upper capacity limit, for any channel distribution and SNR. The
high-SNR slope thus collapses to zero. This appears discaging,
but we prove the encouraging result that therelative capacity gain
of employing MIMO is at least as large as with ideal transceiers.

Index Terms—Channel capacity, high-SNR analysis, multi-
antenna communication, transceiver impairments.
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Fig. 1. Block diagram of the generalized MIMO channel coesid in this

letter. Unlike the classical channel model [A [1], the traitger distortion
generated by physical transceiver implementations isuded in the model.

While these results concern large network MIMO systems,
there is another non-ideality that also affects performeaarad
manifests itself for MIMO systems of any sizeansceiver im-
pairmentg5]-[10]. Physical radio-frequency (RF) transceivers
suffer from amplifier non-linearities, 1Q-imbalance, pbaas
noise, quantization noise, carrier-frequency and sargptate

In the past decade, a vast number of papers have studigd/ofisets, etc. These impairments are conventignavier-
multiple-input multiple-output (MIMO) communications Mo |noked in information theoretic studies, but this lettepst
tivated by the impressive capacity scaling in the high-SNfg ¢ they have a non-negligible and fundamental impact en th
regime. The seminal articlé][1] by E. Telatar shows that ”E‘f)ectral efficiency in modern deployments with high SNR.

MIMO capacity with channel knowledge at the receiver be-
haves asi/ log, (sNrR)+O(1), wheresnr is the signal-to-noise

ratio (SNR). The slopé/ satisfiesM = min(N, N,.)

This letter analyzes the generalized MIMO channel with
transceiver impairments froml[7]. We show that the capacity

, Where has a finite high-SNR limit for any channel distribution. The

N: and N, are the number of transmit and receive <ijtennarﬁultiplexing gain is thus zero, which is fundamentally drff

respectively.M is the asymptotic gain over single-antenng

channels and is calledegrees of freedomwr multiplexing gain

nt from the ideal case inl[1] (detailed above). Similar Eng
antenna results are given inl [5]. The practical MIMO gain—

Some skepticism concerning the applicability of these rgse o |ative capacity increase over single-antenna channels—is

sults in cellular networks has recgntly appeared; mOOIG’E’B‘~:—"’j‘however shown to be at least as large as with ideal trangseive
of network MIMO over conventional schemes have been

observed and the throughput might even decrease due to the

extra overhead [2]/[3]. One explanation is the finite channe [I. GENERALIZED CHANNEL MODEL

coherence time that limits the resources for channel aitiquis

Consider a flat-fading MIMO channel witly; transmit an-

[4] and coordination between nodes [3], thus creating afinifannas andV, receive antennas. The received sigpat CN-

fundamental ceiling for the network spectral efficiency—

irrespectively of the power and the number of antennas.
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in the classical affine baseband channel model bf [1] is

y = VsNRHx + n, ()

where snr is the SNR,x € C™: is the intended signal,
andn ~ CN(0,I) is circular-symmetric complex Gaussian
noise. The channel matrikl € CN~*V¢ is assumed to be a
random variableH having any multi-variate distributiorfy
with normalized gainE{tr(H”H)} = N;N, and full-rank
realizations (i.e.rank(H) = min(N¢, N,.)) almost surely—
this basically covers all physical channel distributions.

The intended signak in (@) is only affected by a mul-
tiplicative channel transformation and additive thermaise,
thus ideal transceiver hardware is implicitly assumed.siiay
transceivers suffer from a variety of impairments that are
not properly described by (1) [5]=[L0]. The influence of
impairments is reduced by compensation schemes, leaving a
residual distortion with a variance that scales vt [[7].
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A generalized MIMO channel is proposed in [6]] [7] andand is achieved by ~ CA(0, Q) for some feasible&) = 0.
verified by measurements. The combined (residual) influence proof: For any realizatonHl = H and fixed snr,

