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Wireless Distributed Consensus for Connected

Autonomous Systems
Hao Xu, Yixuan Fan, Wenyu Li and Lei Zhang

Abstract—Connected critical autonomous systems (C-CAS)
are envisioned to significantly change our life and work styles
through emerging vertical applications such as autonomous
vehicles and cooperative robots. However, as the scale of the
connected nodes continues to grow, their heterogeneity and cyber-
security threats are more eminent, and conventional centralized
communications and decision-making methodology are reaching
their limit. This paper is the first exploration of a trustworthy
and fault-tolerant framework for C-CAS for achieving hyper-
reliable global decision-making in a trustless environment, where
the connected sensors/nodes are less reliable due to either
communication failure or local decision error (e.g., by sensing
algorithm/AI, etc.). The proposed framework is based on two
iconic distributed consensus (DC) mechanisms, practical Byzan-
tine fault tolerance (PBFT) and Raft, under the proposed PICA
(Perception-Initiative-Consensus-Action) protocol with wireless
connections among the nodes. We first analytically derived
consensus reliability in six different system models. The other
fundamental performance metrics such as the consensus through-
put and latency, node scalability and reliability gain are also
analytically derived. These analytical results provide basic design
guidelines for wireless Distributed Consensus (WDC) usage in
the C-CAS systems. The results show that WDC significantly
improves overall system reliability with the increasing number
of participating nodes.

Index Terms—PBFT, Raft, Byzantine fault tolerance, Wireless
distributed consensus, Autonomous system, PICA, Autonomous
driving.

I. INTRODUCTION

Driven by advances in 5G, industry 4.0, cloud/edge com-

puting and artificial intelligence, etc., the Internet of Things

(IoT) is extending from home and work environments to

critical and complex industrial systems, such as transportation,

healthcare, utilities, communications and e-commerce sectors

[1] [2] [3]. These vital societal and industrial functions are

increasingly interconnected for information exchange through

communication networks to complete joint tasks [4] [5] [6].

In such systems, data may be collected from distributed and

heterogeneous and trustless sensors located in different places

to determine common and critical real-time decisions in order

to achieve cooperative actions. Information reliability is of

paramount concern since a failure can result in prohibitive

costs, such as life loss or natural environment damage [1] [7]

[8]. For instance, Connected and Autonomous Vehicles (CAV)

with high-level autonomy (L4 and L5 autonomous driving
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capability) can drive cooperatively for collision avoidance

by communicating with nearby vehicles or Road Side Units

(RSU) [9]. Based on its locally equipped sensors (e.g., Lidar,

mmWave Radar, etc.) and computing resource, the CAV is

capable of making an initial decision. However, this decision

needs to be informed and agreed upon (and recorded for

compliance) by other vehicles in proximity in a real-time

manner in order to avoid conflicting local actions between

different CAVs. Thus, communications among the vehicles

play a key role in such systems, and it should be ultra-reliable

with a stringent latency constraint, as any misalignment among

the vehicles can cause a disaster.

A. Background

Centralized communication and decision approach is nor-

mally deployed in industry sectors, especially in mobile en-

vironments, which requires the connected nodes to transmit

their data to a central control station, where critical decisions

are made and sent back to nodes for actions, which is named

as Perception-Collection-Decision-Action (PCDA) scheme. A

representative one is the cloud/edge computing through ultra-

reliable (≥99.999%), and low latency (≤ 1ms) communica-

tions (URLLC) provided by a cellular base station [10] [11],

which is a key feature of 5G networks. However, as the

number of connected devices/nodes continues to grow, their

heterogeneity and cyber security threats are more significant,

and the centralized approaches to these systems that are in use

today are reaching their limits [12]. For instance, centralization

may suffer from the single point of failure issues as well as

cyber security attacks, particularly vulnerable sensors running

in open environments. Moreover, in centralized systems, the

nodes can only synchronize the information with the central

node, and the performance in terms of critical joint decisions

for the whole system (e.g., URLLC) can be limited by the

worst node connected to the central station. Finally, a central-

ized communication system can be very costly since it is well-

known that high communication reliability is contradictory to

low time latency for given spectrum resources [10] [13] [14].

The cost can be unaffordable when the network scales up, e.g.,

on a busy road in autonomous driving scenarios or in a smart

factory with numerous mobile robots.

Recognizing that many new generation mobile applications

are discretely distributed in their topology [15], one promising

solution for achieving low latency and ultra-reliable joint

decisions is to utilize Distributed Consensus (DC) mechanisms

(also known as DC algorithms or protocols) [16] [17] [18]. DC

protocols are a procedure that only relies on passing messages

to reach a common agreement among nodes in a distributed

system without a central coordinator [12], and they ensure
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consistency of records and integrity of transactions among

distributed nodes [19]. Blockchain is a typical DC system,

and the proof-based DC protocols, e.g., Proof of Work, is

its representative protocol. In addition to blockchain, a novel

example of utilizing DC can be vehicles making collective

decisions by DC on traffic events with relaxed communication

link or node reliability due to the redundancy design in DC

mechanisms.

Unlike the PCDA in centralized systems, where informa-

tion is sent to a central node for decision, we propose a

novel Perception-Initiative-Consensus-Action (PICA) frame-

work. The novelty of the PICA is that decision-making does

not rely on a central authority but through DC protocols, which

enables a node to make the initial decision based on local

sensing and computing and then consent through a distributed

protocol among the relevant nodes jointly before executing an

action. Through this new procedure, issues in the centralized

systems listed above can be resolved. On the other hand,

the distributed architecture allows decision-makers to sit as

close to the end user as possible, reducing the overall end-

to-end latency. From this point of view, PICA is also a class

of integrated sensing and communication (ISAC) proposed in

[20] [21]. However, unlike ISAC, which focuses on joint de-

sign of the sensing and communication, which typically works

in trustworthy and centralized environments, we consider the

multi-sensor joint decision-making in distributed and trustless

environments where the communication networks are used to

support the DC protocols.

Obviously, DC plays a pivotal role in the PICA approach to

make agreements in the correct order among the stakeholders.

There are two major types of DC for faults tolerances in

distributed systems: Byzantine Fault Tolerance (BFT) [22] for

malicious attacks, e.g., Man-in-the-Middle or Sybil attacks

under Dolev-Yao attacker model and Crash Fault Tolerance

(CFT) [23] for availability attacks, e.g., Distributed Denial

of Services. Byzantine fault is distinguished when the mis-

information from the malicious (i.e., Byzantine) node or a

node with false information is detected; and the crash fault

is identified when a member loses the connection with all

other nodes and the leader node, a term-time leader of the

consensus group, but the information sent by all nodes was

assumed correct. Both failures can lead the system to fail in

making a successful joint decision. The solutions to avoid such

failure are fault tolerance design of consensus, practically used

examples are: practical Byzantine Fault Tolerance (PBFT) [22]

for BFT [5] [16] and Raft [23] for Crash Fault Tolerance.

