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Abstract

Depression is one of the most common psychiatric disorders worldwide, with over 350 million 

people affected. Current methods to screen for and assess depression depend almost entirely on 

clinical interviews and self-report scales. While useful, such measures lack objective, systematic, 

and efficient ways of incorporating behavioral observations that are strong indicators of depression 

presence and severity. Using dynamics of facial and head movement and vocalization, we trained 

classifiers to detect three levels of depression severity. Participants were a community sample 

diagnosed with major depressive disorder. They were recorded in clinical interview (Hamilton 

Rating Scale for Depression, HRSD) at 7-week intervals over a period of 21 weeks. At each 

interview, they were scored by HRSD as moderately to severely depressed, mildly depressed, or 

remitted. Logistic regression classifiers using leave-one-participant-out validation were compared 

for facial movement, head movement, and vocal prosody individually and in combination. 

Accuracy of depression severity measurement from facial movement dynamics was higher than 

that for head movement dynamics; and each was substantially higher than that for vocal prosody. 

Accuracy using all three modalities combined only marginally exceeded that of face and head 

combined. These findings suggest that automatic detection of depression severity from behavioral 

indicators in patients is feasible and that multimodal measures afford most powerful detection.

Index Terms

Depression severity; Facial movement dynamics; Head movement dynamics; Vocal prosody; 
Multimodal fusion

I. Introduction

Depression is one of the most common psychological disorders and a leading cause of 

disease burden [1]. Nearly 14.8 million people in the United States suffer from depression. 
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The social and personal costs of major depression and related unipolar disorders are 

substantial. Depression increases the risk of suicide some 20-fold. Economic losses 

approach 40 billion dollars per year. The World Health Organization predicts that depression 

will become the leading cause of disease burden (mortality plus morbidity) within the next 

15 years [2]. Reliable, objective, and efficient screening and measurement of depression 

severity are critical to identify individuals in need of treatment and to evaluate treatment 

response.

Many symptoms of depression are observable. The Diagnostic and Statistical Manual of 

Mental Disorders (DSM-5) [3], the standard for psychiatric diagnosis in the U.S., describes a 

range of audiovisual depression indicators. These include facial expression and demeanor, 

inability to sit still, pacing, hand-wringing and other signs of psychomotor agitation, slowed 

speech and body movements, reduced interpersonal responsiveness, decreased vocal 

intensity, and neuromotor disturbances [3], [4], [5]. Yet, often these indicators are not taken 

into account in screening, diagnosis, and evaluation of treatment response. Depression 

assessment relies almost entirely on patients' verbally reported symptoms in clinical 

interviews (e.g., the clinician-administered Hamilton Rating Scale for Depression [6]) and 

self-report questionnaires (e.g., Beck Depression Inventory [7]). These instruments, while 

useful, fail to include visual and auditory indicators that are powerful indices of depression. 

Recent advances in computer vision and signal processing for automatic analysis and 

modeling of human behavior could play a vital role in overcoming this limitation.

A. Related Work

Psychomotor symptoms such as gross motor activity, facial expressiveness, body 

movements, and speech timing differ between depressed and normal comparison groups [3], 

[4], [5]. Consequently, an automatic and objective assessment of depression from behavioral 

signals is of increasing interest to clinical and computer scientists. The latter use signal 

processing, computer vision, and pattern recognition methodologies. From the computer-

science perspective, research has sought to identify depression from vocal utterances [8], [9], 

[10], [11], [12], [13], facial expression [14], [15], [16], [17], head movements/pose [18], 

[16], [19], body movements [18], and gaze [20]. While most research is limited to a single 

modality, there is increasing interest in multimodal approaches to depression detection [21], 

[22].

A challenge for automatic measurement of depression severity is the lack of available, 

suitable audio-video archives of behavioral observations of individuals that have clinically 

relevant depression. Well-labeled unscripted audio-visual recordings of clinically relevant 

variation in depression severity are necessary to train classifiers. Because the confidentiality 

of patient data must be protected, clinical databases such as the one used in this paper are 

not generally available.

One option so far was to recruit participants that have a range of depressive symptoms 

without regard to whether they meet DSM-5 diagnostic criteria. The recent Audio/Visual 

Emotion Challenge (AVEC) is a leading example. AVEC explored automatic measurement 

of the behavior of non-clinical participants partaking in an individual Human-Computer 

Interaction (HCI) task. The objective of the challenge was to automatically predict the level 
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of participants' self-reported depression on the Beck Depression Inventory-II (BDI) [21]. 

AVEC provided common data for multiple research groups to analyze and compare their 

results.

The AVEC depression database is composed of audio-video recordings of 300 participants 

with a wide range of BDI scores. For each recording, the database includes self-reported 

BDI, spatiotemporal Local Gabor Binary Patterns (LGBP-TOP) video features, and a large 

set of voice features (a set of low level voice descriptors and functionals extracted using the 

freely open-source openEAR [23] and openSMILE [24]).

