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ABSTRACT

Learning the compatibility between fashion items across cat-
egories is a key task in fashion analysis, which can decode
the secret of clothing matching. The main idea of this task is
to map items into a latent style space where compatible items
stay close. Previous works try to build such a transformation
by minimizing the distances between annotated compatible
items, which require massive item-level supervision. How-
ever, these annotated data are expensive to obtain and hard
to cover the numerous items with various styles in real ap-
plications. In such cases, these supervised methods fail to
achieve satisfactory performances. In this work, we propose
a semi-supervised method to learn the compatibility across
categories. We observe that the distributions of different cat-
egories have intrinsic similar structures. Accordingly, the
better distributions align, the closer compatible items across
these categories become. To achieve the alignment, we min-
imize the distances between distributions with unsupervised
adversarial learning, and also the distances between some an-
notated compatible items which play the role of anchor points
to help align. Experimental results on two real-world datasets
demonstrate the effectiveness of our method.

Index Terms— Semi-supervised compatibility learning,
Clothing matching, Adversarial learning

1. INTRODUCTION

Nowadays, clothes with various styles are increasing quickly,
broadening the range of people’s choices. “Which pair of
shoes should I select to match the jeans?”, such a problem
has become a daily headache for many people. Solving this
problem requires learning the compatibility between fashion
items across categories. As a matter of fact, many existing

The first two authors Zekun Li and Zeyu Cui are listed as joint first
authors. Shu Wu and Xiaoyu Zhang are both corresponding authors.

Fig. 1. 2-D visualization of the distributions of tops and
shoes, which have similar structures despite different orienta-
tions and scales. The tops and shoes in frames with the same
color have same styles and are compatible.

efforts have been dedicated to the task of compatibility learn-
ing. The key idea is to map the items into a latent style space
where compatible items would stay close. Previous works
[1, 2] try to learn the transformation by minimizing the dis-
tance between annotated compatible items in the style space,
which requires massive supervision to be general. However,
these annotated data are expensive to obtain and hard to cover
the numerous and increasing clothing items in real applica-
tions, and so these supervised methods often fail to achieve
satisfactory performance. How to learn such a general trans-
formation for numerous items of various styles with a limited
amount of supervision has become a demanding problem.

The key to this task is to make compatible items close
in the learned style space. Previous works consider it only
at the item level (i.e., minimize the distances between an-
notated compatible items), which inevitably require enough
item-level supervision to be general. In fact, some informa-
tion at a higher level is ignored. Here we look into the dis-
tribution level. We randomly select some tops and shoes and
visualize their distributions respectively in Figure 1, with raw
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image features reduced to 2-D vectors by Principal Compo-
nent Analysis (PCA). Different colors of frames represent dif-
ferent styles. The tops and shoes in frames of the same color
have same styles and are compatible. As can be seen, in spite
of different orientations and scales, these distributions have
intrinsic similar structures according to styles. Accordingly,
there may exist a desired transformation to align the distri-
butions of different categories in the style space, which can
make compatible items with same styles close in return.

In fact, the method of distribution alignment has be proven
to be effective on the bilingual lexicon induction task in
the domain of natural language processing (NLP), which is
highly analogous to our task. The studies on the bilingual lex-
icon induction task follow the idea to map words into a word
embedding space. There is evidence that different languages
represent semantic concepts with similar structure leading to
the structural isomorphism across word embedding spaces of
different languages [3]. Viewing word embedding spaces as
distributions, Zhang et al. proposed to build the cross-lingual
connection by minimizing their earth movers distance [4].
Differently, they achieve the alignment only by minimizing
the distance between distributions while we find the combina-
tion of distribution-level and item-level distance minimization
can better align the distributions.

In this paper, we propose Semi-supervised Compatibil-
ity learning Generative Adversarial Networks (SC-GANs) to
learn the compatibility across categories, not requiring mas-
sive supervision. In our semi-supervised method, the unsu-
pervised distribution-level distance minimization is combined
with the supervised item-level one to build a general transfor-
mation, which can align the distributions of different cate-
gories and make compatible items with same styles close in
the style space. An adversarial learning strategy is adopted to
minimize both the Wasserstein distance between distributions
and Euclidean distance between compatible items. We con-
duct experiments to evaluate the performance of our method
on two real-world datasets. Our semi-supervised method
shows superiority over other supervised methods when lack-
ing massive supervision, which is effective in real applica-
tions. The code and data has been released1.

