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Abstract— Autonomous navigation in unknown environments
with obstacles remains challenging for micro aerial vehicles
(MAYVs) due to their limited onboard computing and sensing
resources. Although various collision avoidance methods have
been developed, it is still possible for drones to collide with
unobserved obstacles due to unpredictable disturbances, sensor
limitations, and control uncertainty. Instead of completely
avoiding collisions, this article proposes Air Bumper, a collision
detection and reaction framework, for fully autonomous flight
in 3D environments to improve the safety of drones. Our
framework only utilizes the onboard inertial measurement unit
(IMU) to detect and estimate collisions. We further design a
collision recovery control for rapid recovery and collision-aware
mapping to integrate collision information into general LiDAR-
based sensing and planning frameworks. Our simulation and
experimental results show that the quadrotor can rapidly detect,
estimate, and recover from collisions with obstacles in 3D space
and continue the flight smoothly with the help of the collision-
aware map. Our Air Bumper will be released as open-source
software on GitHub'.

I. INTRODUCTION

MAVs have gained increasing popularity for their ability
to access and operate in environments that are difficult or
impossible for humans to reach, making them valuable tools
in various fields like infrastructure inspection [1]-[3], sub-
terranean exploration [4]-[6], and search and rescue [7], [8],
etc. However, safety becomes a critical concern for MAVs
when operating in such complex and cluttered environments.
These scenarios present a significant challenge for MAVs
to conduct safe and collision-free flights. To address this
challenge, much research has focused on utilizing onboard
sensors such as LiDAR [9], stereo cameras, and RGB-D
cameras [10] for Simultaneous Localization and Mapping
(SLAM); motion planning algorithms [11], [12] have been
developed to generate collision-free paths. Despite these
efforts, MAVs are still susceptible to colliding with obstacles
due to unpredictable disturbances, sensor limitations, and
control uncertainty.

Instead of dealing with MAV collision by completely
avoiding it, increasing attention has been shifted to collision
detection and reaction. In this paper, we introduce a unified
IMU-based collision detection and reaction framework (Air
Bumper) that estimates collisions and integrates the collision
information into a general autonomous MAV navigation
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Fig. 1. A collision detection and reaction experiment with an unobserved
obstacle. (a) Composite images of the experiment. (b) Collision-aware
volumetric map with collision point cloud.

framework. To handle collisions effectively, a collision-aware
volumetric mapping algorithm is developed, which collabo-
rates with general motion planning algorithms to enable the
MAVs to reach their original targets without getting stuck
by obstacles. Notably, the collision detection and estimation
only rely on IMU data from the flight controller without
requiring any external sensors. Moreover, a fully autonomous
collision-resilient MAV with a 3D cage is designed, crafted,
and evaluated. This MAV itself is effectively tolerant of
collisions, and its collision resilience and autonomy can be
further enhanced by incorporating the proposed framework,
along with general autopilot, SLAM, and motion planning
algorithms. The framework enables the drone to detect and
react to unobserved collisions, as well as update a collision-
aware map for autonomous navigation after collisions (Fig.
1). The experiments conducted in simulated and real un-
known environments demonstrate that our proposed frame-
work effectively facilitates MAV recovery from collisions
with transparent and unpredictable obstacles in 3D spaces,
allowing them to continue their assigned flight tasks.

II. RELATED WORKS

In the face of possible collisions in flight, many researchers
choose not to generate a collision-free path to avoid the
collision but to design collision-resilient MAVs to deal with
it. At the hardware level, there are many kinds of designs
and structures to enhance collision resilience. As a high-
speed rotating part, the propeller is the most vulnerable to
damage in a collision. Therefore, propeller guards [13]-[15]
are commonly used to protect it. At the same time, many
cage-like structures are designed to provide more protection
for the whole drone. Rigid cage structure [16], [17] can use
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Fig. 2. Overview of the collision detection and reaction framework.

its strength to protect inside fragile parts, like sensors, flight
controllers, and onboard computers.

In addition to minimizing the impact of collisions through
the hardware design discussed above, some researchers are
also extracting environmental information from collisions in
order to integrate it into the MAV perception system. Lew
et al. in [18] proposed a contact-based inertial odometry
(CIO), which can provide a usable but inaccurate velocity
estimation for a hybrid ground and aerial vehicle performing
autonomous navigation. In the flight, several not destruc-
tive collisions happen, and the controller can get updated
information from collisions. The work in [19] analyzes the
impact of collisions on visual-inertial odometry (VIO) and
uses collision information to build a map with a downward
camera for localization. In their experiment, two glass walls
are included to present that the transparent objects may cause
LiDAR to get an inaccurate distance. Still, collision mapping
can help MAVs detect these transparent walls. Authors in
[14], [20] introduce hall sensors to detect collisions and
estimate the intensity and location of the collision to realize
reaction control.

