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Abstract—We present two methods to reduce the complex-
ity of Bayesian network (BN) classifiers. First, we introduce
quantization-aware training using the straight-through gradient
estimator to quantize the parameters of BNs to few bits. Second,
we extend a recently proposed differentiable tree-augmented
naı̈ve Bayes (TAN) structure learning approach by also con-
sidering the model size. Both methods are motivated by recent
developments in the deep learning community, and they provide
effective means to trade off between model size and prediction
accuracy, which is demonstrated in extensive experiments. Fur-
thermore, we contrast quantized BN classifiers with quantized
deep neural networks (DNNs) for small-scale scenarios which
have hardly been investigated in the literature. We show Pareto
optimal models with respect to model size, number of operations,
and test error and find that both model classes are viable options.

I. INTRODUCTION

One key factor for the tremendous successes of deep learn-
ing in a wide variety of applications are the ever growing
sizes of network architectures and the availability of dedicated
massively parallel hardware such as GPUs and TPUs. As a
result, many interesting applications do not benefit from the ca-
pabilities of deep learning since deep neural networks (DNNs)
are often too large and cannot be deployed on resource-
constrained devices with limited memory, computation power,
and battery capacity. This has sparked the development of
a variety of methods for reducing the complexity of DNNs.
These methods are as diverse as weight pruning, quantization,
exploiting structural properties that allow for resource-efficient
computation, and, very recently, neural architecture search
to discover efficient architectures automatically [1]. However,
most of the literature considers medium to large-scale datasets
that require a moderate architecture size to achieve a decent
accuracy. Consequently, also the resulting DNNs after apply-
ing the respective methods are still too large for resource-
constrained devices.

In this paper, we transfer quantization techniques from
the recent DNN literature to an inherently resource-efficient
model class, namely Bayesian Network (BN) classifiers with
naı̈ve Bayes or tree-augmented naı̈ve Bayes (TAN) structure.
For datasets with C classes and D discrete input features, a
BN classifier efficiently computes predictions by accumulating
(D+1)·C log-probabilities and determining the most probable

class. Notably, no other operations, such as multiplications, are
required.

In particular, we employ quantization-aware training using
the straight-through gradient estimator (STE) [2]. The STE is
used to approximate the zero derivative of piecewise constant
functions f , such as a quantizer, by the non-zero derivative of
a similar function f̃ . This allows us to incorporate quantizers
and other piecewise constant functions in a computation graph
and to perform gradient-based learning using backpropagation.

During training, our quantization method maintains a set
of real-valued auxiliary parameters θ that are quantized to
few bits during forward propagation to obtain θq . During
backpropagation, the gradient is computed with respect to
the quantized parameters θq which is then passed “straight-
through” to update the real-valued parameters θ. This proce-
dure is typically more effective than performing quantization
as a post-processing step, since the real-valued parameters θ
become robust to quantization during training. After training,
the model is deployed using the quantized parameters θq . This
paradigm has been extensively used for quantization in the
deep learning literature [3], [4], [5].

Furthermore, we extend the recently proposed differentiable
TAN structure learning approach from [6] by also taking the
model size into account. Their approach introduces a distri-
bution over TAN structures which is jointly trained with the
BN parameters using gradient-based learning. After training,
the most probable TAN structure is selected. In this paper, we
introduce an additional loss term that penalizes the number
of parameters of a specific TAN structure, which allows us to
effectively trade off between accuracy and model size.

Notably, this method is also inspired by differentiable struc-
ture learning approaches from the deep learning community
[7], [8]. Typical BN structure learning algorithms rely on
greedy hill-climbing heuristics for combinatorial optimization
and are not suitable for gradient-based optimization [9], [10],
[11]. Note that our method bears resemblance to the minimum
description length principle where one also aims to optimize
for model fit and model size [12].

In extensive experiments, we contrast quantized BN clas-
sifiers with small-scale quantized DNNs with respect to (i)
model size, (ii) number of operations required for predictions,
and (iii) the prediction accuracy. We investigate Pareto optimal
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models with respect to these three dimensions and find that
no model class can be excluded a priori. Furthermore, we
compare our quantization method with a specialized branch-
and-bound approach that directly operates on the discrete
parameter space of BNs [13]. Our quantization method does
not only achieve higher accuracy, but it also takes much less
training time than the computationally intensive branch-and-
bound algorithm. We demonstrate that our structure learning
approach can be used to generate a trajectory of Pareto optimal
BN classifiers with respect to accuracy and model size.