Using AVEC and a few non-publicly available resources [25], audiovisual detection of 

depression has been proposed [26], [27] [28], [29], [30], [31], [32], [33]. In [28] for instance, 

visual bag-of-words (BoW) features computed from space time interest points (STIP), were 

combined with melfrequency cepstral coefficients (MFCCs) features. Extracted audiovisual 

features were then fused at the feature level and modeled using support vector regressors 

(SVRs) to measure self-reported BDI [28].

Using a similar approach, Joshi and colleagues [27], combined STIPs and MFCCs with 

other visual features (e.g., Spatiotemporal Local Binary Patterns (LBP-TOP) and audio 

features (such as fundamental frequency, loudness, and intensity). BoW features were then 

learned for each of the extracted audiovisual feature sets using SVMs. Feature and decision 

level fusion strategies were compared for the automatic audiovisual detection of depression.

In related work, Jain and colleagues [29], combined visual LBP-TOP features with Dense 

Trajectories and low level audio descriptors provided in [21]. The extracted audiovisual 

features were encoded using a Fisher Vector representation and a linear SVR was used to 

learn BDI score classification. In [31], visual Motion History Histogram (MHH) features 

were measured from three different visual texture features (Local Binary Patterns, Edge 

Orientation Histogram, and Local Phase Quantization) and combined with low-level audio 

descriptors provided in [21]. Partial Least Square (PLS) and Linear regression algorithms 

were used to model the mapping between the extracted features and BDI scores for face and 

voice features separately, followed by a decision based combination. In [32], the authors 

combined two regression models using LGBP-TOP video features with another single 

regression model based on acoustic i-vectors to compute a final BDI score. In another 

contribution, [26] combined temporal patterns of head pose and eye/eyelid movements. A 

hybrid fusion method of the scores obtained from individual modalities and their 

combination was used to detect presence from absence of depression.

In all but a few cases, such as [34], previous efforts have relied on high dimensional 

audiovisual descriptors to detect self-reported depression severity. In contrast, using AVEC 

data, Williamson and his colleagues [34] investigated the specific changes in coordination, 

movement, and timing of facial and vocal signals as potential symptoms for self reported 

BDI scores. They proposed a multi-scale correlation structure and timing feature sets from 

video-based facial action units (AUs) and audio-based vocal features. They combined the 

extracted complementary features using a Gaussian mixture model and extreme learning 

machine classifiers to predict BDI scores.
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Despite increasing efforts, the current state of the art has not yet achieved the goal of 

automatic, reliable, and objective measurement of depression severity from behavioral 

indicators of affected individuals. Multimodal measurement of depression severity raises 

several issues. Many of these are shared with other applications of automatic and 

multimodal human behavior analysis.

• One is whether one or another modality is more informative. Ekman [35] for 

instance proposed that for affect recognition, facial expression is more revealing 

than body; he was equivocal about face relative to voice. Alternatively, one could 

imagine that high redundancy across channels would render modest any potential 

gain provided by a multimodal approach for depression severity measurement. 

Comparative studies are needed to explore this issue.

• A second issue is choice of context. AVEC explored audiovisual expression in 

the context of an individual human-machine interaction task, for which audience 

effects would likely be absent. However, research by Fridlund and others [36] 

suggests that when an audience is present, signal strength of nonverbal behavior 

increases. Nonverbal reactions to and from others present additional sources of 

information. For instance, switching-pause or turn-taking latency can only be 

measured in social interaction. Context influences what behaviors occur and their 

intensity.

B. Proposed Contribution

Reduced reactivity is consistent with many evolutionary theories of depression and 

highlights the symptoms of psychomotor retardation [37], [38], [39]. To capture aspects of 

psychomotor retardation and agitation in clinically relevant participants, we used dynamic 

measures of expressive behavior.

• In contrast to previous work, all participants met DSM-4 or DSM-5 criteria for 

major depression as determined by diagnostic interview. Diagnostic criteria 

matter for at least two reasons. First, many non-depressive disorders are 

confusable with depression. Post-traumatic stress disorder (PTSD) and 

generalized anxiety disorder, for instance, share overlapping symptoms with 

depression. Second, people with history of depression may differ from those 

without depression in personality factors or in other non-specific ways [40]. By 

using diagnostic criteria and focusing on change in depression severity, we were 

able to rule out other sources of influence.

• Compared with previous efforts, we focused on an interpersonal context, clinical 

interviews. Informed by the psychology literature on depression, we anticipated 

that the interpersonal nature of clinical interviews would heighten 

discriminability across modalities.

• We investigated the discriminative power of three modalities – facial movement 

dynamics, head movement dynamics, and vocal prosody – individually and in 

combination to measure depression severity. Symptom severity was ground-

truthed using state-of-the-art depression severity interviews.
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• Instead of using a large number of descriptors or selecting informative features 

individually, we investigated the selection of an optimum feature set by 

maximizing the combined mutual information for depression severity 

measurement.

Part of this work has been presented at the ACM International Conference on Multimodal 

Interaction [41].