of impairments in the transmitter hardware is modeled by tiag) is a classical MIMO channel but with noise covariance
transmitter distortionn, € C™* and [1) is generalized to  (s\eHY,HY +1). The given expression and the sufficiency
_ of using a Gaussian distribution onfollow from [1]. ]
y = VSNRH (x +m,) + n. @ Although the capacity expression in Lemfa 1 looks similar
Note thatn, is the mismatch between the intended sigral to that of the classical MIMO channel inl(1) and [1], it behswve
and the signal actually radiated by the transmitter; see[Iig very differently—particularly in the high-SNR regime.
It is well-modeled as uncorrelated Gaussian noise as itds Hiheorem1. The asymptotic capacity limiCy, v, (c0) =
aggregate residual of many impairments, whereof some g . Ch,.~, (s\R) is finite and bounded as
Gaussian and some behave as Gaussian when summed up [7].
Under the normalized power constrﬂirttr(Q) = 1 with M log, (1 + —) < Cn,,N,(00) < Mlog, (1 4 ﬂ) (5)
Q = E{xx"} (similar to [1]), the transmitter distortion is K2 7 Mr?
. ) where M =min(Ny, N,.). The lower bound is asymptotically
m, ~ CN(0,Y,(Q)) with ¥, =diag(vi(q1), ., vn,(gn.))- achieved byQ = N%I. The two bounds coincide iV, < N,.

The distortion depends on the intended sigrah the sense Proof: The proof is given in the appendix. [ |
that the variance,,(g,,) is an increasing function of the signal This theorem shows that physical MIMO systems have a
power g,, at thenth transmit antenna (i.e., theth diagonal finite capacity limit in the high-SNR regime—this is funda-
element ofQ). We neglect any antenna cross-correlation imentally different from the unbounded asymptotic capacity
Y. In multi-carrier (e.g., OFDM) scenario§] (2) can describier ideal transceivers [1]. Furthermore, the bound$1n @yh
each individual subcarrier. However, there is some distort for any channel distribution and are only characterizedHay t
leakage between subcarriers that magedess influential on number of antennas and the level of impairments

vn(gn). For simplicity, we model the leakage as proportional The bounds in[{5) coincide foi; < N,., while only the

to the average signal power per antenna (i.e., the direcdémpupper bound grows with the number of transmit antennas when
of what is done on individual antennas/subcarriers average N, > N,.. Informally speaking, the lower and upper bounds
when having many subcarriers). To capture a range of cases tight when the high-SNR capacity-achievi}gs isotropic

we propose in a subspace of siz&; and sizemin(N,., N;), respectively.
The following corollaries exemplify these extremes.

Ne
#), (3) Corollary 1. Suppose the channel distribution is right-
t rotationally invariant (e.g.H ~ HU for any unitary matrix

where the parameter € [0, 1] enables transition from one U). The capacity is achieved bQ = NLI for any snr anda.
(a=0) to many @ =1) subcarriers. The parameter> O isthe The lower bound in[{5) is asymptotically tight for amy;.

level of impairmemE This model is a good characterizationof .00 The right-rotational invariance implies that the
phase noise and 1Q-imbalance, while the impact of ampllfwt dimensions ofH#H are isotropically distributed, thus

non-Ilnegnues grows non-linearly isnr [6]. We.assume 0 the concavity off{log det(-)} makes an isotropic covariance
operate in the dynamic range where the impact is aImostrlm%atrix optimal. The lower bound ifi}5) is asymptoticallyttg
as it is constructed using this isotropic covariance matiik
1. ANALYSIS OF CHANNEL CAPACITY This corollary covers Rayleigh fading channels that are

The transmitter knows the channel distributign, while uncorrelated at the transmit side, but also other channel

the receiver knows the realizatiddl. The capacity of[(2) is distributions with isotropic spatial directivity at theatrsmitter.
The special case of a deterministic channel matrix enables

CN,,N,. (SNR) = sup Z(x;y[H)  (4) stronger adaptivity ofy and achieves the upper bound i (5).
Sxtr(E{xxt})=tr(Q)=1 . .

