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Defining Traffic States using Spatio-temporal Traffic Graphs

Debaditya Roy, K. Naveen Kumar, C. Krishna Mohan

Abstract— Intersections are one of the main sources of con-
gestion and hence, it is important to understand traffic behavior
at intersections. Particularly, in developing countries with high
vehicle density, mixed traffic type, and lane-less driving behav-
ior, it is difficult to distinguish between congested and normal
traffic behavior. In this work, we propose a way to understand
the traffic state of smaller spatial regions at intersections using
traffic graphs. The way these traffic graphs evolve over time
reveals different traffic states - a) a congestion is forming
(clumping), the congestion is dispersing (unclumping), or c) the
traffic is flowing normally (neutral). We train a spatio-temporal
deep network to identify these changes. Also, we introduce a
large dataset called EyeonTraffic (EoT) containing 3 hours of
aerial videos collected at 3 busy intersections in Ahmedabad,
India. Our experiments on the EoT dataset show that the
traffic graphs can help in correctly identifying congestion-prone
behavior in different spatial regions of an intersection.

I. INTRODUCTION

Intersections are a major cause of congestion in urban
networks especially in the case of lane-less mixed traffic
where a large number of smaller vehicles bunch together at
stop signs in an irregular fashion. Determining the level of
congestion at intersections is mainly performed in existing
works by counting the number of vehicles [1]. While this
is suitable for lane-based traffic, these methods are not
applicable for high irregular traffic density with varying sizes
of vehicles in developing countries like India. Furthermore,
there is high propensity for lateral movements and low
gap maintenance in such kind of traffic that may indicate
congestion but actually a normal traffic state.

The aforementioned issues make it imperative to define a
set of traffic states specifically for understanding mixed lane-
less traffic. Hence, in this work, we propose a novel charac-
terization of traffic states using traffic graphs. It is important
to note that different spatial regions of an intersection are in
different traffic states that are dependent on the traffic signals
and the corresponding cycle length. So, the traffic states
should be defined based on the changing interaction between
vehicles over time as shown in Figure [T} The evolution of
these interactions can be best represented using traffic graphs
[2] that change over time. Particularly, we observed that the
traffic graph structure of a particular spatial region changes
when too many vehicles congregate or disperse in a short
span of time. The temporal pattern of changing neighbors
is best represented using the adjacency matrix of the traffic
graph. So, we propose to learn the spatio-temporal pattern
of these adjacency matrices using a network consisting of
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Fig. 1. Different types of traffic states (a) clumping - the vehicles bunch
together rapidly, (b) neutral - the vehicles maintain the same relative speed
and gap, and (c) unclumping - the vehicles disperse away rapidly.

Convolutional Neural Network (CNN) and Gated Recurrent
Unit (GRU) units.

Another challenge in investigating traffic states of lane-less
traffic is that there is no dataset that contains vehicle trajecto-
ries at intersections. Most of the datasets are based on lane-
based traffic like DETRAC [3], inD [4], Interaction [5], and
highD [6]. As the characteristics of lane-less mixed traffic
are quite different, we introduce a new dataset called Eye-
onTraffic (EoT) that contains aerial videos of 3 intersections
in Ahmedabad, India. An hour of video is collected from
each intersection and the corresponding vehicle trajectories
are provided along with the spatio-temporal annotations of
traffic states.

II. RELATED WORK

In literature, traffic state has been studied by measuring
either traffic volume, density, or speed [1], [7]. Most of
these works use either detection-based methods or aggre-
gate approaches. Detection-based methods count vehicles by
identifying and localizing them in video frames. Recently,
faster recurrent convolution neural networks (FRCNNSs) have
been used for traffic density calculation [8]. However, FR-
CNNSs have struggle with poor resolution videos and heavy
occlusion. In [9], the authors introduced multi-object tracking
along with vehicle detection using the YOLOv3 architecture,
to improve the performance of vehicle counting. A new
architecture was proposed in [10] where vehicle counting and
traffic density were obtained directly from CNN architecture
called CountingCNN and HydraCNN, respectively. In [7],
a residual network to predict vehicle count and density



simultaneously was proposed that could handle low frame
rate and high occlusion in videos.