II. Materials

A. Participants

Fifty-seven depressed participants (34 women, 23 men) were recruited from a clinical trial 

for treatment of depression. They ranged in age from 19 to 65 years (mean = 39.65) and 

were Euro- or African-American (46 and 11, respectively). At the time of the study, all met 

DSM-4 criteria [42] for Major Depressive Disorder (MDD). DSM-4 (since updated to 

DSM-5) is the standard in the U.S. and much of the world. Although not a focus of this 

study, participants were randomized to either anti-depressant treatment with a selective 

serotonin reuptake inhibitor (SSRI) or Interpersonal Psychotherapy (IPT). Both treatments 

are empirically validated for the treatment of depression [43]. Data from 49 participants 

were available for analysis. Participant loss was due to change in original diagnosis, severe 

suicidal ideation, and methodological reasons (e.g., missing audio or video).

B. Observational Procedures

Symptom severity was evaluated on up to four occasions at 1, 7, 13, and 21 weeks post 

diagnosis and intake by ten clinical interviewers (all female). Interviewers were not assigned 

to specific participants. Four interviewers were responsible for the bulk of the interviews but 

the number of interviews per interviewer varied. The median number of interviews per 

interviewer was 14.5; four conducted six or fewer.

Interviews were conducted using the Hamilton Rating Scale for Depression (HRSD) [6]. 

HRSD is a clinician-rated multiple item questionnaire to measure depression severity and 

response to treatment. The HRSD rates the severity of depression by probing mood, feelings 

of guilt, suicide ideation, insomnia, agitation or retardation, anxiety, weight loss, and 

somatic symptoms. Each item is scored on a 3- or 5-point Likert type scale, depending on 

the item, and the total score is compared to the corresponding descriptor. Interviewers were 

expert in the HRSD and reliability was maintained above 0.90. Variation in HRSD scores is 

used as a guide to evaluate recovery by detecting ordinal ranges of depression severity. 

HRSD scores of 15 or higher are generally considered to indicate moderate to severe 

depression; scores between 8 and 14 indicate mild depression; and scores of 7 or lower 

indicate remission [44].

Interviews were recorded using three hardware-synchronized analogue cameras and two 

unidirectional microphones (see Fig. 1). Two cameras were positioned approximately 15° to 

the participant's left and right. One camera recorded the participant's face and one camera 

recorded a full body view (see Fig. 1 left). A third camera recorded the interviewer's 

shoulders and face from approximately 15° to the interviewer's right (see Fig. 1 right). 
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Audio-visual data from the camera and microphone to the participant's right were used in 

this study.

Missing data occurred due to missed appointments or technical problems. Technical 

problems included failure to record audio or video, occurrence of audio or video artifacts, 

and insufficient data. The distribution of the data (i.e., number and mean duration of sessions 

per HRSD score) from the beginning of the first question to the end of the interview is 

reported in Fig. 2. Videos were digitized into a resolution of 640×480 pixels at a rate of 

29.97 frames per second (see section III-A.) Audio was digitized at 48 kHz and later down-

sampled to 16 kHz for speech processing. To be included for audio analysis, we required a 

minimum of 20 speaker turns of at least 3 seconds in length and at least 50 seconds of 

vocalization in total (see section III-B) [11]. Using these data and the cut-off scores 

described above, we defined three ordinal depression severity classes: moderate to severe 

depression, mild depression, and remission (i.e., recovery from depression). The final 

sample was 130 sessions from 49 participants: 58 moderate to severely depressed, 35 mildly 

depressed, and 37 remitted.

III. Audiovisual Feature Extraction

Depression alters the timing of nonverbal behavior [3]. To capture changes in visual and 

auditory modalities, we focused on the dynamics of facial and head movement, and vocal 

fundamental frequency and switching pauses. We thus include both visual and auditory 

measures.

A. Visual Measures

1) Automatic Tracking of Facial Landmarks and Head Pose—Previous research 

has used person-dependent Active Appearance Models (AAMs) to track the face and facial 

features (e.g., [14], [19]). Because AAMs must be pre-trained for each participant, they are 

not well suited for clinical applications or large numbers of participants. We used a fully 

automatic, person-independent, generic approach that is comparable to AAMs to track the 

face and facial features, referred to as ZFace [45]. The robustness of this method for 3D 

registration and reconstruction from 2D video has been validated in a series of experiments 

(for details, see [45], [46]).

ZFace performs 3D registration from 2D video with no pre-training. This is done using a 

combined 3D supervised descent method [47], where the shape model is defined by a 3D 

mesh and the 3D vertex locations of the mesh [45]. ZFace registers a dense parameterized 

shape model to an image such that its landmarks correspond to consistent locations on the 

face. We used ZFace to track 49 facial landmarks (fiducial points) and 3 degrees of out-of-

plane rigid head movements (i.e., pitch, yaw, and roll) from 2D videos (see Fig. 3).

2) Preprocessing of the Extracted Facial Landmarks and Head Pose—Most 

previous work in affect analysis uses holistic facial expressions, action units, or valence. 

Because our interest is the dynamics rather than the configuration of facial expression, we 

used only facial and head movement dynamics.
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Facial movement dynamics was represented using the time series of the coordinates of the 

49 tracked fiducial points. To control for variation due to rigid head movement, fiducial 

points were first normalized by removing translation, rotation, and scale. To reduce tracking 

errors that could happen, the movement of the normalized 98 time series (49 fiducial points 

× x and y coordinates) was smoothed by the 4253H-twice method [48] and used to measure 

the dynamics of facial movement between clinical interviews.