. . - Corollary 2. Supposex = 1 and the channdl is determinis-
where fx is the PDF ofx andZ(;;|-) is conditional mutual tic and full rank. LetH” H = U, A, U%, denote a compact
information. Note thalZ(x; y|H) = Eg{Z(x;y|H = H)}. eigendecomposition, where,; = diag(\y, . . ., Ax) contains
Lemmal. The capacityCy, v, (sNR) can be expressed as the non-zero eigenvalues and the semi-unitdry € CNt*M
contains the corresponding eigenvectors. The capacity is

C (sNR) f:log (1 + _SNRXdi > (6)
N¢, Ny = 2 2
= SNR/\im +1

va(gn) = #*( (1-a)gu +a

sup  Ex{log, det (I+snRHQH™ (sveHY H+1) )|
Q@ tr(Q)=1

1The power constraint is only defined on the intended sigrithoagh
distortions also contribute a small amount of power. Howeés extra power o 1 . M S
is fully characterized by the SNR and we therefore assumestir is selected for d; = [,u— A_I] + Whereu is selected to makgi:l di = 1.
to make the total power usage fulfill all external system taigs. The capacity is achieved b = U ,diag(dy, ..., dy )ULL.

2Correlation between antennas is predicted in [8], but iyjscally small. The upper bound iI’E[S) is asymptotically tight for any.
3 ; _ E{nel?*} . L . ) .
The error vector magnituddZ vt = E{thwl)' 'S @ common measure Proof: The capacity-achievindg) is derived as in[[i],
for quantifying RF transceiver impairments. Observe thet EVM equals . . . . .. N
using the Hadamard inequality. The capacity limit follows
[0.08,0.175] occur in Long Term Evolution (LTE)]9, Section 14.3.4]. sinceQ = ﬁUMU{Q achieves the upper bound id (5). =

&2 for the consideredy,(¢») in (3). EVM requirements in the range €
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. : . . 70 T T T T T T
Although the capacity behaves differently under impair- Idoal Transceiver Hardware

ments, the optimal waterfilling power allocation in Coroyi&l 60l| = = = Transceiver Impairments: £=0.05
is the same as for ideal transceivers (also notedlin [7]).Wh = = Transceiver Impairments: =0.1

Fm

N; > N,, the capacity limitM log,(1 + 7) is improved 2 501 . i ¢ (o)
by increasingV;, because a deterministld enables selective & for Different «
. . . . . . > 40

transmission in théV,. non-zero channel dimensions while thes e o
transmitter distortion is isotropic over aN; dimensions. & sof -

We conclude the analysis by elaborating on the fact that tke e
lower bound in[(b) is always asymptotically achievable. g 201 Sunthet

K X X X < ynthetic

Corollary 3. If the channel distributionfy is unknown 4o} Channels Z Veasured

at the transmitter, the worst-case mutual information Channels
ming, Z(x; y|H) is maximized byQ = N%I (for any «) and % o 0 20 20 20 =0 0 -
approaches/ log, (1 + -%) assnr— cc. SNR [dB]

Fig. 2. Average capacity of a 4x4 MIMO channel over differdaterministic
channel realizations, different levels of transceiver ainpents, andx = 1.
A. Numerical lllustrations

. . L SNR DoF Regi Saturation Regi
Consider a channel withV, = N, = 4, o = 1, and It or Tegme arratonfedme

varying SNR. Fig[2 shows the average capacity over difteren ' ' ' ' '
deterministic channels, either generated syntheticallth w
independen€ (0, 1)-entries or taken from the measurements’

401

in [11]. The level of impairments is varied asc {0.05, 0.1}. g 30  Capacity Ne=12
Ideal and physical transceivers behave similarly at low ar Limits for | yeq) N4
N, =

Different N,

medium SNRs in Figl]2, but fundamentally different at higfg ol Slope

SNRs. While the ideal capacity grows unboundedly, the cape@
ity with impairments approaches the capacity lidiit4(co) =
4logy(1 + Z5) in Theorem[dL. The difference between the
uncorrelated synthetic channels and the realisticallyetated
measured channels vanishes asymptotically. Therefolg, on © . ‘ ‘ ‘ ‘

Deterministic, =1 (Average)
— — — Deterministic, a=0 (Average)
—— Uncorr Rayleigh Fading, any «

10

. . . ; o -10 0 10 20 30 40 50
the level of impairmentss, decides the capacity limit. SNR [dB]