However, these works tend to navigate using only IMU or
directly use collision data to perform reaction control, which
makes the collision information hard to be recorded and
reused. Although the method proposed in [15] successfully
achieves collision recording for further flight in a laboratory
environment using motion capture systems, the lack of
integration with online sensing and planning modules limits
its applicability in real-world settings. Additionally, most
of these works [21], [22] focus on collision detection and
characterization in a 2D environment. However, the obstacles
in cluttered environments are often not on the same level as
MAVs, which means that collisions can occur from any di-
rection. In this work, we combine the Air Bumper framework
with LiDAR-based sensing on a caged, collision-resilient
MAV. This allows for collision detection and estimation in

3D space and the generation of smooth reaction trajectories
with the help of collision-aware mapping.

ITI. SYSTEM OVERVIEW
A. Overview of Air Bumper Framework

The structure of our proposed collision detection and
reaction framework, Air Bumper, is shown in Fig. 2. When
an MAV is flying in unknown environments, it may collide
with obstacles due to the onboard sensors’ limitations. In this
condition, the collision detection and estimation module of
our framework will use inertial data from the flight controller
to estimate the collision points and feed the collision infor-
mation into collision reaction modules. In collision reaction
parts, the collision recovery control algorithm will utilize
the direction of the collision point and the known obstacle
information to command the MAV away from obstacles.
Meanwhile, it will also generate a collision point cloud to
the collision-aware mapping module so that the position of
unobserved obstacles can be stored for further navigation.
Using the updated collision-aware map, a general motion
planning system can easily get the ability to deal with
unobserved obstacles in 3D environments.

B. Design of Collision-Resilient MAV
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Fig. 3. (a) Overview of the collision-resilient MAV design. (b) Demon-
stration of the intensity and direction of a collision C.

The collision resilient MAV (Fig. 3(a)) is constructed from
a composite material of carbon fiber and PVC foam [16],
[17], 3D printed parts, and commercial electrical component,
weighing 1.45 kg with a battery and 3D LiDAR. The
dimensions of the MAV are 46 x 46 x 30 cm (L x W x H). The
lightweight frame and cage, crafted from composite materi-
als, offer comprehensive protection for onboard components,
and the circular design enhances the efficiency and accuracy
of collision estimation. Livox Mid-360 LiDAR sensor has
been selected to enable 360° of the horizontal field of view
(FOV) and 59° of vertical FOV for autonomous navigation.
A flight controller, Kakute H7, with PX4 autopilot, is utilized
for low-level control. NVIDIA Xavier NX module with
ROS framework is chosen as the onboard computer, which
provides computing capabilities for Air Bumper, LiDAR
SLAM [9], GPU-accelerated volumetric mapping [23], and
motion planning [24] algorithms.

IV. IMU-BASED COLLISION DETECTION AND
ESTIMATION IN 3D SPACE
A. Collision Detection

To make Air Bumper easier to implement on any platform,
IMU, the most common drone sensor, is used to collect



linear acceleration data on x, ¥y, and z axes to detect the
collisions rapidly. When the collision happens, the contact
force will cause an additional acceleration on the MAYV,
and the measured value on the corresponding axes will
significantly differ from the normal state. Different from the
previous work [14], [15], [19], they only consider detecting
the collision on a horizontal plane or using acceleration
data on the z-axis to assist the horizontal detection. Our
method also takes into account collisions other than those
from horizontal planes. This feature can assist popular caged
MAVs in detecting collisions from any angle. Let a as the
acceleration vector of the MAV in the body frame.

Based on the analysis of acceleration data, we found
that an acceleration sample can be identified as a potential
collision signal if the magnitude of its component on either
the x or y axis, represented as |a,| or |a,|, exceeds an
experimentally determined threshold, denoted as a*. The
relative threshold for collision detection on the z-axis is
also a*, but the gravity constant ¢ = 9.81 m/s? must
be considered. Meanwhile, the impact of a collision on
MAYV may cause several related abnormal acceleration data
samples. To realize robust collision detection and estimation,
a sliding-window method is used to select the maximum
value from N samples following the first acceleration data
that exceeds the threshold. After the selection, the most
represented data sample for one collision will be recorded.
During the collision detection stage, the threshold (a*) and
sliding window size (V) are the only parameters that need
to be tuned to filter out sensor noise and post-impact of the
collision, which can be easily adjusted according to specific
hardware.