Likewise, head movement dynamics was represented using the time series of the 3 degrees 

of freedom of out-of-plane rigid head movement. These movements correspond to head nods 

(i.e., pitch), head turns (i.e., yaw), and lateral head inclinations (i.e., roll). Similar to fiducial 

points, head angles were smoothed using the 4253H-twice method [48] prior to analysis.

3) Per-Frame Encoding of Facial and Head Movement—Our goal is to 

automatically estimate depression severity scores from the moment-to-moment changes (i.e., 

per frame changes) of the smoothed measures of head and facial movement. To achieve this 

goal, we faced three main challenges: (1) The movements of individual fiducial points and 

head pose orientations are highly correlated. (2) Both facial and head movement measures 

include redundant information and complex relations that cannot be revealed by linear 

methods, such as the conventional Principle Component Analysis (PCA) and Canonical 

Correlation Analysis [49]. (3) Only a single label (i.e., Remission, Mild, and Moderate to 

Severe) is available for each session. Per-frame class labels are not available. To meet these 

challenges, we used deep learning based methods [50], [51] and, in particular, Stacked 

Denoising Autoencoders (SDAE) [52]. SDAE has emerged as one of the most successful 

unsupervised methods to discover unknown non-linear mappings between features (which in 

our case are the face and head movement dynamics) and outcomes (which in our case are 

depression severity scores) while coping with high dimensionality and redundancy.

SDAE is a deep network based on stacking layers of denoising autoencoders. They are 

locally trained to learn representations that are insensitive to small irrelevant changes in the 

inputs (see Fig. 4.b). Each hidden layer (i.e., denoising autoencoder) of the resulting deep 

network learns efficient representations of the corresponding inputs. In order to force the 

hidden layer to discover robust features instead of simply learning the input's identity, the 

autoencoder is trained to reconstruct the input from a “corrupted version” of the input [53], 

[52]. A stochastic corruption process randomly sets some of the elements of the input x to 0 

resulting in a corrupted version x̃ [53], [52]. The corruption is only used for the training 

process. A different corrupted version of x is generated each time the training example x is 

presented. Each hidden layer is then learned using a denoising autoencoder, which maps a 

corrupted version x̃ of input x ∈ ℝp to a latent representation y ∈ ℝq, and then maps it back 

to the original space z ∈ ℝp, where p and q denote the sizes of the input x and the latent 

representation y, respectively. The denoising autoencoder is trained by minimizing the 

reconstruction error ‖x − z‖2.

The first hidden layer of the SDAE is trained to reconstruct the input data, and the following 

hidden layers are trained to reconstruct the states of the layers below, respectively (see Fig. 

4.b). Transformation weights are initialized at random and then optimized by gradient 

descent. Once a stack of encoders has been built, the entire deep autoencoder is then trained 
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to fine-tune all the parameters together to obtain an optimal reconstruction using gradient-

based backpropagation [51].

In the current contribution, we used a separate 3-layer SDAE deep network architecture (i.e., 

SDAE with 3 hidden layers) to encode efficient per-frame representations of both facial 

movement and head movement (see Fig. 4.b). Each SDAE was trained using the normalized 

and smoothed 49 facial landmark coordinates and smoothed 3 head pose orientations, 

respectively (see section III-A2 and Fig. 4.a). For each SDAE deep network architecture 

(face and head), the number of units per each hidden layer, and other hyperparameters of 

SDAE were determined during training by minimizing the prediction error (the difference 

between estimated and actual depression severity scores). The list of the investigated 

hyperparameters is given in Table I. For a compact representation of facial features, the 

number of units of the 3rd hidden layer (i.e., dimension of the learned facial representation) 

of the corresponding SDAE deep network was empirically set to 15. The number of units of 

the 3rd hidden layer for the head SDAE (see Fig. 4.b) was automatically set to 5 for most 

folds of the cross-validation (see section V).

After training, each SDAE deep network learned a transformation of the extracted per-frame 

features to an effective representation. By applying the learned per-frame encoding to each 

frame of the video, the SDAE-based outputs were combined into an effective n × dfinal time 

series representation  (n being the number of frames of a given video and dfinal the 

dimension of the learned features) describing the video.

The obtained SDAE-based time series  ∈ Rn×dfinal encoded how the SDAE-based 

representation of input elements (facial landmark coordinates and head angles, respectively) 

changed over time across the video (see Fig. 4.c). Considering that each column i (i ∈ {1, 

2, …, dfinal}) of data matrix  corresponds to a specific movement, we computed the 

dynamic changes of these movements over time. The velocity of change of the extracted 

dfinal time series was then computed as the derivative of the corresponding values as 

, measuring the velocity of change of the per-frame facial (or head pose) features 

from one frame to the next (see Fig. 4.c). Similarly, the acceleration of change of the 

perframe facial (or head pose) features was computed as the derivative of the corresponding 

velocities as . For the purpose of alignment of the three time series ( , , and ), 

the first two frames of videos were discarded from all analyses. For simplicity, , , and 

will hereafter be referred to as amplitude, velocity, and acceleration, respectively (see Fig. 