Next, we illustrate the cas¥, > N, and different. Fig.[3 Fig. 3. Capacity of a MIMO channel wittV,, = 4 and impairments with
considersN; € {4, 12} with N, = 4, k = 0.05, and two « = 0.05. We consider differeniV¢, channel distributions, and-values.
different channel distributions: deterministic (averagpacity
with known i.i.d.CN (0, 1)-entries) and uncorrelated Rayleigh
fading. We showr € {0, 1} in the deterministic case, while finite upper bound, giving a very different multiplexing gai
the random case gived = N%I and same capacity for any. A C (SNR)

These channels perform similarly and have the same capac- MEassie— i 1N'N7T =0. (7)
ity limit when N, = 4. The convergence to the capacity limit SNR—voo  logy(snR)
becomes faster for the random distribution whénincreases,  In view of (@), one might think that the existence of a non-
but the value of the limit is unchanged. Contrary, the céapacizero multiplexing gain is merely an artifact of ignoring the
limits in the deterministic cases increase with (and with transceiver impairments that always appear in practicev-Ho
a since it makes the distortion more isotropic). Hi§y. 3 showsver, the problem lies in the classical definition, becalse a
that there is a medium SNR range where the capacity exhiljitsysical systems can gain in capacity from employing migtip
roughly the samel/-slope as achieved asymptotically forantennas and utilizing spatial multiplexing. A practigatiore
ideal transceivers. Following the terminology of [3], tieshe relevant measure is the relative capacity improvement (it a
degrees-of-freedom (DoF) regimehile the high-SNR regime nite snr) of an N; x N,, MIMO channel over the corresponding
is the saturation regimgsee Fig[B. This behavior appearedingle-input single-output (SISO) channel.
ip [3] for large cellular ngtwor_ks due to limited C_Oherencf)efinition 1. The finite-SNR multiplexing gainM(snr), is
time, but we demonstratg its existence for any physmgl MIMﬁ)]e ratio of MIMO to SISO capacity at a givemr. For [2),
channel (regardless of size) due to transceiver impairsnent
Cn, N, (SNR)

M(sNR) = Cr (5

(8)

IV. GAIN OF MULTIPLEXING

This ratio between the MIMO and SISO capacity quantifies

M-ll—:e (I;A’\:':)Ici ((:/)a(pi:;\cEtl)j \{{Vrllt:s Igearlo\t\rlgnjgggﬁ:ze%?h?r\]/iie%ﬁe exact gain of multiplexing. The concept of a finite-SNR
82 ' g y multiplexing gain was introduced in [12] for ideal transeats,

high-SNR regime and scales linearly with the so-called mult " ; - .
plexing gainM = min(N,, N,.). On the contrary, Theoref 1Whlle the refined Definitiof]1 can be applied to any channel

shows that the capacity of physical MIMO channels has rgodel. The asymptotic behavior o (snr) is as follows.
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Fig. 4. Finite-SNR multiplexing gain for an uncorrelatedylRégh fading Fig. 5. Average finite-SNR multiplexing gain of determimgstthannels
channel withN, = 4 and Ny > 4. (generated with independe@i\V (0, 1)-entries) with N, = 4 and Ny > 4.

Theorem2. Let i denote the SISO channel. The finite-SNRhannel distribution. This fundamental result is expldity
multiplexing gain,M(snr), for (Z) and anyx satisfies the distortion from transceiver impairments and that it&/@o
E{|H||2) E{|[H|32} is proportional to the signal power. The classic multiphexi
——— 2 < lim M(sNR) £ ———222, (9) gain is thus zero (see Ed(7)). Nevertheless, the MIMO
N E{|h[?} SNR=0 E{|n|?} N capacity grows roughly linearly witld/ = min(N, N,.) (see
M< lim M(s\R) < M10g2(1+ T,ﬁz)’ (10) TheoremDZ) over the whole SNR range, thus shovying the
SNR—+ 00 logy (1 + =) encouraging result that also physical systems can achieat g
where||- || and||- || denote the Frobenius and spectral normyams from employlng MIMO and spatial multl_plex_lng. .
. . — . ' Technological advances can reduce transceiver impaisnent
channels (with full rank andv = 1). The lower bounds aresDUt there is currenFIy an opposite “Te”d tqwards small lostc
. . . . . I low-power transceivers where the inherdity RF effectsare
achieved for right-rotationally invariant channel distriions. .~ ! o
o ) inevitable and the transmission is instead adapted to them.
Proof: The low-SNR behavior is achieved by Taylor The point-to-point MIMO capacity limit in Theore 1 is an
approximation:Q = -1 gives the lower bound, while the ypper hound for scenarios with extra constraints; for examp
per-realization-optimaQ) = uu’’ (whereu is the dominating network MIMO, which is characterized by distributed power
eigenvector ofi”"H) gives the upper bound. The high-SNRconstraints and limited coordination both between transmi
behavior follows from Theorefl 1 and its corollaries. B antennas and between receive antennas. The capacity in such
This theorem indicates that transceiver impairments haggenarios therefore saturates in the high-SNR regime—iaven
little impact on the relative MIMO gain, which is a verysmall networks where the analysis [ [3] is not applicable.
positive result for practical applications. The low-SNR-be Finally, note that the finite-SNR multiplexing gain decress
havior in [9) is the same as for ideal transceivers (singghen adding extra constrainis [10] and that impairmentit lim