Our main contributions can be summarized in threefold:

• We first propose that aligning distributions of differ-
ent categories in the style space can make compatible
items with same styles close, which can be achieved
by minimizing the distances between distributions and
also some annotated compatible items.

• We propose a semi-supervised method SC-GANs to
learn compatibility across categories not requiring mas-
sive supervision, which is potential in real applications.

• Experimental results on two real-world datasets
demonstrate the effectiveness of our proposed method.

1https://github.com/CRIPAC-DIG/SCGAN

2. THE MODEL

The whole item set is denoted as I while the set of category
is C = {c1, c2, ...}. The set of items in category ci is Ici .
The set of compatible pairs is P . The compatibility of two
items x ∈ Icj , y ∈ Icj , is r(x, y). Our goal is to estimate
the value of r(x, y). vx is a high-dimensional feature vector
of item x extracted from its image. The distribution of cate-
gory c in the style space is Pc. We aim to find the exact style
transformation to map items (their feature vectors) of differ-
ent categories into one style space, where the distributions of
different categories align and the compatible items are close
as well. In the style space, the distance between items x and y
is d(x, y), which can indicate r(x, y). The lower d(x, y), the
higher r(x, y) is, and the more compatible x and y are.

2.1. Preliminaries

Feature Extraction. The visual features of items are ex-
tracted from their images using deep convolution networks,
VGG-16 [5], which is widely used for image representation
learning [1, 2, 6]. It has been pre-trained on large-scale Ima-
geNet images. We adopt the output of the second fully con-
nected layer, a 4096-dimensional feature vector.
Style Space Transformation. Compatible items usually have
similar styles. Previous works assume that there exists a style
space where compatible items stay close. Veit et al. [6] use
Siamese CNNs to learn a feature transformation from the im-
age space to the style space. McAuley et al. [1] use Low-rank
Mahalanobis Transformation (LMT) to map compatible items
to close positions in the style space. He et al. [2] map items
into several style spaces to compute a weighted sum of the
K distances between two items, which can deal with diver-
sity across different query items. Liu et al. [7] proposed to
map items into a style space where the categorical informa-
tion are eliminated. The above methods build such a transfor-
mation only by minimizing the distance between annotated
compatible items. Nevertheless, we build such a transforma-
tion by aligning the distributions, i.e., minimizing the distance
between the distributions of different categories as well as an-
notated compatible items.
Wasserstein Distance. In this work, we adopt the Wasser-
stein distance as the measure of distance between distribu-
tions. Wasserstein distance is a measure of distance between
probability distributions, which can be formulated as,

W (P1,P2) = inf
γ∈Γ(P1,P2)

E(x,y)∼γ [c(x, y)], (1)

where Γ(P1,P2) denotes the set of all joint distributions
γ(x, y) with marginals P1 and P2. It can be considered as
the continuous case of the Earth Mover’s Distance, a powerful
tool widely used in computer vision and natural language pro-
cessing [4, 8]. Intuitively, if each distribution is viewed as a
unit amount of “dirt”, earth mover’s distance is the minimum
“cost” of turning one pile into the other, which is assumed to

https://github.com/CRIPAC-DIG/SCGAN
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Fig. 2. The framework of SC-GANs. Items of each cate-
gory (we only show two categories here briefly) are mapped
into one style space with category-specific generators. The
critic D estimates the Wasserstein distance, which will be
passed to the generators and guide them towards minimizing
the Wasserstein estimate. The generators also try to minimize
the distance between annotated compatible items, which play
the role of anchor points to help align.