4.c).

4) Per-Video Encoding of Facial and Head Movement—Because videos of 

interviews varied in length, the extracted time series features of different videos varied in 

length. It was thus useful to encode the extracted time series descriptors with fixed length 

per-video descriptors (see Fig. 4.d). To this end, we used two different representations to 

describe the videos with a fixed length representation: 1) Improved Fisher Vector (IFV) 

coding [54], and 2) Compact Dynamic Feature Set (DFS) [41].
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In the IFV-based representation, amplitude, velocity, and acceleration measures were first 

concatenated for each frame. Using a Gaussian mixture model (GMM) with 64 Gaussian 

distributions, these combined measurements were encoded into a 384 × dfinal (64 × 2 × 3 × 

dfinal) dimensional IFV for each video. The resulting feature vectors were then normalized 

by power normalization [54] and l2-norm.

The compact DFS-based representation corresponds to 21 features extracted for each of the 

elements of the dfinal time series as described in Table II, yielding 21 × dfinal dimensional 

descriptor per video. Based on previous research [55], DFS comprises key measurements of 

amplitude, velocity, and acceleration, as well as taking into account the direction of the 

change in the extracted time series. This is done by dividing each time series into increasing 

(+) and decreasing (−) segments (see Fig. 5 and Table II). In Table II, signals symbolized 

with superindex (+) and (−) denote the segments of the related signal with continuous 

increase and continuous decrease in amplitude, respectively. η defines the length (number of 

frames) of a given time series. τ + and τ − denote the number of increasing and decreasing 

amplitude segments in the time series sequence, respectively. In some cases, the features 

cannot be calculated; for instance, if we extract features from a continuously increasing 

times series, no decreasing segment can be detected [η ( −) = 0]. In such conditions, all the 

features describing the related segments are set to zero.

Using IFV coding and DFS, 5760 (384 × 15) dimensional IFV and 315 (21 × 15) 

dimensional DFS representations were obtained as per-video facial features. Similarly, 384 × 

dfinal dimensional IFV and 21×dfinal dimensional DFS representations were obtained as per-

video head features.

B. Vocal Measures

1) Preprocessing—Because audio was recorded in a clinical office setting rather than 

laboratory setting, some acoustic noise was unavoidable. To reduce noise level and equalize 

intensity, Adobe Audition II [11] was used. An intermediate level of 40% noise reduction 

was used to achieve the desired signal-to-noise ratio without distorting the original signal 

[11]. Each pair of recordings was transcribed manually using Transcriber software [56], then 

force-aligned using CMU Sphinx III [57], and post-processed using Praat [58]. Because 

session recordings exceeded the memory limits of Sphinx, it was necessary to segment 

recordings prior to forced alignment. While several approaches to segmentation were 

possible, we segmented recordings at transcription boundaries; that is, whenever a change in 

speaker occurred [11]. Except for occasional overlapping speech, this approach resulted in 

speaker-specific segments. Forced alignment produced a matrix of four columns: speaker 

(which encoded both individual and simultaneous speech), start time, stop time, and 

utterance. To assess the reliability of the forced alignment, audio files from 30 sessions were 

manually aligned and compared with the segmentation yielded by Sphinx [11]. Mean 

error(s) for onset and offset were 0.097 and 0.010 seconds for participants, respectively. The 

forced alignment timings were used to identify speaker-turns and speaker diarization for the 

subsequent automatic feature extraction [11].
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2) Vocal Features—Previous investigations have revealed that compared to non-depressed 

participants, depressed participants presented reduced speech variability and monotonicity in 

loudness and pitch [59], [60], [61], [62], reduced speech [63], reduced articulation rate [64], 

and increased pause duration [11], [65]. Consistent with alternative methods, and because 

we were interested in severity assessment and not in diagnostic, in preliminary work we 

investigated a number of possible vocal features for the measurement of depression severity. 

We considered both frequency and timing features such as fundamental frequency (f0), 

Maxima Dispersion Quotient (MDQ), Peak Slope (PS), Normalized Amplitude Quotient 

(NAQ), Quasi Open Quotient (QOQ), and switching pause durations [11], [12]. However, 

preliminary results showed that only switching pause durations and f0 were correlated with 

depression severity [11], [12]. For this reason, we used only these measures.

Switching pause (SP), or latency to speak, is defined as the pause duration between the end 

of one speaker's utterance and the start of the other speaker's utterance. SPs were identified 

from the matrix output of Sphinx [11]. So that back channel utterances would not confound 

SPs, overlapping voiced frames were excluded. SPs were aggregated to yield mean duration 

and coefficient of variation (CV) for both participants and interviewers. The CV is the ratio 

of standard deviation to the mean [11]. It reflects the variability of SPs when the effect of 

mean differences in duration is removed. To characterize the participants' latency to speak, 

mean, variance, and CV of SP durations were computed over the whole session and used for 

automatic measurement of depression severity.