Both algorithms are voting-based consensuses (a.k.a. message

passing consensuses [24]) that require frequent intercommuni-

cation to synchronize with peers and replicate the state from

the committed nodes.

Thanks to the redundant design, the node or communication

network reliability can be much lower but still able to achieve

a highly reliable joint decision or consensus. This will give

us more flexibility when deploying 5G and beyond URLLC

networks since the communication link reliability can be

relaxed. The detailed introduction of PBFT and Raft models

will be introduced in Section III and Fig. 2.

B. Related work

In recent works, there are few related studies on proposing

and analyzing DC protocols in wireless communication sce-

narios. Examples can be found in a blockchain-based decen-

tralized system architecture with reputation-based consensus

proposed for IoT systems in [25], a low consumption consen-

sus mechanism to facilitate the coordination of IoT devices in a

lightweight blockchain system proposed in [26], a blockchain-

based reward mechanism has been designed for mobile crowd-

sensing [27], and an efficient and fault tolerance blockchain

consensus applied in IoT proposed in [28]. In these studies,

their innovations focus on improving the performance of DC

protocols in wireless communication scenarios but ignore the

impact of wireless communication on DC protocols. Since

the original DC protocols are based on stable communication

in computer networks and usually contain the assumption of

perfect communication, WDC that ignores the uncertainty of

wireless communication is dangerous. A few studies focused

on wireless communication analysis related to DC are detailed

as follows. [29] indicated that communication performance has

a significant impact on the consensus of wireless systems and

provided a consensus-communication co-design framework,

and [30] provides the analysis of SINR and throughput to

design the optimal node deployment in a blockchain-enabled

wireless IoT mode. However, their analysis scenarios are very

limited because they all rely heavily on the overall architecture

of the blockchain. Only by focusing on the essential metrics of

DC combined with communication conditions can we provide

general design guidance for distributed wireless communica-

tion.

C. Motivations and contributions

PBFT and Raft are originally designed for running in stable

wired networks, where the consensus thresholds (i.e., fault

tolerance) are 1/3 and 1/2, respectively [23] [22]. However,

unlike wired systems, wireless systems bring extra channel

uncertainty [31] [32] [33], scarcity of spectrum and node

communication provision (the number of messages a node

processes at any given time during the consensus), thus

entailing different security thresholds. In particular, original

systems consider node failure, and when it happens, all asso-

ciated communication links are faulty. However, with dynamic

wireless communication channels, a node may work fine,

but certain links connected with the node might be unstable.

Additionally, the traditional design considers a deterministic

situation where nodes have a fixed status. However, to extend

the distribution system into the engineering applications such

as autonomous systems, we have to consider the question

from the statistical angle (i.e., failure is a probability). The

above issues bring a natural yet important question: what

are the new consensus success probabilities (i.e., consensus

reliability) in a wireless connected uncertain network? As

we mentioned above (and more will be given in Section III),

DC protocols are designed with redundancy, given wireless

connected DC, equivalently, research objectives are conveyed

by questions which can be described as: Is it possible to

achieve high reliability and low latency mission-critical

wireless distributed consensus (WDC) in a trustless en-
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vironment through less reliable communications link or

even in the presence of malicious users? How does the

consensus reliability impact the key performance metrics

of DC, such as the consensus throughput and latency? Such

fundamental questions must be answered before WDC can be

used in vast critical autonomous systems.

This paper analyzes emerging challenges faced by wireless

distributed mission-critical autonomous systems from an en-

gineering perspective and proposes WDC based on PBFT and

Raft consensus as a step forward to tackle the demanding

reliability and latency with collective efforts in terms of

stochastic processes of distributed decision-making analysis

for WDC. The main contributions are listed as follows:

• We establish WDC models based on PICA approach

and envision the usage of WDC in critical industrial

applications with use case examples.

• We derive comprehensive models of the WDC based

on PBFT and Raft along with essential synchronizations

to further increase system reliability for PICA scheme.

Namely, the analytical expressions of PBFT and Raft

consensuses reliability with node failure, link failure,

and both node and link failure models, respectively. The

mathematical derivations provide a fundamental analyti-

cal scope looking into the composition of WDC and help

to adapt the PICA beyond proposed consensuses with

similar approaches.

• We define the concept of reliability gain, a metric of

reliability against node quantity, which provides useful

guidance for consensus network configuration. We set up

criteria for WDC from a perspective of reliability and

other quality measures, including latency and throughput.

The practical definition of reliability gain offers easy

implementation of WDC in the existing industrial system.

• Finally, We provide guidance to WDC deployment with

benchmark results of reliability, latency and throughput

by simulations.

The remainder of this paper gives the briefing on reliability

followed by case studies of proposed WDC in Section II. A

detailed PICA framework for WDC is illustrated in Section

III, and made comparisons of reliability performance for

PBFT and Raft protocols in Section IV, followed by Section

V, where we explain the impact of latency, throughput and

scalability with regard to the size of the network. The results of

reliability validations with simulations are shown in Section VI

and discuss the resilience of the system with the measurement

of gain. Finally, Section VII summaries the paper.

II. RELIABLE DECISIONS AND CASE STUDY IN CRITICAL

CONNECTED SYSTEMS

We present our problem statement with the following case

study, where we will show readers applications that strongly

demand real-time high-reliability WDC using less reliable

communication links and in the presence of the failure nodes.

A. Collision avoidance/ advisory (Clustering Decision)

The revolution of automotive industries brings autonomous

driving to everyone, with great risks in its early state [34].

Many catastrophic failures happened due to sensor errors,

Fig. 1. Wireless distributed consensus for traffic decision with PICA scheme

malicious attacks and AI decision errors [7] [35] [36] [37].

In order to prevent sensors from conflicting with each other

and making unreliable decisions, fault tolerance methods are

applied to reassure their consistency and reliability. Such time-

sensitive information is only solvable locally due to the delay

and the single point of failure risk in a centrally managed

network.

Modern transportation has regulated collision advisory (CA)

to provide traffic, and resolution advice [7]. For example,

Traffic Collision Avoidance Systems (TCAS) [7] are widely

used in aviation [38], and many emerging AI-based collision

advisory systems are on-board new land-based vehicles for au-

tonomous and semi-autonomous driving, though the reliability

is well below the real-world requirement and hardly considered

usable. Recent traffic accidents caused by self-driving false

alarms and miss alarms have caused multiple catastrophic

consequences for road users across the world [35]. Thus, a

more comprehensive solution to deal with the reliability of

self-driving is required, in order to widely adopt autonomous

driving in a higher level, in particular the L4 and above, where

needs for human interventions are minimized.