Aggregation based approaches avoid the detection or
segmentation of vehicles and analyze the entire image to
estimate the overall traffic state. In [11], traffic videos were
categorized into different congestion types with the help
of spatiotemporal Gabor filters. A simpler approach was
proposed in [12] where a linear transformation was applied
on each pixel feature to estimate the density of vehicles in
an frame of traffic video. Furthermore, for lane-less traffic, a
trajectory based method was introduced in [13] where traffic
states were assigned based on the flow of traffic, i.e., free-
flowing, moderate flow, and congested flow. Also, lateral
and longitudinal movement of vehicles across lanes were
considered to categorize traffic movement into six different
traffic states. Finally, the gap following behavior between
vehicles, the relative distance and velocities were also studied
to understand the actual traffic state. A major bottleneck of
this approach is that it requires a) manual annotation of each
vehicle in the image to extract trajectories, b) exact measure-
ment of vehicle speed and relative gap, and c) determining
the maximum capacity of the road section under observation.
As discussed earlier, these parameters require considerable
effort and time to be computed in heavily occluded traffic.

III. PROPOSED APPROACH

From the literature review, it can be observed that aggre-
gation approaches provide a holistic interpretation of traffic
state with manual calculation of the myriad of parameters
needed. Hence, in this work, the traffic states that we propose
are based on the movement of traffic density in a spatial
region based on automated detection and tracking of vehicles.
The block diagram of the entire approach is presented in
Figure[2] At first the entire intersection is divided into smaller
spatio-temporal regions based on the stop signs at each
lane of the intersection. Next, the vehicles in each of these
regions are detected using the RetinaNet architecture [14]
and tracked using the DeepSort [15] tracker. The tracking
is done for a specified time interval and the corresponding
traffic graphs are extracted fro each time-step. Using a CNN,
features are extracted from the adjacency matrices of these
traffic graphs which are then sent as input to two GRU
layers. Finally, the spatio-temporal information from the
traffic graphs is classified into one of the three traffic states.

A. Traffic states using traffic graphs

Traffic in a spatial region with n road users can be
represented using a traffic-graph G, for a particular time-
step t. The spatial positions of the road users at that time-
step are denoted by the set of vertices V; = vt , v5, - vh
and the relation between the road users is denoted a set of
undirected, weighted edges, E;. Any two road users can be
connected through an edge if d(v}, v}) < p, where d(v}, v})
represents the Euclidean distance between the road-agents
and yp is a threshold. After inspecting the aerial videos in
the EyeonTraffic dataset, u was chosen to be 10 meters to
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Fig. 2. Block diagram of the proposed approach




retain those interactions the affect the road users (based on
the size of the road-users and the width of the road).

In order to determine the changing relationship of a road
user with its neighbors, a symmetrical adjacency matrix A; €
R™*™ is calculated at every time-step for the corresponding
traffic-graph G; as,

_d(vg,v;) if d(yt Ut) < and ¢ ?é j
AL (i i) = € R H J 1
¢(7,7) { 0 otherwise. M

. . — t t . .
The distance function e~ %(%i-%) denotes the interactions

between any two road users v; and v; at time ¢. Using an
decaying exponential function leads road users that are far
away being assigned a lower weight compared to road-agents
in close proximity. This is in line with the observation that
each road user pays more attention to other nearby road users
in order to avoid traffic collisions.

Observing the adjacency matrices allows us to categorize
traffic movements into 3 distinct states - clumping, unclump-
ing, and neutral. As shown in Figure a) and (b), in case of
clumping, the adjacency matrix is sparse in the beginning as
road users are far away from each other. As more road users
converge towards the same spatial location i.e. the stop line
of the intersection, the interactions between the road users
increase leading to a more dense adjacency matrix. In case
of neutral state, the rate of change of adjacent road users is
zero or very low. Since the number of interactions do not vary
much over time, the density of the adjacency matrix remains
similar over time as shown in Figure [3|(c) and (d). Finally, in
case of unclumping, a large number of road users are bunched
together at the traffic signal that leads to a lot of interactions
between the road users and is reflected as a dense adjacency
matrix. As the traffic disperses, the road users move away
from each other and the interactions become less pronounced
that leads to sparser adjacency matrix as shown in Figure
(e) and (f). We observed that these three states broadly
cover the behavior of all road users in mixed lane-less traffic
at intersections. In case of highway traffic, neutral state is
normal traffic behavior without congestion. The clumping
state is the beginning of a congestion and the unclumping
state reveals the end of congestion. Hence, all major traffic
flow based predictions can be made by observing for these
traffic states.