In summary, the main contributions of this paper are:
• Quantization-aware learning of BN classifiers
• Differentiable model-size-aware TAN structure learning
• A comprehensive comparison of quantized DNNs and BN

classifiers
Code is available online at https://github.com/wroth8/bnc

II. BACKGROUND

A. Bayesian Network Classifiers

We denote random variables as uppercase letters X and
C and instantiations of these random variables as lowercase
letters x and c. Let X = {X1, . . . , XD} be a multivariate
random variable. A Bayesian Network (BN) is a graphical
representation of a probability distribution p(X) as a directed
acyclic graph G whose nodes correspond to the random
variables Xi. More specifically, the graph G determines a
factorization of p(X) according to

p(X) =

D∏
i=1

p (Xi |pa(Xi)) , (1)

where pa(Xi) is the set of parents of Xi in G. This fac-
torization allows us to specify the full joint distribution
p(X) by the individual factors p(Xi |pa(Xi)). We consider
distributions over discrete random variables such that each
conditional distribution p(Xi |pa(Xi)) can be represented as
a conditional probability table (CPT) θi|pa(i). The joint dis-
tribution p(X) is then specified by the collection of CPTs
θ = {θ1|pa(1), . . . ,θD|pa(D)} of all random variables X .

When considering the task of classification in particular, we
are given an additional class random variable C and assume
that a BN is used to model the joint distribution p(X, C). In
this context, the variables X are called input features. We can
then construct a probabilistic classifier by assigning an input
x to the conditionally most probable class c according to

argmax
c

p(c |x) = argmax
c

p(x, c) = argmax
c

log p(x, c). (2)

Assuming that the individual factors of (1) can be computed
efficiently, classification according to (2) is particularly con-
venient by accumulating only D + 1 log-probabilities

log p(X, C) = log p (C |pa(C)) +

D∑
i=1

log p (Xi |pa(Xi))

(3)

for each class c and reporting the most probable class.

C

X1 X2 X3 X4

(a) Naı̈ve Bayes structure

C

X1 X2 X3 X4

(b) TAN structure

Fig. 1. (a) Graphical representation of the naı̈ve Bayes model as a BN. The
naı̈ve Bayes model assumes conditional independence of the inputs X given
the class C. (b) Example TAN structure. The TAN structure allows each input
Xi, in addition to the class variable C, to depend on a single other input Xj .

However, the situation becomes problematic concerning the
size of the CPTs θi|pa(i) which is determined by the number
of values that Xi and pa(Xi) can take jointly. Consequently,
assuming that each random variable Xi can take at least
two values, the size of Xi’s CPT grows exponentially with
the number of parents |pa(Xi)|, which can become a com-
putational bottleneck even for few parents. Therefore, it is
desirable to maintain graph structures where each node has
few parents such that inference tasks remain feasible. In this
paper, we consider two commonly used types of structures
for BN classifiers which restrict the number of conditioning
parents, namely the naı̈ve Bayes structure and TAN structures.

1) Naı̈ve Bayes Structure: The naı̈ve Bayes structure is
illustrated in Fig. 1a. The graph G contains a single root
node C which is the sole parent of each feature node Xi.
The factorization induced by the naı̈ve Bayes assumption is
given by

p(X, C) = p(C)

D∏
i=1

p (Xi |C) . (4)

The naı̈ve Bayes model assumes that all inputs X are
conditionally independent given the class C. Although this
independence assumption rarely holds in practice, naı̈ve Bayes
models often perform reasonably well while requiring only few
parameters and allowing for fast inference.

2) Tree-augmented Naı̈ve Bayes (TAN) Structure: The TAN
structure generalizes the naı̈ve Bayes structure by allowing
each feature Xi — in addition to the class variable C — to
directly depend on at most one other feature Xj . An example
TAN structure is illustrated in Fig. 1b. The factorization of a
TAN BN is given by

p(X, C) = p(C)

D∏
i=1

p (Xi |pa(Xi)) , (5)

subject to |pa(Xi)| ≤ 2 and C ∈ pa(Xi). As we will see
in Section V, this relaxation of the graph structure typically
improves the predictive performance, but it also introduces a
substantial memory overhead due to larger CPTs.