Vocal fundamental frequency (f0) for each utterance was computed automatically using the 

autocorrelation function in Praat [58] with a window shift of 10 ms [11]. To measure 

dynamic changes in the fundamental frequency, mean amplitude, variation coefficient of 

amplitude, mean speed, and mean acceleration of f0 over the whole session were extracted 

and used for automatic measurement of depression severity. Since microphones were not 

calibrated for intensity, intensity measures were not considered.

IV. Feature Selection and Depression Severity Estimation

To reduce redundancy and select the most discriminative audiovisual feature set, the Min-

Redundancy Max-Relevance (mRMR) algorithm [66] was used for feature selection. 

Compared to the closely related Canonical Correlation Analysis (CCA) based feature 

selection, which optimizes the mutual correlation between labels and feature set, mRMR is 

an incremental method for minimizing redundancy while selecting the most relevant features 

based on mutual information. The efficiency of mRMR to select the best set of individual 

features by maximizing the combined mutual information was established in previous 

research (e.g., [67], [68], [69]). We used it for the first time for audiovisual depression 

severity measurement.

More specifically, let Sm−1 be the set of selected m − 1 features, then the mth feature can be 

selected from the set {F − Sm−1} as:
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(1)

where I is the mutual information function and c is a target class. F and S denote the original 

feature set, and the selected sub set of features, respectively. Eq. 1 is used to determine 

which feature is selected at each iteration of the algorithm. The size of the selected feature 

set is determined based on the validation error.

Due to notable overlap in the feature space, density-based (probabilistic) models would be 

an efficient choice for distinguishing between depression severity scores. Given this 

consideration, logistic regression classifiers using leave-one-participant-out cross-validation 

were employed for depression severity measurement from facial movement dynamics, head 

movement dynamics, and vocal prosody, separately and in combination. Each regression 

model describes the distribution over a class y as a function of features ϕ as follows:

(2)

The model can be trained by maximizing the log-likelihood of the training data under the 

model with respect to the model parameters w. Then, unseen features can be classified by 

maximizing the above equation over the trained classes (see section V).

V. Experimental Results

We seek to discriminate three levels of depression severity (moderate-to-severe, mild, and 

remitted) from facial movement dynamics, head movement dynamics, and vocal prosody 

separately and in combination. To do so, we used a two-level leave-one-participant-out 

cross-validation scheme. For each iteration a test fold was first separated. A leave-one-

participant-out cross-validation was then used to train the whole system (i.e., SDAE and 

logistic regression) and optimize the corresponding hyperparameters without using the test 

partition. The optimized parameters included the regularization hyperparameter of the 

logistic regression classifier, number of features selected by mRMR, and the 

hyperparameters of the SDAE (i.e., number of units per hidden layer, fixed learning rate, 

number of pre-training epochs, and corruption noise level). The optimized parameters were 

then used to measure the classification error on the test set. This process was repeated for all 

participants.

For the fusion of modalities, whole sets of features were first combined into one low-

abstraction vector; feature selection was then applied to optimize the informativeness of the 

feature combinations. Thus, each modality could effectively contribute to the selected set of 

features even though the numbers of features (whole set) of facial, head pose, and vocal 

modalities were different.
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Performance was quantified two ways. One was the mean accuracy over the three levels of 

severity. The other was weighted kappa [70]. Weighted kappa is the proportion of ordinal 

agreement above what would be expected to occur by chance [70].

A. Assessment of Visual Features

We investigated the discriminative power of the proposed per-frame features (using the 

stacked denoising autoencoders, see section III-A3) and per-video based features (using IFV 

and DFS, see section III-A4) to measure depression severity from facial and head movement 

dynamics (see Table III). The feature selection step was included for both approaches. Raw 

data for head movement dynamics reported in Table III correspond to the time series of the 3 

degrees of freedom of the smoothed rigid head movement (see section III-A2). Likewise, 

raw data for facial movement dynamics were represented using the time series of the 

registered and smoothed coordinates of the 49 tracked fiducial points (see section III-A2). 

For a compact representation, principal component analysis was used to reduce the 98 time 

series to 15 time series components that account for 95% of the variance (see Table III).

As shown in Table III, for both facial movement and head movement, the SDAE-based per-

frame encoding together with IFV-based per-video encoding performed best. In all 

conditions, SDAE-based per-frame encoding achieved higher performance than than did raw 

features. Similarly, IFV-based per-video encoding performed best compared with the DFS-

based per-video encoding (see Table III). Given these results, the SDAE-based per-frame 

encoding together with IFV-based per-video encoding was used in the remaining 

experiments.

B. Assessment of Modalities

Accuracy varied between modalities (Table IV). Facial movement dynamics and head 

movement dynamics performed significantly better than vocal prosody (28.15% higher, 

t=-4.15, df =387, p ≤ 0.001 and 20.81% higher, t=-3.00, df =387, p ≤ 0.01, respectively). 

Facial movement dynamics and head movement dynamics failed to differ from each other 

significantly (7.34% higher, t=-1.22, df =387, p>0.1). Overall, visual information performed 

better for depression severity than vocal prosody.