B. X-by-wireless (wireless communication for mission-critical

control)

Mission-critical payloads are the leading edge users and

developers of real-time high-reliability systems with fault

tolerance capacity, such as Fly-by-wire [39] and Drive-by-

wire using internal databus (fieldbus) [7], e.g., ARINC 629,

ARINC659 (SAFEbus), ARINC 664 Part 4 (AFDX), CAN

bus, etc. Wire-based control system suffers from limited flex-

ibility and high implementation cost regarding its installation

and dead weight of wires. In the recent search of the next

generation control databus, one notable research direction,

which may make use of WDC, is the Fly/Drive-by-wireless

or simply X-by-wireless. X-by-wireless has been at the center

of the next-generation avionics research for many years [40],
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and the reliability issue is always the top concern for the

system designer. In conventional deployments of Fly/Drive-

By-Wire, databus is supplied with wired connections, and

dual redundancy [7], the reliability is secured by employing

duplicates in the system using First-in-First-out (FIFO) queue,

which does not take Byzantine fault into consideration, since

the physical network is isolated from outside. However, for

wireless critical control, malicious activities, such as jamming

and spoofing, are more common due to the openness of

channels. Therefore, we emphasize the safety and real-time

property for such applications. In the following proposed

solution, the system is benefited not only from the robust

redundancy management but also from taking advantage of

DC to avoid high costs on higher-grade commercial-off-the-

shelf (COTS) products.

III. PICA FRAMEWORK, RAFT AND PBFT CONSENSUSES

A. PICA framework

We introduce WDC based on the proposed PICA approach

for reliable decisions. The initial decision (i.e., Perception) is

made based on the local sensing (e.g., Lidar, Radar in CAV)

and potentially combined with state-of-the-art AI techniques.

A request (i.e., Initiative) is made by the node based on the

initial decision and then sent to the network for a joint deci-

sion (i.e., Consensus), where only consented initial decision

will be executed (i.e., Action). Under the new scheme, the

decision offered by the advisory will not only be made by

the standalone actuation controller. Instead, a cluster of nodes

with the same visibility will be involved.

An illustration of proposed scenarios can be found in Fig.

1, where a truck will first sense the environment and make an

initiative to join the right lane, and feedback will be received

from the consensus network formed by the nearby vehicles, for

maximum safety and reliability. When making the initiative,

at least the truck believes it is safe, but other vehicles nearby

may have varied sensing results, and negative feedback from

the consensus network can be given. Since the initiative will

be verified by other nearby vehicles’ established DC networks

(thus, with more sensing data), it greatly increases the reliabil-

ity of the final decision even though the initial decision might

be wrong or communication links are unreliable.

A WDC process starts from a decision-making request. For

instance, by initiating a decision process, the client who makes

the call needs to describe the decision into a statement that

can only be answered with Boolean type (Yes/No), such as

traffic lights at a given position are green (A simple Yes or No

decision, but the decision chain can be extended from here).

It is easy to conclude that the DC, which secures low latency

and ultra-reliable joint decisions with relaxed communication

link or node reliability, plays a pivotal role in PICA. Next,

we will present WDC models based on PBFT and Raft

consensuses, in which the fault tolerance design is impacted

by the wireless communication performance and node failures.

The communication protocols of PBFT and Raft are illustrated

in Fig. 2 with detailed steps and phases.

During the deployment, there are also challenges the PICA

has considered, in particular from a communications per-

spective. The challenge in the actual deployment can be

classed into two aspects: the network deployment with mul-

tiple options in L1 physical layer access and the L2/L3

datalink/network layer protocol. In the physical layer, the

actual communication channel may pose a challenge to the

WDC network, where the presence of back-scattering sig-

nals and variance in the receiver performance may reduce

the communication link reliability significantly. Therefore,

we have previously modeled the system with various link

reliability to mitigate our limitation on the physical layer. The

performance of aggregated link reliability is also impacted

by the link-layer protocols, e.g., HARQ and CSMA/CA. On

the other hand, the communication protocol may induce extra

overhead and latency elements into the system, in particular,

if the communication protocol is employed as the method to

improve the overall link reliability (where the individual link

reliability is reinforced by the communication protocol and

coding options).

Pre-
prepare

Request
Prepare Commit Reply

Downlink Uplink

Leader & Proposer node Healthy node Byzatine node Crashed node

RAFT consensus

PBFT consensus

Sync

SyncRequest

Fig. 2. Consensus protocols of PBFT and Raft with synchronization stage

B. Wireless distributed consensus model: PBFT

WDC based on PBFT involves actions that may bring

conflicts to the consensus parties’ interests, such as malicious

nodes’ presences given malicious feedback, for example, the

backup sensors (failed ones are considered as Byzantine

nodes) are giving different readings at the same time, where

the value can be different, such false information is con-

sidered as Byzantine fault. In this paper, we will consider

such misinformation (false information unintentionally given

by honest node due to the perception/sensing errors) rather

than disinformation (false information intentionally given by

malicious node), though the same effect will be made from the

consensus perspective. In this case, the quorum needs to make

a Byzantine-proof decision with additional communications
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between members, which tolerates less than one-third of

Byzantine nodes.

There are three phases of communications that are vital in

PBFT protocol for the consensus [22], namely, pre−prepare,

prepare, commit and a reply message critical to the suc-

cessful operation, as shown in Fig. 2, where we see that

PBFT relies on frequent inter-node communications. During

pre − prepare, the leader node sends a message to all other

nodes, and prepare phase, all other nodes duplicate and prop-

agate prepare message to all nodes excludes itself, commit
phase does the same communication as the previous phase, and

at the reply phase, when leader nodes have received enough

commit messages, it replies to the client while synchronizing

the latest results with its peer nodes, as shown in Fig. 2. Note

that, in a functional PBFT consensus group, a threshold of

less than 1/3 of Byzantine nodes is required to yield correct

decisions.

In PICA scheme, the client naturally takes the role of header

node when the request is initiated. However, the model built

in this paper is also applicable to the case that the client is

not part of the consensus network, where the header is the

representative of the client.

C. Wireless distributed consensus models: Raft

The Raft consensus model represents the network with no

conflict of interest. All nodes are honest in the system, and

such a mutual decision on information fits every node’s inter-

est. The leader node is self-elected during this process when

the node makes the call and broadcasts it to the perimeter. The

protocol of Raft started from receiving the message from the

leader during downlink, as shown in Fig. 2 lower part, any

node within the range that has the ability to make the judgment

will provide its opinion to the leader to either confirm it

or deny it via uplink communications. Taking Fig. 1 as an

example, we can see the truck (leader node) is about to merge

into the right lane. By requesting confirmation of obstacles in

the blind zone covered in amber, the other vehicles (nodes)

are able to tell the truck if it is clear to proceed based on

the Raft protocol. The failed node marked in red is not able

to give feedback on the situation though it is still part of the

consensus group. In this illustration, the red car can only flag

itself as failed node due to lack of visibility, which makes

the failure a crash fault. Having the following synchronization

stage taken into account, such a crash can be mitigated and

recoverable if the node is still functional.