As opposed to the naı̈ve Bayes model, the TAN structure is
not fixed, and we can utilize this freedom to perform structure
learning in order to balance accuracy and model size. However,

https://github.com/wroth8/bnc


this is not straightforward as the number of possible TAN
structures is exponential in the number of input features D.
In Section IV, we present a differentiable method for jointly
training the graph structure G and the CPTs θ that favors
smaller models.

B. Deep Neural Networks

DNNs are a class of discriminative models that directly
model the conditional probability p(C |X). A DNN is or-
ganized in L layers, where each layer computes an affine
transformation followed by an activation function h, i.e.,

al = Wl ⊗ xl−1 + bl (6)

xl = hl(al), (7)

where ⊗ refers to either a matrix-vector multiplication (fully
connected layer) or a linear convolution. Here, x0 corresponds
to the given input features, and xL is the output of the DNN.
A DNN that performs at least one convolution in (6) is called
a convolutional neural network (CNN). The parameters θ of a
DNN are given by the weight tensors {W1, . . . ,WL}, the bias
vectors {b1, . . . ,bL}, and the batch normalization (see below)
parameters {β1, . . . ,βL} and {γ1, . . . ,γL} of all layers.

For l < L, we consider the element-wise non-linear ReLU
activation function hl(a) = max(0, a) and the element-wise
sign activation function hl(a) = I [x ≥ 0]− I [x < 0], where I
denotes the indicator function. In the output layer l = L, we
apply the softmax function hLi (aL) = exp(aLi )/

∑
j exp(aLj )

which transforms the output activations aL into probabilities
xL that we interpret as conditional class probabilities p(c |x0).

Many modern DNN architectures perform batch normaliza-
tion [14] after the affine transformation (6) during learning.
In each layer, batch normalization transforms the individual
activations ali to have zero mean and unit variance across all
data samples, which are then subject to a feature-wise (or, in
the case of convolutions, channel-wise) affine transformation
with the learnable batch normalization parameters βl and γl.

C. Similarities between BN Classifiers and DNNs

The output layer of a DNN performs the same computations
as a linear logistic regression model, i.e., it performs an
affine transformation WLxL−1 + bL and reports the most
probable class. This is similar to the computations performed
by a BN classifier. Indeed, for a naı̈ve Bayes model, by
encoding all discrete input features xi as one-hot vectors x̄i

which are stacked into a single sparse vector x̄, we can cast
the computation of log p(X, C) as an affine transformation
W̄x̄ + b̄, where W̄ contains entries from the CPTs θ, and
b̄ corresponds to log p(C). For TAN structures, a similar
transformation can be obtained by a one-hot encoding of the
values that Xi and its additional parent Xj take jointly.

This suggests that well-established methods for DNNs
might be transferable to BN classifiers. In the next section,
we propose quantization for BN parameters based on methods
that are successfully applied in the deep learning community.

xl−1 conv al xl

Wl
q

QWl

id

forward path

backward path

Fig. 2. Straight-through gradient estimation (STE) in a convolutional layer.
The green boxes indicate differentiable functions. The red boxes indicate
piecewise constant functions whose gradient is zero almost everywhere. The
blue box indicates learnable weights. Q denotes a quantization function, e.g.,
a rounding function, and id denotes the identity function. During forward
propagation, the red path is followed, whereas during backpropagation, the
dashed green path is followed to avoid the red zero-gradient boxes.

III. QUANTIZATION-AWARE TRAINING

A. Straight-through Gradient Estimator (STE)

Learning models that employ piecewise constant functions,
such as quantizers or the sign function, is problematic as their
derivatives are zero almost everywhere. During backpropaga-
tion, these functions prevent the gradient to flow backwards,
such that gradient-based learning cannot be performed. In
recent years, the STE as introduced in [2] has become a widely
used tool to perform backpropagation through zero-gradient or
non-differentiable building blocks in computation graphs.

Let f be a function whose derivative does not exist or is
zero almost everywhere. Furthermore, let u = f(v) be a value
of the computation graph that is computed during forward
propagation, i.e., when evaluating some loss function L. Then,
the STE approximates the partial derivative of L with respect
to v during backpropagation as

∂L
∂v

=
∂L
∂u
· ∂f
∂v
≈ ∂L
∂u
· f̃ ′(v), (8)

where f̃(v) ≈ f(v) and f̃ ′(v) is non-zero.1 This allows gradi-
ents to flow through f such that parameters can still be updated
using gradient-based learning.