be the amount of dirt that needs to be moved multiplies the
distance it has to be moved. This conforms to the nature of
our task, i.e., put an item close to its compatible item of an-
other category in the latent style space. In order to minimize
the Wasserstein distance between distributions, we adopt an
adversarial learning strategy similar with WGANs.
Wasserstein GANs. Goodfellow et al. [9] first propose
GANs to generate distribution similar with the target distri-
bution. But the original GANs are difficult to train. Many
efforts have been devoted to solve the problem. Arjovsky et
al. propose WGANs [10] to deal with this training problem.
WGANs can be viewed as an adversarial game to minimize
the Wasserstein distance between the generated distribution
Pg and the real distribution Pr. With the ground distance c
being the Euclidean distance L2, Eq.(1) can be cast to the
following equation according to the Kantorovich-Rubinstein
duality,

W (Pg,Pr) =
1

K
sup

‖f‖L≤K
Ex∼Pg

[f(x)]− Ex∼Pr
[f(x)], (2)

where the supremum is over all K-Lipschitz functions f .
WGANs consist of two components, critic D and gener-

ator G. The critic D is a neural network to approximate f in
Eq.(2) with weight clipping to ensure that the function family
is K-Lipschitz. It manages to distinguish the critic real distri-
bution and the generated distribution, so as to maximize their
Wasserstein distance. The objective of D is

max
D

Ex∼Pr [D(x)]− Ex∼Pg [D(x)]. (3)

When the objective (3) is trained until optimality, it approxi-
mates the Wasserstein distance. The generator G then aims to
minimize the approximate Wasserstein distance, which leads
to

min
G
−Ex∼Pg

[D(x)] (4)

2.2. Model Architecture

The framework of our model is shown in Figure 2. Our model
consists of two components, generator and critic. The part
of generator plays the role of style space transformation to
map items into the latent style space. The part of critic esti-
mates the Wasserstein distance between the transformed dis-
tributions. In our model, we have one critic D and category-
specific generators G = {Gc1 ,Gc2 , ...}, since each category
has its own unique characteristics. Accordingly, the style vec-
tor sx of item x in the style space can be calculated as,

sx = Gcivx, (5)

where x ∈ Ici , Gci is the transformation matrix correspond-
ing to the category ci.
Distribution-level Distance Minimization. This is an unsu-
pervised part, not requiring supervision of compatible pairs.
Different from WGANs minimizing the Wasserstein distance
between the generated distribution and real distribution, SC-
GANs minimize the Wasserstein distance between dyadic
transformed category distributions in the style space as shown
in Figure 2. We here take two categories ci, cj for example.
The Wasserstein distance between transformed distribution in
the latent style space Pci and Pcj of categories ci, cj can be
estimated as:

W (Pci ,Pcj ) =

1

K
sup

‖f‖L≤K
Ex∼Ici [f(Gcivx)]− Ex∼Icj [f(Gcjvx)].

(6)

Following WGANs, we approximate f with the critic D,
whose objective is,

max
D

Ex∼Ici [D(Gcivx)]− Ex∼Icj [D(Gcjvx)]. (7)

When the objective (7) is trained until optimality, it approxi-
mates the Wasserstein distance between distributions Pci and
Pcj . The generators aim to minimize this distance as,

min
Gci

,Gcj

Ex∼Ici [D(Gcivx)]− Ex∼Icj [D(Gcjvx)]. (8)

Item-level Distance Minimization. This is a supervised
part. The generators should also keep the compatible pairs
close, which play the role of anchor points to help align the
distributions. In addition, we impose an orthogonal constraint
on the transformation matrices to keep structural information,
according to [4]. Overall, we have the following objective for
generators:

min
Gci

,Gcj

Ex∼Ici [D(Gcivx)]− Ex∼Icj [D(Gcjvx)]

+ η
∑

x∈Ici ,y∈Icj ,(x,y)∈P

∥∥Gcivx −Gcjvy
∥∥2

2

+ λ
∥∥GciG

T
ci −E

∥∥
F

+ λ
∥∥∥GcjG

T
cj −E

∥∥∥
F
,

(9)



Algorithm 1 SC-GANs
Require: G = {Gc1 ,Gc2 , ...}: generators. D: critic. m:

batch size. l: the gradient clip bound. λ, η: coefficients.
ncritic: the number of critic iterations per generator iter-
ation.