Once the leader node receives enough feedback from its

follower nodes in both scenarios, it will either note the

information has been confirmed or act based on the confirmed

information. During the consensus process, there are security

thresholds to ensure it has the best decision depending on the

reliability and latency requirement. In our case of Raft, more

than 50% viable nodes during both uplink and downlink are

required, compared to 33% viable nodes required by PBFT, in

a combination of communications and nodes reliability.

D. Full Consensus with synchronization

In addition to the standard PBFT and Raft models in-

troduced above, we propose a synchronization process after

completing the decision, which will be detailed in Section

IV-C, also shown in Fig. 2 Sync procedures. The sync takes

place among failed nodes with committed nodes from the last

successful consensus and prepares them in sync before the next

consensus commencing, which is called full consensus. It does

not affect PBFT but Raft reliability and latency performance

at the time of decisions, and it is important to occasions where

all nodes should be aware of the joint decision was made, even

though part of them did not achieve the final commit stage due

to the communication failure.

TABLE I
FREQUENTLY USED NOTATIONS

Notation Definition

PR−N Consensus reliability of Raft (node failure)

PR−L Consensus reliability of Raft (link failure)

PR−N−L Consensus reliability of Raft (node and link fail-

ures)

PP−N Consensus reliability of PBFT (node failure)

PP−L Consensus reliability of PBFT (link failure)

PP−N−L Consensus reliability of PBFT (node/link fail-

ures)

Pn Reliability of nodes

Pl Reliability of communication link

n Number of nodes in the consensus network

f Number of failed/faulty nodes

m Number of successful nodes

Pv Possibility of view change

L Latency of the consensus

T Throughput of the consensus

IV. RELIABILITY OF WIRELESS DISTRIBUTED CONSENSUS

Section III has qualitatively presented why WDC can

enhance the joint decision reliability. In this section, the

reliability of WDC based on PBFT and Raft consensuses

will be derived under non-perfect communication links and

nodes. The reliability of a system is critical for mission-critical

decision-making, where the process consists of many com-

ponents, subsystems and external elements, e.g., computing

nodes, physical connectors, and wireless channel quality for

wireless connected systems. Specifically, in WDC, we consider

the following three cases, node failure only, communication

link failure only, and both node and communication link

failure. A node failure is described as either crashed in Raft

or Byzantine-like behavior in PBFT in probability, and the

communication link reliability is defined as the statistical prob-

ability of success of the point-to-point wireless communication

at the given time, which is also a simplified value for a set

of network and traffic environment with considerations on

channel modeling and interference. The symbols are listed

in Table I, where the third model (with subscripts P-N-L for

PBFT and R-N-L for Raft) combines the assumptions of the

first two models and yields the overall probability of success

of the consensus.

As a general assumption, we consider every node’s reliabil-

ity Pn in node failure model with a given number of n nodes,
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and communication link probability of success Pl of every

wireless channel between nodes. Although, the effect of the

initially failed leader node will result differently, which will be

discussed in the later section of latency performance analysis

regarding consensus view changes (V C) (i.e., the process of

electing a new leader) [22]. It is assumed that the leader node

is always available at the first round of communication for

reliability analysis for simplicity, upon the assumption that

this very node is the initiator of the consensus.

A. Consensus reliability based on PBFT

PBFT consensus system provides safety and liveness against

malicious attacks up to f = ⌊n−1

3
⌋ faulty nodes [22], where

f is the number of faulty nodes, among number of n nodes.

According to the consensus requirements of the original PBFT

protocol, the number of nodes that successfully participated in

all consensus phases should not be less than n− f [22]. The

consensus reliability model for PBFT consists of PBFT node

failure (P-N) model, PBFT link failure (P-L) model, and PBFT

node and link failure (P-N-L) model, respectively, detailed in

the following subsections.

Theorem 1. Given Pn, Pl and n, the probability of success

of the DC PP−N−L can be obtained by

PP−N−L =
n
∑

m=mpp

n
∑

mpp=mp

n
∑

mp=mc

n
∑

mc=n−f

(Pnode(n,m)·

Ppp(m,mpp) · Pp(mpp,mp) · Pc(mp,mc)),

(1)

where Pnode(n,m), Ppp(m,mpp), Pp(mpp,mp) and

Pc(mp,mc) are given below.

Pnode(a, b) =

(

a− 1

b− 1

)

P b−1
n (1− Pn)

a−b (2)

Ppp(a, b) =

(

a− 1

b− 1

)

P b−1

l (1− Pl)
a−b (3)

Pc(a, b) =

(

a

b

)

Ps(a)
b(1− Ps(a))

a−b (4)

Pp(a, b) =Ps(a)

(

a− 1

b− 1

)

Ps(a− 1)b−1(1− Ps(a− 1))a−b

+ (1− Ps(a))

(

a− 1

b

)

× Ps(a− 1)b(1− Ps(a− 1))a−1−b

(5)

Ps in equation (4) and (5) are denoting

Ps(a) =

a−1
∑

k=2f

(

a− 1

k

)

P k
l (1− Pl)

a−1−k. (6)

1) PBFT Model with Node and Link Failure (P-N-L):

In this model, node failure (i.e., 1 − Pn) and link failure

(i.e., 1 − Pl) are considered at the same time. We have the

following theorem to show the relationship between them and

the consensus reliability PP−N−L, as seen in Theorem 1.

Theorem 1 provides a precise equation of the overall

reliability of the PBFT system in the real world, where the

reliability of nodes or communication links is not guaranteed.

Derived by successive summation and multiplication in The-

orem 1, the computational complexity of the P-N-L model

is O(n5). The high computational complexity is justified as

the derivation equations are precise, and the computational

complexity cannot be reduced as the accurate equations cannot

be optimized.

The proof of Theorem 1 is given in Appendix A.

2) PBFT Model with Node Failure (P-N): In P-N model,

we only consider node failure rate Pn. It is actually the case

that the channel in the consensus system is always reliable

in P-N-L model. If we set Pl = 1 in equation (1), we have

the following remark to show the relationship between Pn,

number of node n and the WDC reliability:

Remark 1. Given Pn, n and Pl = 1, the probability of

successful consensus of the system PP−N can be obtained

by

PP−N =

n
∑

m=n−f

Pnode(n,m). (7)

The expression of Pnode(n,m) is denoted in equation (2) in

Theorem 1.

Remark 1 provides a straightforward answer to node fail-

ure mode for PBFT consensus, and it is useful to estimate

the reliability of the system while the communication link

is stable, e.g., wired connected scenario or when sufficient

spectrum resource is used in wireless communications (e.g.,

repeat transmission).

3) PBFT Model with Link Failure (P-L): For P-L model,

it is also a special case that all the nodes are reliable in P-

N-L model. By taking Pn = 1, we can illustrate the relation

between link probability of success Pl, the number of nodes

in the system n and the consensus rate of P-L model PP−L.