The STE has been heavily used for weight and activa-
tion quantization in DNNs, which is often referred to as
quantization-aware learning. A typical quantized DNN layer is
depicted in Fig. 2. During forward propagation, the real-valued
weights Wl are quantized to obtain Wl

q , and the activations
al pass through a piecewise constant activation function such
as sign. During backpropagation, the real-valued weights are
updated using the STE by avoiding the zero-gradient functions.
At test time, the real-valued weights Wl are discarded and
predictions are computed using the quantized weights Wl

q .

B. Quantization-aware BNs

As briefly discussed in Section II-A, it is convenient to
store the CPT parameters of BNs as log-probabilities θ.

1For simplicity, we have assumed that u is the only node in the computation
graph depending on v — otherwise (8) would consist of more terms.



During training, we store the parameters as unnormalized log-
probabilities ρ. At forward propagation, we compute the non-
positive normalized log-probabilities θ as

θk,li = ρk,li − log
∑
k′

exp ρk
′,l

i , (9)

where θk,li = log p (Xi = k |pa(Xi) = l). Note that the nor-
malization is necessary as otherwise the log-likelihood could
be made arbitrarily large.

In [13], it is proposed to represent the normalized log-
probabilities θ as

θq = −
BI−1∑

k=−BF

bk · 2k, (10)

where b ∈ {0, 1}BI+BF is a bit-mask, BF denotes the number
of fractional bits, and BI denotes the number of integer bits.
To quantize θ ≤ 0 to the set of possible values representable
by (10), we apply the quantizer

qBN(θ) = clip(round(θ · 2BF ) · 2−BF , −U, 0), (11)

where clip(v, l, u) is the clipping function min(max(v, l), u)
and U = 2BI − 2−BF is the largest magnitude representable
by (10). During backpropagation, we apply the derivative of
the identity function for the STE. Note that after quantization
the log-probabilities are in general not normalized anymore.

C. Quantization-aware DNNs

For DNNs, we quantize the weights according to

qDNN(w) = q

(
clip(w, −1, 1) + 1

2
;B

)
· 2− 1, (12)

where q(v;B) is the quantization scheme proposed in [4]
which quantizes v ∈ [0, 1] to a B-bit number as

q(v;B) =
1

2B − 1
· round((2B − 1) · v). (13)

Again, we employ the identity function for the STE.
In case the sign activation function is used, we use a

stochastic sign function during training according to

signstoch(a) =

{
1 if u ≤ (1 + a)/2

−1 otherwise
, (14)

where u ∼ U([0, 1]) is drawn from a uniform distribution.
During backpropagation, we employ the derivative of the
hyperbolic tangent tanh for the STE.

IV. MODEL-SIZE-AWARE TAN STRUCTURE LEARNING

In this section, we introduce a differentiable TAN structure
learning approach that allows us to trade off between accuracy
and model size. Therefore, we employ the recently proposed
differentiable TAN structure learning approach from [6].

To avoid the acyclicity constraint of BNs, the approach of
[6] considers a fixed variable ordering X1, . . . , XD. Let si =
(si|0, . . . , si|i−1) be a one-hot encoding of Xi’s parents such
that si|j = 1 iff pa(Xi) = {Xj , C} and si|0 = 1 iff pa(Xi) =

{C} (i.e., no additional parent). Then s = {s1, . . . , sD} is
an encoding of the TAN structure graph G. Furthermore, let
Θi = {θi|0, . . . ,θi|i−1} be the CPTs of all possible parents
of Xi, and let Θ = {Θ1, . . . ,ΘD}∪{θc} be the collection of
all possible CPTs, where θc specifies the class prior. Then the
log-likelihood log p(X, C) of a TAN BN can be rephrased as

log pθc
(C) +

D∑
i=1

i−1∑
j=0

si|j log pθi|j (Xi |Xj , C), (15)

where the subscripts of p are to emphasize the dependency on
the CPT parameters Θ, and we define X0 = ∅. This allows us
to jointly treat the CPTs Θ and the structure parameters s and,
in principle, to optimize a loss L(Θ, s) over both variables.