B. Collision Estimation

The collision estimation module estimates the intensity
and direction of collision C in the body frame (see Fig.
3(b)) for collision recovery control. It also outputs a collision
point p. in the body frame for generating corresponding
collision point clouds. Firstly, we need to compute a collision
acceleration vector a. in the body frame. This vector is
directed opposite to the measured MAV acceleration vector
a. Therefore, we can establish the following relationships:
Qo = —(a, — Rge.), where R
is the rotation matrix from the world frame to body frame, e
is the unit vector along z-axis. Then, the collision intensity
C and collision direction C can be calculated as follows:

C = \/CLQ_%2 + acy? +ac? (1)

C= [sin 6 cos ¢, sin A sin @, cos O] 2)

—Qg, Qcy = —Ay, Q¢ =

Here the angles ¢ and 6 are computed as:

6= atan?(\/m» Qc,z) 3)

¢ = atan2(acy, Ge,z) S

where ¢ € (—m, 7] is the azimuth angle and 6 € [0, 7] is the
polar angle.

With the collision intensity and direction, we can now
estimate the collision point ¢., which is typically located

on the edge of the protective cage where the MAV and an
obstacle are most likely to collide. Estimating this collision
point is key for updating a collision-aware map, consequently
facilitating autonomous navigation. For computational sim-
plicity, we assume that the cage of our drone is a sphere with
a radius [. Then, the collision point can be estimated by:

c.=C-1 (5)

V. COLLISION REACTION IN 3D SPACE

Our collision reaction method aims first to utilize a
straightforward but rapid recovery control strategy to quickly
guide the MAV away from obstacles and restore its stability.
Then, the mapping-related modules transfer the collision
point into a corresponding collision point cloud and integrate
it with a volumetric mapping algorithm. This enables the
robot to record the estimated positions of obstacles in the
world frame and navigate to the pre-collision goal using
general motion planning algorithms.

A. Collision Recovery Control Strategy

When a collision occurs, an MAV without our framework
will attempt to maintain its target velocity but will fail to
achieve it. The motors will persist in trying to accelerate,
causing the MAV to continuously collide with the obstacle
and ultimately crash. To tackle this issue, we introduce a
collision recovery control strategy. In addition to the basic
equilibrium bounce reaction method [25], [26], which gener-
ates a reaction position opposite to the collision direction, our
strategy aims to concurrently consider environmental infor-
mation. By incorporating environmental information from a
volumetric map, our method guides the MAV away from both
collision points and observed obstacles, enhancing its ability
to avoid further collisions and maintain safe navigation. It is
important to note that the volumetric map used for collision
recovery control does not consider the collision point cloud,
which ensures a timely reaction to move the MAV to a safe
position, as the process of cloud point cloud generation and
mapping may introduce a slight delay.

Firstly, we need to get the collision recovery position p,
in the body frame as follows:

G N
= (w2~ (1—w)O)R 6

In this equation, the weight w is calculated by:
13(D—D*)
w = D3(I—D*)>

0,

where G = VD(p,,) represents the gradient vector of the
Euclidean Distance Transform (EDT) value at the drone’s
current position p, within a local volumetric map. This
gradient vector points the direction of the fastest increase in
distance to the nearest obstacle. Meanwhile, D = D(p,,) is
the EDT value at the current position of the MAYV, indicating
the shortest distance to the nearest obstacle. The details of the
construction of a volumetric map will be discussed in Section
V-C. When calculating the weight, the lower bound for D

ifl<D<D*
otherwise

)



is set as the radius [ of the drone cage because the closest
obstacle should be outside the cage. D* is an empirically
determined upper bound according to the target scenario.
Additionally, the reaction distance Ry = 2 constrains the
reaction position to a circle with a diameter equal to that of
the MAV, which ensures sufficient safe space and enables
effective operation in confined environments.

Then, the collision recovery position in the world frame
is denoted by “p, = “T} - p,, which utilizes a transform
matrix “T; to achieve the transformation from the body
frame to world frame. Instead of relying on motion plan-
ning, which typically requires re-planning time, the position
command is sent directly to the low-level controller with
PX4 firmware [27]. In the autopilot, a cascaded propor-
tional-integral—derivative (PID) controller is used to generate
thrust force commands from the desired reaction positions.