Remark 2. Given Pl, n and Pn = 1, the probability of

successful consensus of the system can be calculated in the

following equation:

PP−L =

n
∑

mpp=mp

n
∑

mp=mc

n
∑

mc=n−f

[Ppp(m,mpp)·

Pp(mpp,mp) · Pc(mp,mc)].

(8)

The expressions of Ppp(m,mpp), Pp(mpp,mp) and

Pc(mp,mc) are denoted in equation (3), equation (5)

and equation (4) in Theorem 1.

The analytical and simulated results of the relationship of

consensus failure rates 1−PP−N , 1−PP−L or 1−PP−N−L

and total number of nodes n are detailed in Section VI,

it provides a theoretical mitigation on weak nodes, weak

communication links or combined scenarios. Note that in the

case of perfect communication links or nodes, Remark 1 and

2 are the special cases of Theorem 1.

B. Consensus reliability based on Raft

Raft consensus mechanism tolerates ⌊n−1

2
⌋ faulty nodes out

of n total nodes during a successful consensus. As indicated

by Fig. 2, each follower node casts its vote to the leader

via an uplink channel, and the majority wins. The reliability
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of Raft-based WDC is established under the node failure,

communication link failure, and both node and link failure,

described in the following sections.
1) Raft Model with Node and Link Failure (R-N-L): In Raft

node and link failure (R-N-L) model, we set the non-faulty

probability of each node and single link reliable rate as Pn and

Pl respectively, and aim to obtain the final success consensus

rate PR−N−L, as seen in Theorem 2, details of the derivation

for Theorem 2 is given in Appendix B.

The combined failure mode of Theorem 2 is close to real-

world Raft deployment. An illustration of combined models

with ascending number of nodes is detailed in Section VI. The

computational complexity of R-N-L model is O(n4). Similar

to the P-N-L model, the high computational complexity cannot

be reduced as the accurate equations cannot be optimized.

Theorem 2. Given Pn, Pl and n, PR−N−L can be calculated

as

PR−N−L =
n−1
∑

a=⌈n−1

2
⌉

(

(

n− 1

a

)

P a
l (1− Pl)

n−1−a

a
∑

b=⌈n−1

2
⌉

(

(

a

b

)

P b
n(1− Pn)

a−b

b
∑

c=⌈n−1

2
⌉

(

b

c

)

P c
l (1− Pl)

b−c)).

(9)

2) Raft Model with Node Failure (R-N): In Raft node

failure (R-N) model, nodes have an reliability of Pn in the

log replication stage and the links are assumed reliable, where

Pl = 1, for the number of n nodes, we have following Remark:

Remark 3. By replacing Pl = 1 in R-N-L model, the

probability of successful consensus of R-N model can be

obtained by

PR−N =

n−1
∑

i=⌈n−1

2
⌉

(

n− 1

i

)

P i
n(1− Pn)

n−1−i. (10)

3) Raft Model with Link Failure (R-L): In Raft link failure

(R-L) model, we assume Pl is the probability of success for

every channel and the probability of successful consensus of

the system is PR−L, for the number of n nodes, we have the

following Remark:

Remark 4. Similarly, by replacing Pn = 1 in R-N-L model

[5], the probability of successful consensus of R-L model can

be obtained by

PR−L =

n−1
∑

a=⌈n−1

2
⌉

(

(

n− 1

a

)

P a
l (1− Pl)

n−1−a

a
∑

b=⌈n−1

2
⌉

(

a

b

)

P b
l (1− Pl)

a−b).

(11)

Remark 4 provides the analytical equation of Raft link

failure model, and it is useful while the estimation is made for

a node stable situation, or for a short period of time, where the

node failure is less likely, for instance, nodes refreshed after

passing the Mean Time Between Failure (MTBF) threshold.

C. Reliability of full Consensus with synchronization

A complete and successful round of consensus requires

all non-faulty nodes to sync up to actuate the outcome of

consensus. However, the faulty nodes of the current round will

be left out and prohibited from entering the next consensus

round. Hence, it is important to sync up the previously failed

nodes to maintain the liveness of the whole system, shown

as Sync in Fig. 2. To achieve full consensus, we add a

synchronization phase to help all the nodes who failed due

to link failures to update the latest log from the successful

nodes and ready them for future requests.

As the communication principles between nodes of PBFT

and Raft are different, the sync phases added to PBFT and

Raft are also different. To extend two protocols uniformly, an

alive-node broadcast phase, similar to the original commit
phase, is added as sync phase to PBFT, while a leader

broadcast phase, similar to downlink phase, is added as sync
phase to Raft. The following is a detailed description of the

sync phase in PBFT and Raft.

In the case of PBFT, for the nodes which do not experience

any node or communication link failures during the consensus

process, they enter the synchronization phase by multicasting

synchronization messages sync to all other nodes. When a

node receives sync messages, it will check if it has both

prepare and commit certificates with the same view number,

sequence number and request digest as the synchronization

message provided. If the request in the synchronization mes-

sage has not been committed, it accepts the message and waits

for a weak certificate via sync consensus, which requires

fewer message counts than the normal consensus process with

at least f + 1 sync messages with the same view, sequence

number and request’s digest from different nodes. Otherwise,

the node remains unchanged. We call this weak certificate the

synchronized certificate. Nodes with this certificate execute

the request and update their logs without replying to the

client. Similar to the reply certificate in PBFT model, the

synchronized certificate with f + 1 messages from different

nodes aims to ensure the synchronization operation is valid

since there is at least one reliable message which indicates

that the request has been accepted by a quorum.

As for Raft, only the leader node is able to know whether a

consensus process has been completed, so sync phase in Raft

is simply a broadcast of sync messages from the leader to all

the other nodes in the system, and sync messages are intended

to sync up all the failed nodes caused by link failures.

To calculate the reliability of full consensus with syn-

chronization, we conclude the following remarks to show

the probability of successful consensus in P-N-L and R-N-L

models with sync phase.

Remark 5. Given Pn, Pl and n, the probability of success of

the DC with sync phase in P-N-L model can be calculated by

PP−N−L =

n
∑

m=mpp

n
∑

mpp=mp

n
∑

mp=mc

n
∑

mc=n−f

[Pnode(n,m)·

Ppp(m,mpp) · Pp(mpp,mp) · Pc(mp,mc) · Psyn(m,mc)],
(12)

where Pnode(n,m), Ppp(m,mpp), Pp(mpp,mp) and
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Pc(mp,mc) are provided in Theorem 1 while Psyn(m,mpp)
is given below.

Psyn(a, b) = (
b

∑

k=f+1

(

b

k

)

P k
l (1− Pl)

b−k)a−b (13)

Similarly, by calculating the consensus-reaching rate of the

Raft system after the added sync phase in R-N-L model, we

have the following Remark.