B. Spatio-temporal learning of traffic states

As the adjacency matrices vary in density as well as over
time, it is important to capture the spatial and temporal
characteristics. To extract the spatial features, the adjacency
matrices are passed through a CNN architecture and an
output feature vector is obtained that represents the adjacency
matrix at each time-step.

The temporal relationship between the adjacency matrices
is learnt using a network of Gated Recurrent Units (GRU)
[16]. The concept of GRUs was introduced in [16] to solve
the issue of vanishing gradient in Recurrent Neural Networks
(RNN) by adding two gates - an update gate and a reset gate.
The update gate z; for time step ¢ is computed as

2z = 0(W?x, + Uhy_q), 2
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Fig. 3. Evolution of adjacency matrices for different traffic states.

where x; is the input feature vector obtained from the adja-
cency matrix and is multiplied by the weight W~?. Similarly,
ht—1 holds the information for the previous ¢ — 1 time-
steps and is multiplied by the weight U?. The results of
both these multiplications is added and passed through a
sigmoid activation function to obtain an output between 0
and 1. The update gate helps the GRU in determining the
amount of information from previous time-steps that needs
to be passed to the future. This mechanism allows the GRU
to retain gradients from the past and combats the vanishing
gradient problem. For our use case, the change in adjacency
matrices happen over a long time of around 50 time-steps.
The update gate allows the GRU to retain the information
about the changes over time.

The reset gate is used to determine the amount of past
information that the GRU unit should forget and is given as

re =0(W'x, + U hy_q), 3

where W' and U" are the weights associated with the reset
gate. The way the reset gate is calculated is similar to the
update gate. However, the usage of the reset gate is on the
current memory content hg. The current memory content uses
the reset gate to store relevant information from the previous
time-steps and is calculated as

hy = tanh(Wx; + 1y © Uhy_q), “4)

where the input x; is multiplied by a weight W and the
previous state information h;_; with another weight U. The
reset gate 7; is then multiplied element-wise (denoted by ©)
to the Uh;_; to remove appropriate information from the
previous time steps. In case of the neutral state, no significant
change occurs in the density of adjacency matrices then the
reset gate can help the GRU retain only relevant information.

Finally, the GRU unit needs to h; that holds the informa-
tion for the current unit for passing down to the other units.
The update gate is needed to determine the information to
collect from the current memory content h; and the previous



time-steps h;_3. The final memory content is computed as
ht :Zt®h2+(1 —Zt)thfl. (5)

In the proposed approach, we employ 2 layers of GRU units
before classifying the adjacency matrix sequence into the
aforementioned 3 traffic states using a softmax layer.

IV. EXPERIMENTS

The approach discussed in the previous section needs to be
validated on some real-life mixed lane-less traffic data. The
EyeonTraffic (EoT) dataset is curated for the same purpose.

A. EyeonTraffic Dataset

A total of 3 intersections were chosen for the EoT dataset
with around 1 hour of aerial video recorded for each of
the intersections, namely, Paldi (P), Nehru bridge - Ashram
road (N), and APMC market (A) in the city of Ahmedabad,
India. These intersections were considered because of the
diverse traffic conditions they present. While Paldi and Nehru
bridge are four-way signalized intersections, APMC market
is a three-way non-signalized intersection. Hence, this dataset
comprehensively covers a wide variety of traffic conditions
for both signalized and non-signalized intersections. The
videos were captured using the included camera in the
DIJI Phantom 4 Pro drone at 50 frames per second in 4K
resolution (4096x2160). Using the RetinaNet architecture
[14] for road user detection and the DeepSort tracker [15] for
multi-object tracking, the road users of the entire intersection
were detected and tracked. A total of 299,452, 294,769, and
202,433 trajectories were extracted for intersections P, N, and
A, respectively.