B. Collision Point Cloud Generation

The collision point cloud generation module is designed
to record the positions of unobserved obstacles and avoid a
secondary collision. This module constructs a set of points to
fit the collision plane where the drone detects the collision.
The collision point cloud is then registered in the global
volumetric map for the motion planning algorithm to avoid
invisible obstacles when re-planning the feasible path.

Firstly, we posit that the object colliding with the drone’s
surface forms a circular plane with a radius r. and center
point po under the body frame. Here, r. is defined as the
minimum enclosing circle of the MAV. The center point
Po = [Pz,0,Py,0,P2,0]" corresponds to the collision point ¢,
as determined by the collision estimation module. The 3D
collision circular plane can be constructed as an intersection
of a sphere and a plane, as described by Equation (8).
Notably, the plane Equation (8) is defined by the point pg
and a normal vector n = py — ¢y, where ¢y = [0,0,0]"
represents the center point of the MAV in the body frame.

2 2 2
(pw - pz,O) + (py _py,O) + (pz - pz,O) < T(Q;

Pz — Pz,0 (8)
n' Py —Pyo| =0
Pz —Pz,0

Guided by Equation (8), a sphere point cloud, denoted
as P,pp,, can be generated using point cloud library (PCL).
Each point in Py, is then evaluated to determine if it
satisfies the plane fitting condition. The points meeting this
condition are selected to construct the 3D collision circular
plane point cloud, P;,, in the body frame. This point cloud is
subsequently transformed to the world frame using * P.;, =
wTy - P, for building a collision-aware map.

C. Collision-aware Volumetric Mapping

For autonomous navigation purposes, we represent the
environment with the help of a volumetric mapper [23]. The
mapping system constructs Occupancy Grid Maps (OGMs)
and Euclidean Distance Transforms (EDTs) by parallel com-
puting in GPU. An OGM contains the probability of a voxel
(an element of the 3D grid) being occupied by obstacles,

while an EDT consists of structural voxel grids where every
voxel contains the distance information to its closest obstacle.
The mapper reads the input data of depth and poses from
onboard sensors and constructs OGM incrementally. Within
the local range, a parallel EDT algorithm converts a batch
of OGM in the local volume to EDT. In detail, given a 3D
voxel v, the distance value F is computed in the way

E(v)zggg”u—v” 9

where O denotes the set of voxels that are occupied. Finally,
the new observation in the local range is integrated into the
global map. The actual distance value is propagated outside
the local range by parallel wavefront algorithms [23], and
the global EDT can be obtained. After the construction of
OGM and EDT, voxels in the map are labeled in three
states, occupied, free, and unknown. Besides, each observed
voxel records its distance from the closest obstacle. Hence,
the motion planner will drive the vehicle towards the goal
through the observed region while avoiding occupied grids.
We specially tailor the volumetric mapper for Air Bumper.
The collision detection mechanism is modeled as a sensor
that generates observations of an obstacle, which we refer to
as a collision sensor in below. Upon receiving the point cloud
from a collision sensor, the mapper uses a feature extractor
from PCL to encapsulate all points to an OBB (oriented
bounding box). The bounding vertices and corresponding
transformation matrix associated with each collision-induced
OBB are stored in the mapper and further streamed to GPU
in OGM updating stage. After the local OGM is constructed
with onboard sensor observation, the mapper inspects each
voxel in parallel to check if the corresponding voxel should
be set as occupied in the global OGM. In a thread dealing
with the voxel v, all OBBs are iterated, and v is transformed
into each OBB coordinate. If v is inside one of the OBBs
marked by the collision sensor, or it is occupied in the
local OGM, then the global OGM increases the occupancy
probability of v. This indicates the collision sensor has a
higher priority than onboard sensors, in that the obstacle
registered by the collision sensor will not be cleared by
onboard sensors. Local OGM is updated accordingly, and
EDT takes the observation of the collision sensor as well.
In consequence, the vehicle remembers all obstacles it ever
collides with and will avoid them in future navigation.