Remark 6. Given Pn, Pl and n, we can calculate the

probability of success of the DC with sync phase in R-N-L

model as

PR−N−L =
n−1
∑

a=⌈n−1

2
⌉

(

(

n− 1

a

)

P a
l (1− Pl)

n−1−a

a
∑

b=⌈n−1

2
⌉

(

(

a

b

)

P b
n(1− Pn)

a−b

b
∑

c=⌈n−1

2
⌉

(

b

c

)

P c
l (1− Pl)

b−c))Pn−1−a−c+b
l .

(14)

Added sync phase adds additional requirements to the

consensus completion, which means synchronization has a

negative impact on probability of successful consensus. The

analysis of the impact is described in Section VI.

By defining the probability of success of consensus synchro-

nizations, the overall probability of success can be concluded.

Note that, in all scenarios, when one of the components (node

or link) reliability reaches 1 or failure rate reaches 0, it matches

up with the conclusion stated in Remark 5 and Remark 6.

V. LATENCY, THROUGHPUT AND NODE SCALABILITY

ANALYSIS

In WDC deployment, in addition to consensus reliability,

another two important but reciprocal performance metrics are

consensus latency and throughput. Consensus latency is the

time cost for a complete consensus, and the throughput is

measured by transaction per second (TPS) [19]. On the other

hand, WDC systems are also bounded by node scalability,

which indicates how well the system can expand without

scarifying the consensus latency and throughput of the system,

given the network resources.

Latency, throughput and scalability of WDC are jointly

decided by DC protocol and communication resource pro-

vision [19]. PBFT and Raft are intrinsic with great latency

and throughput performance, which is applicable to the high

reliability and low latency scenarios (C-CAS). Although it is

well known that as voting-based consensus, the PBFT and Raft

can only be adopted in small networks, the limited scalability

may not cause a major performance concern due to the latency

requirement, which restricts the size of the consensus group

to be within a real-time-ready range.

As the system grows in size, the latency will increase due

to prolonged timeout settings for maintaining the coverage in

every phase of communications. The reason is that the greater

time-window is required to complete the communications

in each stage with a given spectrum (since there are more

nodes to communicate in each stage, as shown in Fig. 2).

In other words, the increased size of the consensus network

sets higher demands for normal operation time, defined as tn
for a successful consensus with sufficient coverage (minimal

number of valid nodes) without view changes or leader re-

elections. Given the size of the network, WDC selects all

valid nodes optimally from the coverage by limiting tn of

time-sensitive tasks, such as real-time decisions. The direct

increases in network size lead to extended tn, hence lowering

the throughput of the overall network.

In the next, we will analytically derive the consensus

latency, throughput, node scalability, and their relationships

by providing guidelines for the real system deployment.

A. Consensus Latency

During the continuous consensus process in previous sec-

tions, we have not considered the failure of header node in

the first place, nor the V C. By including the exceptions, such

as, header node failures and view changes in the consensus

model with combined node and link failure rate, we can

assume the overall latency is the average latency of a set of

the consensus plus a set of fixed delay, for instance, packet

packing delay, propagation delay and processing delay, which

are not significant compared to the overall time [41]. In

the WDC communication system, the latency of a consensus

mainly consists of two parts: normal operation latency and V C
delay, an action to switch to the next consensus round, hence,

for a given number of i times of normal operation tn, the

overall time is i× tn. However, for the V C, the required time

tvc is dependent of tn and te, defined by following equation,

tvc = 2tn + j × te, (15)

where j is the number of V C took place (which is related to

the failure rate, as higher the failure rate, more view changes

happen, e.g., with 99.99% probability of success, j will be 1

out of 10000 consensus processes), and te is the extra time

added to every V C for PBFT or re-election for Raft, note that

tn is also required after the V C. From equations (1) and (9).

Remark 7. By defining the final probability of successful

consensus as PF , we have the possibility of V C of PBFT (or

the chance of header re-election for Raft), Pv of K + 1 total

attempts following geometric distribution K +1 ∼ GE(PF ) ,

which can be written as:

Pv =

K
∑

k=1

(1− PF )
kPF . (16)

Using Remark (7), we can establish the overall latency

regards to tn of PBFT and Raft.

Remark 8. Given tn, the consensus latency L against tn,

regardless of the consensus and actual processing time but

reliability of the consensus, is calculated as:

L =

∞
∑

j=1

[(1− PF )
jPF (j × te + 2tn)] + PF × tn. (17)
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TABLE II
PERFORMANCE COMPARISON OF FEATURED CONSENSUSES [19]

Consensus
BFT
capability

Transaction
Throughput

Scalability
Security
Bound

Consensus Communication
Complexity [19]

Consensus Communication
Provision [19]

PBFT [22] Yes High Low 33% 2n
2
+ n 2n+ 1

Raft [23] No Very High Medium 50% 2n n+ 1

B. Consensus throughput

Transaction throughput is measured by Transaction Per Sec-

ond (TPS). Meanwhile, the transaction throughput and latency

are also related to the number of nodes in the consensus

network. Hence, we can obtain the consensus throughput T
as,

T = 1/L, (18)

where the latency L is positively correlated with failure rate

based on equation (17), so is the throughput.

C. Consensus node scalability

Node scalability is an essential metric to measure the

performance of the consensus handling the increasing number

of nodes. Consensus varies a lot regarding scalability, for in-

stance, Proof-based consensuses [42] are very scalable thanks

to their nature, but when it comes to the voting-based con-

sensus, in our cases, PBFT and Raft are heavy on inter-node

communications with time-sensitive stages. With the latency

performance requirements raised by certain decision tasks,

the scalability is latency constrained in terms of choosing

appropriate tn.

As the size of the network grows, the communication

complexity of WDC increases rapidly. From Table II, we can

see the communication complexity of PBFT and Raft, which

are the most iconic consensuses implied in this study, as shown

in Fig. 2. Raft has a rather linear growth of message count

while the nodes’ number increase. However, the scalability

of PBFT is troubled by its quadratic expanding complexity

[19]. Thus, from the communication complexity perspective,

the PBFT-based blockchain hardly scales up, therefore the

size of the network is limited while deploying the PBFT

consensus. A recent breakthrough of multi-layer PBFT [16]

has developed a layered PBFT architecture with weighted

participants’ methodology, which is a promising solution to

the PBFT scalability issue.

Meanwhile, with a quadratic growth trend of PBFT, the

communication provision is linearly increased with the number

of nodes (as the provision is concluded from one node at the

given phase/stage, i.e., at any given time, a node only processes

the number of messages defined by communication provision),

hence the scalability issue of PBFT for any specific node at

the certain time (i.e., during one phase) is less concerned

than overall communication complexity, as shown in Table.

II. In Fig. 3, we have demonstrated the scalability analysis of

PBFT and Raft in terms of communication complexity and

communication provision (the number of messages a node

processes, i.e., the recourse occupancy, at any given time

during the consensus) in Fig. 3. Raft is significantly more

scalable than PBFT in terms of communication cost. However,
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Fig. 3. Comparison of scalability for PBFT and Raft in terms of communi-
cation complexity and provision

PBFT provides extra security features as it is Byzantine-proof

with 1/3 security bound.