Since the structure parameters s are discrete, Roth and
Pernkopf [6] introduced a probability distribution over s and
formulate a structure learning loss LSL as an expectation with
respect to this distribution. In particular, let Φ = (Φ1, . . . ,ΦD)
with Φi = (φi|0, . . . , φi|i−1) be a collection of probability
vectors over the one-hot vectors in s, such that

∑i−1
j=0 φi|j = 1

and φi|j ≥ 0. The structure learning loss is then given by

LSL(Φ,Θ) = Es∼pΦ
[L(Θ, s)] , (16)

which is differentiable with respect to Φ. The structure learn-
ing loss (16) can then be optimized with gradient-based meth-
ods. After training, the most probable TAN structure according
to Φ is selected. Since (16) comprises exponentially many
terms, it is proposed to compute Monte Carlo gradients using
the reparameterization trick [15] by means of the straight-
through Gumbel softmax approximation [16], [17].

In this paper, we extend the structure learning loss (16) with
an additional expected model size (MS) term to obtain

LMS
SL (Φ,Θ) = LSL(Φ,Θ) + λMSEs∼pΦ [LMS(s)] , (17)

where LMS(s) returns the number of parameters in the CPTs
for structure s, and λMS > 0 is a trade-off hyperparameter.
Note that the second term in (17) is given by

Es∼pΦ
[LMS(s)] = |θc|+

D∑
i=1

i−1∑
j=0

φi|j · |θi|j |, (18)

where |θ| denotes the number of parameters of θ. Objective
(17) allows us to achieve different trade-offs between accuracy
and model size by careful selection of λMS while learning the
CPTs Θ and the TAN structure G simultaneously.

V. EXPERIMENTS

A. Datasets

We conducted experiments on the following datasets, that
were also used in [13] and [6].
• Letter: 20,000 samples, describing one of 26 English

letters using 16 numerical features extracted from images,
i.e., statistical moments and edge counts [18].

• Satimage: 6,435 samples containing multi-spectral val-
ues of 3 × 3 pixel neighborhoods in satellite images,
resulting in a total of 36 features. The task is to classify



the central pixel of these image patches to one of the
categories red soil, cotton crop, grey soil, damp grey
soil, soil with vegetation stubble, mixture class (all types
present), very damp grey soil.

• USPS: 11,000 grayscale images of size 16×16, showing
handwritten digits from 0–9 obtained from zip codes of
mail envelopes [19]. Every pixel is treated as a feature.

• MNIST: 70,000 grayscale images showing handwritten
digits from 0–9 [20]. The original images of size 28×28
are linearly downscaled to 14× 14 pixels. Every pixel is
treated as a feature.

Except for satimage, where we use 5-fold cross-validation,
we split each dataset into two thirds of training samples and
one third of test samples. The features of each dataset were
discretized using the approach from [21]. The average numbers
of discrete values per feature are 9.1, 11.5, 3.4, and 13.2 for
the respective datasets in the order presented above. For the
DNN experiments, we normalize the discretized features to
zero mean and unit variance.

B. Experimental Setup

All experiments were performed using the stochastic op-
timizer Adam [22] for 500 epochs. We selected mini-batch
sizes of 50 on satimage, 100 on letter and usps, and 250 on
mnist. Each experiment is performed using the two learning
rates {3 · 10−3, 3 · 10−2}, and we report the superior result of
the two runs at the end of optimization. The learning rate is
decayed exponentially after each epoch, such that it decreases
by a factor of 10−3 over the training run.

BN classifiers were trained using the hybrid generative
discriminative loss from [6], i.e.,

LHYB(θ) = LNLL(θ) + λHYB · LLM(θ), (19)

which trades off between the generative negative log-likeli-
hood loss LNLL and a discriminative probabilistic large margin
loss LLM. Several works have reported improved results when
training probabilistic models using a hybrid loss [23], [24].
The loss LHYB is governed by three hyperparameters: a gen-
erative discriminative trade-off parameter λHYB, a desired log-
margin parameter γHYB, and a smoothing parameter ηHYB. We
refer the reader to [6] for details about these parameters.