To further assess the quality of the proposed dynamic feature sets, we compared them with 

the dynamic features proposed in our earlier work [41] and with alternative dynamic features 

that include facial movement [14], head movement [19], or prosodic features [11]. For a fair 

and accurate comparison between the proposed dynamic features and alternative methods, it 

was necessary to re-implement the alternative methods for: (1) the more challenging 

problem of measurement of 3-levels of depression severity (as compared to 2-classes 

classification), and (2) evaluating them on our clinical data. Thus, we re-implemented 

previous methods as well as could be done from their description in the corresponding 

papers (including adapting our own work [41] to the problem of 3-levels of depression 

severity).

In our earlier work [41], facial and head movement dynamics were modeled using the per-

frame raw features described in section V-A and the DFS-based per-video features. The 

extracted per-video features were fed to a logistic regression classifier. In [14], the AAMs 
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based fiducial point time series were fed into a PCA resulting to 10 time series components 

accounting for a total of 95% of variance. The velocity of movement of the extracted 10 time 

series was computed and segmented into contiguous 10s intervals. The mean, median, and 

standard deviation of velocities were computed for each interval. The extracted statistics 

were concatenated for each interview and used for final representation. In [19], head 

movements were tracked by AAMs and modeled by Gaussian mixture models with seven 

components. Mean, variance, and component weights of the learned GMMs were used as 

features. Additionally, a set of head pose functionals was proposed, such as the statistics of 

head movements and duration of looking in different directions. In [11], fundamental vocal 

frequency, and switching pause duration were shown to be informative for depression 

detection. Mean value and coefficient of variation were used for depression assessment. For 

a fair and accurate comparison, for all re-implemented dynamic features, we used the same 

feature selection algorithm (i.e., mRMR), the same classification procedure (i.e., logistic 

regression), and the same accuracy measures.

As shown in Table IV, the proposed features outperformed their counterparts for each 

modality. The accuracy of the proposed facial movement dynamics was 7.6% and 13.1% 

higher than that of facial movement dynamics in our earlier work [41], and facial movement 

features in [14], respectively. Likewise, the proposed head movement dynamics performed 

better than our earlier work [41] (9.19% higher) and better than Gaussian Mixture Model 

(GMM) in [19] (17.49% higher). A small increase (2%) was obtained with the proposed 

prosodic features compared to their counterpart in [11]. With the exception of our own 

previous method [41], we reimplemented previously published approaches. It is possible that 

had the original algorithms been used, results for alternative approaches may have been 

different. On the other hand, for comparison with our previous work [41], we had benefit of 

the original code. The new proposed features outperformed the previous one as shown in 

Table IV. To enable other researchers to compare their own algorithms directly with ours, we 

have arranged to release a version of the database (see section VII).

C. Assessment of Feature Selection

To evaluate the reliability and effectiveness of mRMR feature selection (see section IV), we 

compare mRMR results to no feature selection (see Table V).

As shown in Table V, feature selection using mRMR algorithm performed better than no 

feature selection in all but voice features. This finding may be explained by the carefully 

defined feature sets with a limited dimensionality (seven features were used for voice in the 

current paper). Overall, the results explicitly indicate the usefulness of maximizing the 

combined mutual information of individual features for depression severity measurement.

D. Multimodal Fusion

We evaluated the informativeness of the combination of different modalities for depression 

severity measurement (see Table VI). Because the combination of individual features may 

provide additional discrimination power, we concatenated features of different modalities 

prior to feature selection. Decision-level fusion strategies (i.e., SUM rule, PRODUCT rule, 
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and VOTING [71]) were also evaluated in our preliminary experiments, yet did not perform 

as accurate as feature-level fusion and were not included in the paper.

Results for multimodal fusion are presented in Table VI. Highest performance was achieved 

by fusion of all modalities (78.67%), followed by the combination of facial and head 

movement dynamics (77.77%), and then by facial movement dynamics and vocal prosody 

(73.16%). Lowest performance was achieved by fusion of head movement dynamics and 

vocal prosody (67.25%). Accuracy of facial movement dynamics and head movement 

dynamics together was significantly greater than head movement dynamics (12.52% higher, 

t=2.09, df =516, p ≤ 0.05) but did not significantly differ from facial movement dynamics 

alone (5.18% higher, t=0.88, df =516, p>0.1). While the fusion of all modalities significantly 

improved the accuracy of individual use of head movement dynamics (13.42% higher, 

t=2.24, df =516, p ≤ 0.05) and prosodic features (34.23% higher, t=5.04, df =516, p ≤ 

0.001), the performance improvement found over facial movement dynamics was moderate 

(6.08% higher, t=1.03, df =516, p>0.1). Combining the proposed prosodic features with 

facial and head movement dynamics increased accuracy only minimally. It is possible that 

had we considered additional measures of prosody, prosody might have contributed more to 

accuracy. We considered a large number of vocal features and selected for inclusion those 

that significantly correlated with depression severity. Further research will be needed to 

explore this issue.

In related work, we found that depression severity is associated with reduced head and lower 

body movement [72], [18] and reduced vowel space [73], [74]. These findings are consistent 

with observations in clinical psychology and psychiatry of psychomotor retardation in 

depression; that is, a slowing and attenuation of expressive behavior. Evolutionary 

perspectives on depression [75] similarly propose that depression in this way serves to 

decrease involvement with other persons. That is what we found in our previous work [72].