D. Collision Reaction Motion Planning

Once the MAV detects the collision, the motion planning
model will re-plan the trajectory based on the updated
collision-aware OGM and EDT. Here, we employ our previ-
ously developed GTO-MPC algorithm [24] to plan a smooth
trajectory that simultaneously avoids obstacles and achieves
the pre-collision goal state x,. Here, x represents a state vec-
tor, which contains position, velocity, and acceleration in the
world frame, following the notation in [24]. This algorithm
is divided into two steps. Firstly, a jerk-limited trajectory
discrete by a series state x; is generated using the given
goal state x4 and current state x to supply the guiding time-
optimal (GTO) initial solution. Subsequently, an MPC-based



method is employed to follow this trajectory, taking into
account both obstacle avoidance and dynamic constraints.
Therefore, for each replanning horizon ¢ € [to,to + T, the
problem can be formulated as:

Jo= [T a0+ w [0 k() = x, (0] dt

sy [T el gy

min

(10)
where the first term of J minimizes the control input u(?),
which corresponds to the jerk (the derivative of acceleration).
This term encourages the smoothness of the trajectory. The
second term is to minimize the errors between the state
trajectory x(t) and jerk limited trajectory x;(¢). The third
term penalizes the closest distance, denoted as d(t), from
the drone to the nearest obstacles. The distance information
is obtained from the collision-aware EDT map.

VI. EXPERIMENTS AND RESULTS
A. Simulation in an Unknown Environment

We use a customized environment to evaluate the Air
Bumper framework in the Gazebo [28] simulator, as shown
in Fig. 4(a). In the customized environment, we use a
simulated MAV with a Velodyne VLP-16 LiDAR sensor,
which has 360° horizontal FOV, 30° vertical FOV, and the
maximum sensing distance is 100m. Two kinds of doors are
designed to validate the framework. One is a black door
frame without any obstacles. The other one is a white door
frame and transparent material, like glass, within the frame,
and it is used to simulate a scenario with the aforementioned
transparent obstacles. LiDAR is unable to detect transparent
obstacles during flight. As a result, the motion planning
module may generate a path from the current position to
the next goal that passes through the white glass door. This
could cause the MAYV, without our framework, to become
stuck or crash.
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Fig. 4. MAV with Air Bumper successfully detects and recovers from
collisions with two transparent obstacles in a simulation environment. (a)
Overview of the customized environment. (b) MAV, without our framework,
crashed due to the collision with a transparent obstacle. (c) Illustration of
the collision-aware map with collision point cloud for the simulation. (d)
The trajectory of the simulated MAV with Air Bumper framework.

In the simulation test, we set three doors: two white
doors with transparent obstacles located at [0, —3,1] T m and
[0,—8,1]" m, and one black normal door at [0, —13,1] " m.
Once the start command is received, the drone takes off and

flies autonomously through waypoints (WPs). It follows a
path from the origin point [0,0,1]" m to the first waypoint
(WP1) [0,—5,1]" m, then to the second waypoint (WP2)
[0,—10,1]" m, and finally to the third waypoint (WP3)
[0, —15,1]T m. Without our collision detection and reaction
framework, the MAV collides with the transparent obstacles
and crashes when passing through the white glass doors (Fig.
4(b)). In contrast, our Air Bumper framework enables the
MAV rapidly recover from the collision upon detecting the
abnormal acceleration data in the y direction. The collision-
aware mapping module consequently updates the collision-
aware map, where estimated obstacles are marked in red
in Fig. 4(c). The collision-aware map assists the motion
planning module in re-planning a smooth trajectory to the
goal without colliding with the same obstacles (Fig. 4(d)).
Results demonstrate that our framework is able to handle sev-
eral collisions with unobserved obstacles during autonomous
flight and record the collision for further safe navigation.

B. Experiments in Real World

Collision-Resilient MAV

Fig. 5. The snapshots of testing Air Bumper in the unknown environment
with (a) transparent and (b) unpredictable obstacles.

The Air Bumper framework’s performance is demon-
strated using the collision-resilient MAV designed in Section
III-B in an unknown indoor environment with a transparent
obstacle (Fig. 5(a)) and an unpredictable obstacle (Fig. 5(b)).
The MAV is programmed to autonomously take off from the
origin to the first waypoint (WP1) [0.0,0.0,1.5]T m, then
fly towards the second waypoint (WP2) [0.0, —3.5,1.5] " m,
and then perform back-and-forth flights between the two
waypoints.
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Fig. 6. The collision-aware map (a) before and (b) after a collision.