The initial CPT parameters are drawn from U([−0.1, 0.1]).
For parameter quantization using (11), we evaluated the total
number of bits BI +BF ∈ {1, . . . , 8}. We varied the number
of integer bits BI ∈ {1, . . . , 6} and report for each total
number of bits the result of the best performing BI . Note that
BF becomes negative for some configurations. In these cases,
not every integer value is a possible outcome after quantiza-
tion. We tuned the hyperparameters of LHYB using random
search by evaluating 100 random configurations according to
log10 λHYB ∼ U([1, 3]) and log10 γHYB ∼ U([−1, 2]), and
we used a fixed ηHYB = 10. These hyperparameters are
tuned individually for each experiment, i.e., each setting of
the remaining hyperparameters is evaluated 100 times.

DNNs were trained using the cross-entropy loss. The initial
weights are drawn from a uniform distribution whose variance

is determined according to [25]. CNN experiments were only
conducted on the image datasets usps and mnist.

C. Fixed parameter memory budget

In the first experiment, we investigate the classification
performance of several models with a fixed memory budget for
their parameters. We compare BN classifiers with naı̈ve Bayes
structure (BNC NB) to fully connected DNNs (FC NNs) and
CNNs. The target memory is selected as the number of bits
required by BNC NB for a given bit width BI + BF . We
designed DNNs that require approximately the same memory.

For fully connected DNNs, we constrained the number of
hidden units in each layer to be equal. We evaluated the bit
width B ∈ {1, . . . , 8}, the number of layers L ∈ {2, 3, 4, 5},
and performed each experiment once with and once without
batch normalization. In case batch normalization is employed,
we count the batch normalization parameters as 32 bits,
resulting in 64 bits per hidden unit. Batch normalization is
not performed in the output layer, where we use biases that
are counted as 32 bits per output. We do not use biases in the
hidden layers, even when batch normalization is not employed.
With this specification, the total number of bits only depends
on the number of hidden units. We select the number of hidden
units by rounding the real-valued number that would exactly
match the target memory.

We proceed similarly for CNNs, where we select the number
of channels. We consider CNNs with one or two convolutional
layers, followed by a fully connected output layer. After each
convolutional layer, we downscale the image by a factor of
two using max-pooling. In case of two convolutional layers,
the number of channels of the second layer is constrained to
be twice the number of channels of the first layer. Again, the
batch normalization parameters (if used) incur 64 bits for each
channel, and we employ 32 bit biases in the output layer. The
resulting real-valued number of channels is rounded separately
for the first and the second hidden layer.

If not stated otherwise, DNNs treat the (normalized) discrete
input features as real values. We also perform experiments us-
ing one-hot encoded input features as outlined in Section II-C,
such that BNs and DNNs treat the inputs equally. Note that
this increases the number of weights in the first layer for a
given number of hidden units.

The best results for a given target number of bits are shown
in Fig. 3. The optimal number of bits per weight is highly
dataset dependent. For instance, our BN classifiers with one
bit per weight perform reasonably well on usps, while the
performance still improves up to 6–7 bits on letter.

We confirm that CNNs are extremely memory efficient.
Even for the smallest memory budget, CNNs with ReLU
activation are more accurate than all other models using the
largest memory budget. The activation function is crucial as
the accuracy degrades considerably for the sign function.

Fully connected DNNs outperform BN classifiers consis-
tently. This is due to DNNs treating the inputs as real values,
which allows them to be more memory efficient by only
maintaining one weight per feature rather than one weight
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Fig. 3. Test classification errors [%] over model size budgets in bits. The x-axis shows the model size of BN classifiers with naı̈ve Bayes structure (BNC
NB) for given bit widths BI +BF . Fully connected DNNs (FC NNs) and CNNs are designed to have approximately (due to rounding) the same model size.
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Fig. 4. Test classification errors [%] over fixed budgets for the number of
operations. The x-axis corresponds to multiples of the number of operations
required by a BN classifier (BNC).

per feature value. By spending the gained memory into
additional layers computing intermediate representations, the
performance improves. We verified that the improvements can
be attributed to the intermediate representations of DNNs, as
logistic regression (one layer network) with float32 weights
performs poorly on the real-valued inputs.

A fairer comparison is obtained by using one-hot encoded
inputs for DNNs. Note that for one-hot encoded inputs, it is
still possible for DNNs to achieve a lower memory overhead
than BN classifiers by (i) employing a hidden layer with fewer
units than the number of classes and by (ii) using fewer
bits per weight. Especially the case of using fewer bits per
weight highlights the importance of a DNN’s capability to
compute intermediate representations. For instance, on usps,
the performance of BN classifiers with three or more bits can
be obtained by a fully connected DNN using fewer bits and
by spending the gained memory in an additional layer.