VI. SIMULATIONS AND DISCUSSIONS

To verify our analytical results for both PBFT and Raft

based models, simulations are carried out to compare the

analytical results in reliability, both with and without syn-

chronization scenarios. With the verified results of reliability

models, we provide an insightful simulation of reliability gain,

which verifies the usefulness of WDC. Moreover, the latency

performance is simulated against reliability (failure rate), to

indicate the relationship between latency and reliability.

A. Simulations of WDC reliability

1) WDC Reliability: To verify Theorem 1, Theorem 2 and

their special cases of Remarks 1 and 2 for PBFT, and Remarks

3 and 4 for Raft. We set up successive sets of values for n, Pn,

Pl to examine the performance of each model and illustrate

the relationship between consensus failure rate to the number

of nodes for each model, in Fig. 4 for PBFT and Fig. 5 for

Raft.

In P-N and R-N models, we assume that a failed node

would not respond in any consensus phase. We obtain the

result of each simulated consensus by checking if the number

of failed nodes exceeds the upper limit ⌊n−1

3
⌋ for PBFT and

⌊n−1

2
⌋ for Raft. The consensus failure rate, 1 − PP−N and

1 − PR−N can be seen in Fig. 4 (b) and Fig. 5 (b), where

the reliability of PBFT and Raft nodes are assumed to be 0.99

and 0.9 respectively (a realistic assumption for the consumer-

grade product, e.g., iPhone 6 in 2017 has been reported with
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Fig. 4. Reliability performance of PBFT consensus with combined failure rate (a: left), node failure rate (b: middle), link failure rate (c: right)
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Fig. 5. Reliability performance of Raft consensus with combined failure rate (a: left), node failure rate (b: middle), link failure rate (c: right)

less than 700 hours MTBF of non-self recoverable failures,

and less than 10 hours of MTBF for temporarily occurred

glitches [43]). The proven remarks of P-N and R-N can be

used in a fast validation of WDC when the wireless links are

not involved.

In P-L and R-L models, a link failure leads to the failure

in the corresponding communication phase, and only the

live nodes enter the next round of consensus, as illustrated

Remark 2 and Remark 4. According to the behavior of the

PBFT and Raft at each step of consensus processes, each

link is applied with a uniformly distributed random number

to simulate the uncertainty of every transmission. The number

of valid messages is counted for every live node in each phase.

If the number of the live nodes after the commit/uplink phase

is more than n−f , the consensus process is successful. In the

simulation, we set Pl = 0.99 for both PBFT and Raft, as seen

in Fig. 4 (c) and Fig. 5 (c). Note that the Pl values are carefully

crafted for a comparable WDC reliability range according to

earlier results of P-N and R-N models instead of the consistent

values from P-N-L and R-N-L simulations. P-L and R-L

models can be used in a fast validation of WDC when the

nodes are considered reliable, which is particularly useful for

transient WDC evaluations that only involve a small amount

of time. It can also be deduced that transient evaluations are

not sensitive to node reliability but wireless link reliability.

To build the simulation of P-N-L and R-N-L models, we

leverage the same method as before and combine P-N/R-N

and P-L/R-L models. The relationships between the number
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Fig. 6. PBFT reliability amplifier (a: balanced, b: node-heavy, c: link-heavy)
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Fig. 7. Raft reliability amplifier (a: balanced, b: node-heavy, c: link-heavy)

of nodes n in WDC and the consensus failure rate in P-N-

L model 1 − PP−N−L and R-N-L model 1 − PR−N−L are

shown in Fig. 4 (a) and Fig. 5 (a) respectively. In these two

figures, we set Pl = 0.99 and Pn = 0.999 for P-N-L model

and Pl = 0.99 and Pn = 0.99 for R-N-L model. The results

are of significant importance to the practical system design for

two reasons. Firstly, given the communication network or node

reliability, we can adjust the size of the consensus network to

achieve the required consensus reliability in different appli-

cation scenarios. Moreover, the confident correlation between

analytical and simulated results guides the future distributed

network deployment where less reliable COTS and wireless

connection may be adopted for high-reliability applications.

It can be seen from Fig. 4 and Fig. 5 that the simulation and

analysis results match each other, indicating that the analysis

of node and link failure by each model is reliable. It’s worth

noting that the number of nodes in different cases are grouped

by a consistent upper boundary (the worst case). The zigzag

shape of red lines are induced by the different remainder of

security threshold, for instance, n = 3f + 1, n = 3f + 2 and

n = 3f + 3 for PBFT and n = 2f + 2, n = 2f + 2 for Raft.

The number of faulty nodes cannot be divided into consecutive

integers, which leads to the discontinuity in the trend of the

failure rate of the consensus. According to the relation of

the security threshold f and the total number of nodes n in

each group with the same remainder, we can observe that the

proportion of f in n grows as n increases, which means the

faulty tolerance of the consensus system increases as the total
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number of nodes increases. This matches the tendency of each

case in Fig. 4 and Fig. 5, i.e., the failure rate of a consensus

process decreases gradually as the number of nodes increases.

Moreover, we specifically indicate the group with n = 3f +1
and n = 2f + 1 in Fig. 4 and Fig. 5, as the number of nodes

shows a linear relationship with the consensus failure rate in

log scale.
2) Simulations of synchronized model: To analyze the im-

pact of sync on the reliability of consensus systems, we show

the analytical results by applying equation (12) and equation

(14) in Remarks 5 and 6, with a set of simulations. To compare

the result of scenarios with sync phase with P-N-L and R-N-

L, we set the same Pn, Pl, and n as in the original P-N-L

and R-N-L models and plot a set of analysis and simulation

results in Fig. 4 (a) and Fig. 5 (a) using lines colored in blue.

Comparing the lines of cases with and without sync phase,

it is clear that the final probability of successful consensus

of P-N-L does not significantly decrease, while R-N-L ex-

periences a decrease when the synchronization is taken into

consideration. This is caused by the different sync phases

in PBFT and Raft. As the sync phase shown in Fig. 2 and

protocol details described in Section IV-C, all live nodes

broadcast to help sync up in PBFT case to yield a high chance

of success for each link-failed node sync up. However, in Raft

scenario, only the leader is able to broadcast sync message.

It is much more difficult to help all the link-failed nodes sync

up since a single sync message may not reach other nodes as

reliable as the PBFT-like group multicasting.

Although the synchronization lowers the probability of

successful consensus, it is still meaningful that the added sync
phase synchronizes the link failure nodes, which can increase

the probability of successful consensus for later requests.

B. Reliability gain

The feature of the WDC is the resilience that it is capable.