sNnRHY :H +1 ~ T), while (I0) shows that physical MIMO the asymptotic accuracy of channel acquisition schemes.
channels can achiev®1(snr) > M in the high-SNR regime

(although ideal transceivers only can achigv&snr) = M). APPENDIX: PROOF OFTHEOREM[T

) ) As a preliminary, consider any full-rank channel realiaati
A. Numerical lllustrations H. Let HH = U;A U denote acompacteigendecom-
The finite-SNR multiplexing gain is shown in Figs. 4 did Position (with U, € CNe*M A, € CM*M; see Corollary
for uncorrelated Rayleigh fading and deterministic chdsne2). The mutual information increases witkr (since it reduces
respectively, withV; € {4, 8, 12}, N, =4, k = 0.05, = 1.  the noise term antbg, det(-) is concave) and satisfies
The limits in Theoreni]2 are confirmed by the simulations. _
Although the capacity behavior is fundamentally differéart ?OgQ det (I+SNRHQHH(SNRHLHH+I) 1)

physical and ideal transceivers, the finite-SNR multipiexi = log, det (I+sNRU T (Q + Y1) UnAn)

ga?n i_s r_em_arkably similar—not unexpected since the asymp- — log, det (1+SNRU{§LUMAM) —

totic Ilmlts_ln T_heore_n[]Z are almost '_the same for any Ievci:cl)g2 det (U (Q+Y1)UpAyr) — log, det (U, X, U A )
of transceiver impairments. The main difference is in the " = .

high-SNR regime, where (a) there is a faster convergence to = 1082 det (I+ Uy, QU (U Y Un) ") (11)
the limits under impairments and (b) deterministic chasnel  — jog, det (I+ T;WQ‘I‘;H/QHT{”?UM)

achieve an asymptotic gain higher thah when N; > N..

M
= togs (1+m(X; QY P py,,))  (12)
V. CONCLUDING REMARKS i=1

Unlike conventional capacity analysis, the capacity ofghyas snr — oo. The first equality follows from expanding the
ical MIMO systems saturates in the high-SNR regime (séegarithm and from the ruldet(I+ AB) = det(I+BA). This
Theorent1) and the finite capacity limit is independent of trenables lettingsnrR — oo and achieve an expression where
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the impact of A, cancels out. We then identify the projec-
tion matrix Iy /2y, = Y1/2U,\ (UE Y, U, -1 UH 1,/
onto U, 1}/, Theith strongest eigenvalue is denoted:).

As the convergencenr — oo is uniform, we can achieve
bounds by showing that all realizations have the same asymp-
totic bound. A lower bound is given by any feasilllE we
selectQ = N%I as it givesY,; = 1 and maked (11) indepen-
dent ofH. Since[(I2) is a Schur-concave function in the eigen-
values, an upper bound is achieved by replaging) with
the average eigenvalug: tr(Y, '/°QY, "/ *Iixr2y,,) <
ﬁtr(Tt_l/QQ‘rt_Hm) = N]f;z, where the inequality follows
from removing the projection matrix (sinddy//?u,, = I).

Note that the upper and lower bounds coincide wher< N,.,
thusQ = ﬁl is asymptotically optimal in this case.
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