Our quantized BN classifier outperforms the specialized
branch-and-bound method (B&B) from [13] by a large margin.
From a practical perspective, quantization-aware training fits
seamlessly into existing gradient-based learning frameworks
and incurs only a negligible computational overhead, whereas
branch-and-bound algorithms are computationally intensive
and often rely on carefully selected heuristics to reduce the
runtime. We also observed that different hyperparameters are
optimal for different bit widths BI + BF . This is in contrast
to [13] where the runtime of the branch-and-bound algorithm
did not allow for an extensive hyperparameter search.

D. Fixed number of operations budget

We compare BN classifiers with naı̈ve Bayes structure (BNC
NB) to CNNs with a fixed budget for the number of operations.
Since BNs require very few operations, we design CNNs that
require multiples of that number of operations. Similar to how
the CNN architecture is obtained in Section V-C, we select
the number of channels to match a given target number of
operations. We treat both addition and multiply-accumulate as
single operations. Batch normalization and adding biases incur
one operation per hidden unit.

Fig. 4 shows the best results for fixed operation budgets. On
usps and mnist, CNNs with ReLU activation require at least
2–4× and 4–8× as many operations as a BN, respectively,
to achieve a better performance. For the sign activation, an
even larger number of operations is required to match the
accuracy of the BN. Moreover, CNNs require many operations
to achieve their full potential. On usps, CNNs require at least
64× the operations, and on mnist, they even require 256× the
operations to achieve their best performance.

E. Model-size-aware TAN structure learning

Next, we perform TAN structure learning according to the
method described in Section IV. Note that this experiment uses
float32 parameters, i.e., no quantization is involved. For each
Xi, we consider fixed randomly selected subsets of possible
parents Xj of maximum size 8 which is called TAN Subset
in [6]. The hyperparameters of LHYB, the feature ordering,
and the subsets of possible parents are obtained from the best
TAN Subset experiment of [6]. We evaluated several trade-off
parameters λMS to obtain different model sizes and accuracies.

Fig. 5a shows how the accuracy and the test errors vary
with λMS on letter (results are qualitatively similar on the
other datasets). For small λMS, we obtain an unconstrained
TAN structure, whereas for large λMS, we recover the naı̈ve
Bayes structure. For intermediate λMS, we observe increasing
test errors and decreasing model sizes as λMS increases.

Fig. 5b–5d show the Pareto frontier with respect to model
size and accuracy by varying λMS on satimage, usps, and
mnist, respectively. We note that the leftmost point in each
figure corresponds to the naı̈ve Bayes model discovered for
large λMS. Especially on usps, a negligible increase in model
size is sufficient to achieve substantial gains in accuracy
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Fig. 5. Model-size-aware TAN structure learning for BN classifiers. The number of parameters are shown as multiples of those required by the naı̈ve Bayes
structure. (a) Test classification error [%] (left y-axis) and number of parameters (right y-axis) over model size trade-off parameter λMS on letter. (b)–(d)
Pareto optimal models with respect to model size and test classification error obtained by evaluating several λMS on the remaining datasets.
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Fig. 6. Test classification errors [%] over numbers of bits per parameter BI + BF for quantized BN classifiers (BNC) with naı̈ve Bayes (NB) and TAN
structure. The horizontal lines show the respective test errors for float32 parameters.

102.6 102.8 103 103.2 103.4 103.6 103.8

5

10

15

20

#operations

T
es

t
cl

as
si

fi
ca

ti
on

er
ro

r
[%

]

FC NN
BNC NB

BNC TAN

(a) letter

104 105 106
0

2

4

6

8

#operations

T
es

t
cl

a
ss

ifi
ca

ti
on

er
ro

r
[%

]

FC NN
CNN

BNC NB
BNC TAN

(b) usps

104 105

9

10

11

12

model size [bits]

T
es

t
cl

a
ss

ifi
ca

ti
on

er
ro

r
[%

]

FC NN
BNC NB

BNC TAN

(c) satimage

104 105 106
0

2

4

6

8

10

model size [bits]

T
es

t
cl

a
ss

ifi
ca

ti
on

er
ro

r
[%

]