The 3 intersections were annotated by marking the spatial
coordinates on one of the frames using Labellmg [17], a
graphical image annotation tool. As intersections P and N are
4 way intersections, each direction was individually labeled
as shown in Figure [] (clump - red, neutral - yellow, unclump
- blue). In total, a total of 12 spatial regions were found
that represent the 3 traffic states in each of the 4 directions.
Regarding intersection A that is a 3-way intersection, the
left and right lanes exhibit neutral behavior and round-about
exhibits both clumping and unclumping behavior resulting
in a total of 8 spatial regions.

In order to temporally annotate the videos where a partic-
ular traffic state was observed, the 3 hours of videos were
divided into corresponding time intervals. Each time interval
is denoted by start time, end time, and the traffic state. As
shown in FigureEL 1, 2, 3, and 4 are the direction codes and
u, ¢, and n are the traffic state codes to make the processing
easier. For example, lu correspond to unclumping traffic
state in direction 1. Next, for each annotated spatio-temporal
region, the road users tracked within that region during the
particular time interval are extracted. The extracted tracks are
sampled at 5 frames per second and any spatio-temporal re-
gion with less than 20 unique road users is removed. Finally,
each spatio-temporal region produces a sequence of road
users that occupy that region. The total number of sequence
for each traffic state obtained from the 3 intersections are
shown in Table [l
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Fig. 4. Spatial regions considered for annotation at each of the three
intersections in the EoT dataset. Red denotes clumping, yellow denotes
neutral, and blue denotes unclumping. Each way is denoted by a number.

B. Experiment Settings

The tracks obtained for each of the spatio-temporal region
are used to create a corresponding adjacency matrix based
on the road user ids. The distance between two road users is
converted into metres from pixel values. If the distance is less
than pi= 10m (Equation [I)), the corresponding entry is added
to the adjacency matrix based on road width. The image
representation of the adjacency matrices is sent as input
to VGG16 [18] CNN architecture pretrained on ImageNet
dataset. The input image is resized to 224x224 and a 147
dimension feature vector is extracted from the average pool
layer. VGG16 is a lightweight architecture that is capable of
extracting the density changes in the adjacency matrices. In
order to normalize the length of adjacency matrix sequences,
we fixed the number of frames per sequence to 50 based on
the minimum median value across the 3 interactions in the
EoT dataset. Hence, the sequences for each intersection can



TABLE I

DETAILS OF THE EOT DATASET.

. Number of sequences Min. no. of unique | Max. no. of unique | Avg. duration of Total
Intersection - . .
Clumping | Neutral | Unclumping | road users/sequence | road users/sequence | sequence (in s) sequences
P 152 220 189 41 97 10 561
N 79 100 115 31 106 8 294
A 169 141 138 20 90 10 448

be represented as 3D tensors of size n, x 50 x 147 where
ns is the number of sequences for that intersection. Finally,
the sequences are divided randomly into 70% training (910
sequences), 10% validation (132 sequences), and 20% testing
(261 sequences).

C. Comparison of Temporal Networks

To learn the temporal structure in the sequences, a variety
of temporal networks were tested as listed below:

« GRU(100,50): 2 GRU layers with 100 and 50 units
followed with a dense layer with 30 units with Rectified
Linear Unit (ReLU) activation

o GRU(50,25): 2 GRU layers with 50 and 25 units

« GRU-A(100,50): 2 GRU layers with 100 and 50 units
followed by an attention layer and dense layer with 30
units with ReLLU activation

o LSTM(100,50): 2 LSTM layers with 100 and 50 units

o LSTM-A(100,50): 2 LSTM layers with 100 and 50 units
followed by an attention layer and dense layer of 30
units with ReLU activation

o RNN(100,50): 2 vanilla RNN layers with 100 and 50
units

o RNN-A(100,50): 2 vanilla RNN layers with 100 and 50
units followed by an attention layer and dense layer of
30 units with ReLU activation

For all the temporal networks described above, the categor-
ical crossentropy loss function is used for classification and
the networks are trained with Adam optimizer. After hyper-
parameter optimization, the most suitable values for learning
rate, number of epochs, batch size, and recurrent dropout
were found to be 0.001, 300, 32, and 0.6.