A gain of resilience can be obtained by limiting the size of the

network and ranging the latency requirement. For instance, the

overall resilience can be improved by using higher reliability

products or adding nodes to the network and allowing a longer

time for response. The reliability gain can reflect the ultimatum

performance of WDC, as it can be used as design guidelines

for DC group deployment.

Combining the reliability amplification from the consensus,

we have demonstrated the capability of achieving highly

reliable WDC. In Fig. 4 and Fig. 5, we can see that the

fusion has pushed the overall reliability into ultra or hyper

reliable state (above 99.9999%), using consumer graded nodes

under different link reliability scenarios. And there is a linear

relationship while we increase the number of nodes in certain

steps, for instance, 3n + 1 for PBFT and 2n for Raft. The

correlation of reliability scale and node quantity shows defini-

tive linearity in log space, with a sophisticated mathematical

inter-operation that has been partially revealed in [5] for Raft

consensus approximation. The linear equations indicated in

Fig. 4, Fig. 5, Fig. 6 and Fig. 7 are all obtained by applying

polynomial curve fitting and polynomial evaluation to find the

quadratic polynomial of least squares fitting.

Fig. 6 and Fig. 7 show that the relationship between system

failure rates and node number, which is linear despite the

deviation at the start due to the small number of nodes. To

examine the generic linearity of the proposed reliability gain

model, we have selected three configurations for comparison.

The first configuration uses balanced reliability parameters for

nodes and links, i.e., the same reliability for both parts. The

second configuration is a node-heavy setup, where the node

has better reliability than links, with the inverted setups in the

third link-heavy configuration.

C. Consensus latency simulation

Latency, a critical performance indicator, is also an im-

portant indicator of how fast the system synchronizes and

produces the requested decision results. In equation (17), the

latency is established against the failure rate of WDC. Hence

the simulation is set to perform random WDC failures based

on the failure targets, i.e., counting the average time spent

on performing 109 times the consensus process mocked up

using a uniform distribution, and the simulated latency can be

worked out. Fig. 8 shows the comparison of analytical and

simulated results regarding the consensus latency L, and the

results are strongly correlated. By putting the latency as a

performance metric, the better the consensus reliability, the

less the latency.
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VII. CONCLUSIONS

In this paper, we have investigated a novel concept of

using less reliable nodes and communications to power WDC.

Starting with the criticism of current C-CAS advancement,

we established an innovative model for rapid decision-making

regarding the C-CAS requirements and regulated the commu-

nication model in conjunction with ISAC potentials. Based

on the model established, we provide a detailed analysis of

the models with PBFT and Raft consensus regard to their

reliability with consideration of node failure and link failure.

Meanwhile, we have benchmark results of the latency perfor-

mance of PBFT and Raft based systems against centralized

models. Finally, we investigated the impact of scalability for

PBFT/Raft system versus centralized model. The simulations

of reliability and latency are provided to validate our model.
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In light of the recent development of autonomous driving,

wireless critical control system, and many other industrial

applications, WDC can help improve efficiency and reliability

and enable wireless connectivity in the key fields of future

automation. Meanwhile, the search for more efficient evalu-

ations on traffic events with more sensors is projected as a

future work for this paper, and the investigation of incentive

mechanisms for the WDC-powered C-CAS applications is

also planned. In addition to the incentive model, the detailed

protocol design has been conducted with multiple access

network setups, e.g., consensus over the MAC layer on a Line-

of-Sight basis and the consensus group via a local network

on the Non-Line-of-Sight basis. Furthermore, the research of

blockchain integration is expected to be carried out to bring

more features and functionalities making use of hyper reliable

consensus. The bespoke blockchain will be studied on its block

configurations for best performance.

APPENDIX A

PROOF OF THEOREM 1

To prove Theorem 1, we use equations denoted as Ppp(a, b),
Pp(a, b), Pc(a, b) to calculate the probability of success of

pre − prepare phase, prepare phase and commit phase

separately by giving the number of successful nodes a before

entering the phase and b after completing the phase. Similarly,

the rate of failed nodes in a certain number is calculated

in Pnode(a, b) where a denotes the total number of nodes

while b is the number of non-faulty nodes. According to the

communication principle shown in Fig. 2 and the assumption

of node failure, it is easy to apply binomial distribution method

to calculate Ppp(a, b) and Pnode(a, b) by equation (3) and

equation (2). As for Pp(a, b) and Pc(a, b), the probability

of success of each node should be calculated according to

Pl first since the number of broadcast messages each node

receives determines whether it can proceed to the next phase.

Therefore, by applying binomial distribution with minimum

valid messages required, i.e., 2f messages (without itself)

from different nodes, we have equation (6) to calculate the

probability of success of each node in prepare and commit
phases. With the probability of success for each node calcu-

lated in prepare and commit phase, equation (5) and equation

(4) for Pp(a, b) and Pc(a, b) can be regarded as node failure

calculation by using binomial distribution as in Pnode(a, b).
To calculate the probability of successful consensus of a

complete P −N −L model with unknown number of success

nodes in each phase, we use intermediate notations to replace

index a and b in Ppp(a, b), Pp(a, b), Pc(a, b) and Pnode(a, b).
m is the number of non-faulty nodes and mpp, mp, mc are

used to represent the number of success nodes after pre −
prepare phase, prepare phase and commit phase. Therefore,

we obtain the rate to complete an entire consensus process with

a known number of success nodes in each phase as

PP−N−Lsub
=Pnode(n,m) · Ppp(m,mpp)·

Pp(mpp,mp) · Pc(mp,mc).
(19)

The probability of successful consensus of P − N − L is

actually adding all the possible cases of equation (19). To sum

up, all the cases that are able to achieve consensus successfully,

we have

PP−N−L =

n
∑

m=mpp

n
∑

mpp=mp

n
∑

mp=mc

n
∑

mc=n−f

PP−N−Lsub
,

(20)

and the final expansion equation is equation (1).

The core idea of the equation (1) is that if a node fails,

it does not participate in the rest of the consensus phase. As

we know, failed nodes can be divided into two types. One is

caused by node failure, which means the node is unavailable

in the entire consensus process, and the other is caused by

link failure since the number of messages a node collects in

one phase cannot support it entering the next phase. Based on

this analysis, we can conclude that, for a successful consensus

process, n ≥ m ≥ mpp ≥ mp ≥ mc ≥ n− f .

APPENDIX B

DERIVATION OF RAFT NODE LINK FAILURE MODEL

In Raft node link failure (R-N-L) model, nodes have a

reliability of Pn in the log replication stage, and the links

have a reliability rate of Pl. In this way, in order to reach the

final system consensus, we have to ensure that the majority

of nodes successfully finish each phase of the log replication.

Since the leader node is always regarded as a reliable node in

our model, we require that at least n − 1 − ⌊n−1

2
⌋, which is

also ⌈n−1

2
⌉ nodes to respond successfully to the leader node.

Therefore, by using the binomial distribution, PR−N−L can

be obtained from equation (9).
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