FC NN
CNN

BNC NB
BNC TAN

(d) mnist

Fig. 7. Comparison of BN classifiers (BNCs) and DNNs. Each disk corresponds to a Pareto optimal model with respect to test error, number of operations,
and parameter memory. (a), (b): Test classification errors [%] over number of operations required to compute predictions. The area of the disks is proportional
to the model size in bits. (c), (d): Pareto optimal models with model size on the x-axis and number of operations encoded as the area of the disks.

compared to the naı̈ve Bayes structure. Since the CPTs grow
by a factor of the number of possible parent values, the
granularity of the achievable trade-offs is dataset dependent.
On usps, the average number of values per feature is relatively
low (i.e., 3.4), and we can trade off smoothly between model
size and accuracy (note the x-axis scale). On letter, satimage,
and mnist, the corresponding numbers of values per feature
are larger (i.e., 9.1, 11.5 and 13.2, respectively).

F. Quantization for BN classifiers
Fig. 6 shows test errors of quantized BN classifiers with

naı̈ve Bayes and TAN structures. For each dataset, we used
a fixed TAN structure obtained from the best TAN Subset
experiment of [6]. Consequently, the test errors achieved by
the float32 TAN BN classifiers are rather optimistic, which
explains the consistent performance gap to the quantized
models on satimage and mnist.

Our quantization approach allows us to effectively trade off
between accuracy and model size for both BN architectures.
The number of bits at which the test error saturates depends,
in addition to the dataset, also on the architecture. The naı̈ve
Bayes model is already prone to underfitting such that it suffers
more severely than the more expressive TAN structure when
using only one or two bits.

G. Comparing DNNs and BN classifiers
Finally, we contrast DNNs and BN classifiers with respect

to (i) number of bits to store the parameters, (ii) number of
operations, and (iii) test error. Fig. 7 shows Pareto optimal
models with respect to these three dimensions, i.e., we cannot
improve on these models in one dimension without degrading
some other dimension. The models were obtained from the
experiments in Sections V-C, V-D, and V-F. We do not report
results for DNNs operating on one-hot encoded inputs.



BN classifiers require very few operations and achieve a
moderate test error. Among BNs, we can improve the perfor-
mance by selecting a TAN structure instead of a naı̈ve Bayes
structure, but this typically incurs a considerable memory
overhead. For instance, on mnist where the average number of
values per feature is relatively high (13.2), it is questionable
whether the performance gain can be justified, considering that
the memory increases by an order of magnitude.

At the same time, DNNs outperform BNs on every dataset
in terms of accuracy, but they require substantially more opera-
tions to do so. Fully connected DNNs allow for a fine-grained
trade-off between accuracy, memory, and operations due to
their flexible structure. However, as discussed in Section V-C,
the memory efficiency of fully connected DNNs can partly be
explained by the fact that they consider the inputs as real-
valued quantities. Interestingly, by introducing a bottleneck
layer exhibiting fewer units than there are output classes,
DNNs might even require fewer operations than BNs. This
can be seen, for instance, in Fig. 7b on usps. However, the
accuracy degradation in this case is also quite substantial.

Once again, we can see that CNNs are extremely memory
efficient, but they require many operations. For instance, on
mnist, CNNs require up to three orders of magnitude more
operations than BNs to achieve their best accuracy.

VI. CONCLUSION

We have introduced quantization-aware training for BN
classifiers based on the STE which has recently become popu-
lar for quantization in DNNs. We highlighted the effectiveness
of our approach in extensive experiments and improved over a
specialized branch-and-bound algorithm for learning discrete
BN classifiers by a large margin. Moreover, we contrasted
quantized BN classifiers with quantized DNNs and identified
regimes of model size, number of operations, and test error
in which each model class performs best. In particular, BN
classifiers require few operations and achieve decent accuracy,
CNNs are memory efficient and achieve the lowest error,
and fully connected DNNs provide flexible trade-offs. Our
results show that quantized DNNs perform well in small-
scale scenarios which are hardly investigated in the literature.
Furthermore, we extended previous work on TAN structure
learning by incorporating a model size penalty which allows
us to effectively trade off between test error and model size.

We have pointed out similarities between BN classifiers
and DNNs, which motivates the transfer of well-established
techniques from DNNs to BNs. We believe that several other
techniques from the deep learning community, e.g., those
discussed in [1], can be successfully transferred to BNs.
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