For the scenario with a transparent obstacle, a customized
transparent object with a size of 2 x 1 m and a thickness of
8 mm is considered an obstacle. The bottom center of the
obstacle is located at [0.0,1.7,0.0]T m. The OGM in Fig.
6(a), represented by the black point cloud, demonstrates that
the laser beams are able to penetrate the transparent object.
Therefore, there are no occupied voxels in the proximity of
the obstacle’s location, and the motion planning algorithm



plans a path through the obstacle, which leads the MAV to
collide with the transparent obstacle.
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Fig. 7. States of the MAV before and after a collision with a transparent

obstacle. (a) During the collision, acceleration on y-direction exceeds the
detection threshold. (b) Position estimation and setpoints on y-direction.
In one of the flight tests, the collision generates an
abnormal acceleration on the y-axis, exceeding the threshold,
which occurred at approximately 8.21 seconds (Fig. 7(a)).
The collision is detected and estimated as C' with ¢ = 102.1°
and 6 = 94.2°. Then, the collision recovery control module
calculates and generates a recovery position setpoint in the
negative y-direction to move the drone away from the obsta-
cle at around 8.39 seconds (Fig. 7(b)). The recovery position
ensures the drone is at a safe distance of approximately 0.46
meters from the obstacle. Meanwhile, the collision-aware
map is updated after receiving the collision point cloud,
marked red in Fig. 6(b). With the help of the collision-aware
map, GTO-MPC re-plans a feasible trajectory to the second
waypoint, which is shown as a blue line in Fig. 6(b), and
the low-level controller executes the re-planned setpoint at
around 13.69 seconds (Fig. 7(b)). The framework is designed
to allow for a 5-second window after a collision has occurred
for the motion planning algorithm to re-plan a feasible path.
Nevertheless, the actual time it takes for the drone to recover

and stabilize after the collision is less than 1 second.
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Fig. 8. Real experimental trajectories (ten trails) of the collision-resilient
MAV with collision detection and reaction.

We then conduct ten trials to demonstrate the robustness of
our framework for this case. All the experimental trajectories
in the testing scenario are shown in Fig. 8. In all the trials,
the collision-resilient drone collides with the transparent
obstacle, and our framework successfully detects and reacts
to the collision. Although some of the trajectories do not

intersect with the obstacles, the maximum distance between
the surface of the obstacle and the collision position is only
0.1 m, which still falls within the drone’s radius.

(a)

60 %
—Y
z

Threshold,

" ol " Luatausd Ly

Tepp, Ll Liaa s ) v
Threshold
Xy,

I I |
24 26 28
Time [sec]

—Y Setpoint
—— Z Setpoint

Position [m]

N5

13

BEs IR R

Ou% L I i

18 20 22 24 26 28
Time [sec]

Fig. 9. States of the MAV before and after a collision with an unpredictable
obstacle. (a) During the collision, accelerations exceed the collision detec-
tion threshold. (b) Position setpoints on three axes.

For the scenario with an unpredictable obstacle, we use
a stick to randomly hit the MAV outside the FOV of the
LiDAR to demonstrate the ability of the Air Bumper frame-
work to detect the collision with unpredictable obstacles
and perform reactions in 3D space. When the stick hits
the MAV from the lower left side of the cage, there are
abnormal acceleration data on all three axes (Fig. 9(a)), and
the collision is detected at 19.36 s. Then a 3D recovery
control is performed with setpoints on three axes at 19.49
s (Fig. 9(b)), the recovery distance R, ensures the drone
is at a safe distance of approximately 0.46 m from the
obstacle in the xy-plane and makes the drone ascend from
about 1.5 m to about 2 m along z-axis. Results demonstrate
that our framework enables the MAV to maintain a safe
distance from the obstacle in 3D space rather than just in
a certain plane. Then the collision-aware mapping module
generates a collision point cloud at the collision point, which
helps the motion planning module generate a smooth feasible
trajectory to the pre-collision goal state successfully.

VII. CONCLUSION

In this work, we introduced a collision detection and
reaction framework to help MAVs recover from collisions
during autonomous flights in an unknown environment with
unobserved obstacles. To do so, we designed an IMU-based
collision detection and estimation module to estimate the
collision intensity, direction, and position. Collision reaction
modules are developed to assist the drone quickly away
from the obstacle and update the collision-aware map to
generate a smooth post-collision trajectory. In addition to the
software, a caged collision-resilient MAV is also designed
and crafted, which fully demonstrates the ability of our
framework in the real world. The motion planning algorithm
in the current framework still needs a certain time to re-plan
after collisions. In the future, we aim to introduce collision-
inclusive motion planning, which can better utilize collisions
in autonomous navigation in complex environments. The
framework can be further extended to assist multi-robot
navigation in hazardous environments.
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