The results of the aforementioned networks are presented
in Table |m It can be observed that the GRU(100,50) ob-
tains the best classification accuracy across all the temporal
networks. This shows that GRU can adequately capture
the temporal density changes in the adjacency matrices.
Further, the sequences do not have enough complex temporal
dependencies that an LSTM network is required. Hence, the
large number of parameters in the LSTM network cannot
be trained properly given the sequence data. This is also
the reason that vanilla RNN has comparable performance to
LSTM. Adding attention to the networks causes an improve-
ment in the classification performance. Hence, some parts of
the sequence is crucial to understanding the traffic state rather
than the entire sequence. Especially, the rapid movement
of vehicles towards the end of clumping or beginning of
unclumping are essential in identify the corresponding traffic
states.

TABLE I
COMPARISON OF VARIOUS TEMPORAL NETWORKS

Accuracy (%)

Temporal network neutral | clumping yunclumping Total

GRU(100,50) 69.89 51.31 68.47 64
GRU(50,25) 62.36 50.0 69.56 61.3
GRU-A(100,50) 65.59 40.78 82.60 64.4
LSTM (100,50) 62.36 47.36 71.73 61.3

LSTM-A(100,50) 64.51 60.52 66.30 64
RNN(100,50) 67.74 28.94 70.65 57.5
RNN-A(100,50) 63.44 43.42 73.91 61.3

(a) Intersection P (b) Intersection N (c) Intersection A

Fig. 5. Intersection-wise comparison of traffic state prediction using the
best performing GRU-A(100,50) network. N - neutral, C - clumping, U -
unclumping.

Table [I] also presents the classification accuracy for each
of the traffic states separately. It can be seen that classifi-
cation accuracy is high for unclumping and neutral states
compared to clumping. It shows that both unclumping and
neutral have more distinct patterns with low intra-class vari-
ability. In case of clumping, the presence of many stationary
vehicles near the traffic signal causes misclassification with
the neutral state. The evidence for this can be found when
the analysis is done for every intersection.

It is also important to analyze the results for every
intersection separately as the traffic flow behaviors are dif-
ferent. In Figure [5] we present the confusion matrices for
each intersection separately using the best performing GRU-
A(100,50) network. As stated earlier, for all the intersections,
unclumping is mostly misclassified as neutral. Furthermore,
the traffic states are better predicted in case of intersection
P and N (69.6% and 86.0%, respectively) compared to A
(41.1%). As intersection A is an unsignalized intersection,
the traffic states like unclump and clump are not as pro-
nounced. This leads to higher misclassification as compared
to other intersections where the traffic signal brings out a
more pronounced behavior.

D. Leave-one-out testing

In order to understand the generalization ability of the
proposed approach, we devise an experiment where the
temporal network is trained with sequences from one in-
tersection and tested on all three intersections. This mimics
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Fig. 6. Prediction performance of various intersections when trained in
leave-one-intersection-out fashion. Network used is GRU-A(100,50).

actual scenarios where labelled sequences are not available
for a new intersection for which we have to predict the
traffic states. In Figure [6] we present the results when the
training data of different intersections is used to train the
best performing temporal network GRU-A(100,50). It can be
seen that the temporal network generalizes well when trained
on intersection A yielding 40.17%, 42.37%, and 47.77%
for intersections P, N, and A, respectively. However, when
trained on either P or N, the prediction performance does
not translate well to the other intersections. Hence, the gen-
eralization performance is not as robust across intersections
with varying lane configurations.

V. CONCLUSION

In this work, an approach to identify traffic states in
lane-less traffic using temporal changes in the traffic graph
was proposed. We showed that a spatio-temporal CNN-GRU
network applied on the adjacency matrix of a traffic graph
can identify clumping, unclumping, and neutral traffic states
in various spatial regions of an intersection. Further, we
showed the effectiveness of the proposed approach on a large
annotated aerial dataset called EyeonTraffic that covered 3
intersections in Ahmedabad, India. In future, we would like
to apply this approach to predict the onset of a congestion
by observing the changes in traffic behavior.
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