Motivated by these findings and theory, the current study extends previous efforts by 

integrating dynamic measures of face, head, and voice to measure depression severity. We 

found strong evidence that dynamic features reveal depression severity. A limitation of these 

findings is that while rooted in dynamic measures they are unable to reveal how dynamics 

change with respect to depression. Deep learning, which we used, while powerful learning 

tool, suffers from lack of explainability. Future work is needed to address this limitation.

This may be the first time that depression severity rather than only presence-absence of 

depression has been measured. From a clinical perspective, it is critical to measure change 

over time in course of depression and its treatment. In clinical trials for treatment of 

depression, response to treatment is quantified as 50% decrease in symptom severity. The 

ability to detect magnitude of change is subject of current work. Interventions can only be 

assessed when severity of symptoms is measured reliably.

VI. Conclusion

We proposed an automatic, multimodal approach to detect depression severity in participants 

undergoing treatment for depression. Deep learning based per-frame coding and pervideo 
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Fisher-vector based coding were used to characterize the dynamics of facial and head 

movement. Statistical criteria were used to select vocal features. For each modality, selection 

among features was performed using combined mutual information, which improved 

accuracy relative to blanket selection of all features regardless of their merit. For individual 

modalities, facial and head movement dynamics outperformed vocal prosody. For 

combinations, fusing the dynamics of facial and head movement was more discriminative 

than head movement dynamics and more discriminative than facial movement dynamics plus 

vocal prosody and head movement dynamics plus vocal prosody.

VII. Distribution of Clinical Depression Interviews

To promote research on automated measurement of depression severity and enable other 

researchers to compare algorithms directly with ours, de-identified features from the 130 

clinical interviews are available for academic research use. For each video frame, the 

distribution includes summary vocal features (see section III-B), normalized 2D coordinates 

of the tracked 49 facial fiducial points (see Fig. 3), 3 degrees of freedom of head pose (see 

Fig. 3), and deep autoencoded frame-based representations of head and facial movement 

(see section III-A3). The data are available for non-commercial research from http://

www.pitt.edu/∼emotion/depression.htm.
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Fig. 1. Face-to-face clinical interview setup
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Fig. 2. 
(a) Number of sessions per HRSD score and (b) mean duration (with standard deviation) of 

the interviews (per HRSD score) from the beginning of the first question to the end of the 

interview.
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Fig. 3. The automatically tracked 3 degrees of freedom of head pose and the 49 facial landmarks
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Fig. 4. 
Overview of the proposed approach: (a) Tracking of facial landmarks and head pose, (b) per-

frame encoding through Stacked Denoising Autoencoders, (c) extraction of per-frame 

dynamics (amplitude, velocity, and acceleration), and (d) per-video encoding through 

Improved Fisher Vector coding or Compact Dynamic Feature Set.
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Fig. 5. Increasing and decreasing segments on an amplitude signal
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TABLE I

The list of the considered hyperparameters of SDAEs.

Hyperparameter Considered values

Number of units per hidden layer

Fixed learning rate {0.001, 0.01}

Number of pre-training epochs {30, 50}

Corruption noise level {0.1, 0.2, 0.4}

Note: d is the per frame features' dimensionality of the input data. Noise level corresponds to the fraction of corrupted inputs. Number of pre-
training epochs corresponds to the pre-training of the denoising autoencoders. Fixed learning rate corresponds to the fixed error values for pre-
training and fine-tuning.
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TABLE II
Twenty one features defined in DFS

Feature Definition

Maximum Ampl.: max( )

Mean Amplitude:

STD of Amplitude: std( )

Maximum Speed: [ max(| |) , max(| +|) , max(| -|) ]

Mean Speed:

STD of Speed: std( )

Maximum Accel.: [ max(| |) , max(| + |) , max(| -|) ]

Mean Accel.:

STD of Accel.: std( )

+/- Frequency:

Note: (+) refers to features measured form increasing segments and (−) to features measured form decreasing segments (see Fig. 5).  corresponds 

to the amplitude,  velocity, and  acceleration.
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TABLE V

Accuracy of depression severity classification with and without feature selection.Voice refers to the vocal 

features (see Section III-B). See Section V-B for definition of features for alternative methods.

Modality
Mean Accuracy (%)

All features mRMR

Current Study

Facial Mov. Dynamics 65.68 72.59

Head Mov. Dynamics 59.87 65.25

Voice 43.54 44.44

Alternative Methods

Facial Mov. Dynamics [41] 54.26 64.98

Facial Movements [14] 51.46 59.50

Head Mov. Dynamics [41] 50.68 56.06

Head Mov. GMM [19] 45.63 47.76

Head Mov. Functionals [19] 47.29 53.00

Voice [11] 42.33 42.33

Note: Alternative methods were re-implemented from their description in the corresponding papers for the measurement of 3-levels of depression 
severity. “All features” refers to no feature selection and mRMR refers to the mRMR feature selection method. Best performing approach is 
boldfaced for each modality/feature type.
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