1: Randomly initialize G and D, set t = 0;
2: while (G,D) not converged do
3: Sample ci, cj ∈ C ; t← t+ 1;
4: Sample {x(i)}mi=1 ∈ Ici , a batch of items from Ici ;
5: Sample {y(i)}mi=1 ∈ Icj , a batch of items from Icj ;
6: Sample (x, y) ∈ P, x ∈ Ici , y ∈ Icj , a batch of com-

patible pairs from P;
7: if t mod ncritic = 0 then
8: Update Gci and Gcj by descending:

1
m

∑m
i=1D(Gcixi)− 1

m

∑m
i=1D(Gcjyi)

+η
∑
x∈Ici ,y∈Icj ,(x,y)∈P

∥∥Gcivx −Gcjvy
∥∥2

2

+λ
∥∥GciG

T
ci −E

∥∥
F

+ λ
∥∥∥GcjG

T
cj −E

∥∥∥
F

;
9: end if

10: Update D by ascending:
1
m

∑m
i=1D(Gc1xi)− 1

m

∑m
i=1D(Gc2yi);

11: D ← clip(D,−l, l);
12: end while

where λ, η are coefficients and E is the identity matrix.
Learning the Model. The training process of our model is
shown in Algorithm 1. Since there are many categories in the
training dataset, we only train the critic and two randomly se-
lected category-specific generators each time. The generators
and the critic are trained in a settled proportion ncritic (i.e.,
train the critic ncritic iterations per generator iteration), until
the critic and all the generators converge.
Distance and Compatibility. After training, the compati-
ble items of different categories are close in the learned style
space. Therefore, we can calculate the distance between items
x ∈ Ici , y ∈ Icj in the style space as,

d(x, y) =
∥∥Gcivx −Gcjvy

∥∥2

2
. (10)

Following [1], their compatibility is related to the distance as,

r(x, y) = σ(−d(x, y)) =
1

1 + ed(x,y)
. (11)

3. EXPERIMENT

3.1. Datasets

We conduct experiments on two datasets: the Amazon “also-
bought” dataset and the Taobao dataset.
Amazon “also-bought” dataset. Amazon dataset was col-
lected by McAuley et al. [1]. Following previous work, the
“also-bought” relationships are used as compatibility in the
five clothing categories, “Women”, “Men”, “Girls”, “Boys”
and “Baby”. There are totally 1101118 items from 263 sub-
categories and 3457219 relationships covering all the items.

Although it is commonly used by previous works [1, 2, 6],
the relationship “also-bought” is not totally equal to compat-
ibility. To compare our method with others in case of lacking
enough supervision covering all the items, we randomly se-
lect 0.5, 1, 2 permillage of compatible pairs in the Amazon
dataset as seeds to form the training dataset and 20% to form
the testing set.
Taobao dataset. Taobao dataset is a collection of outfits of
women clothing on Taobao.com released by Alibaba Group2,
in which compatibility was manually labelled by fashion ex-
perts. The taobao dataset consists of 499983 items from 71
categories. There are 407152 compatibility relationships cov-
ering 60767 items. Since the compatibility doesn’t cover all
the items, it’s suitable to test the performances of these meth-
ods in the real scenario. We thus conduct experiments on the
whole dataset with 80% for training and 20% for testing. For
the two datasets (Amazon and Tabao), we denote the training
set as Ptrain and testing set as Ptest.

3.2. Compared Methods

Nearest Neighborhood (NN) is a traditional unsupervised
method. The dimensionality of raw item features is reduced
to d by PCA, and then their Euclidean distance are used to
measure the compatibility. Category Tree (CT) measures the
compatibility between two items using the co-occurrences be-
tween their categories. Low-rank Mahalanobis Transform
(LMT) models the relationships between items in the style
space via a single low-rank Mahalanobis embedding matrix
[1]. Mixtures of Non-Metric Embeddings for Recommen-
dation (Monomer) is proposed by He [2]. This method maps
the compatible items into K latent style spaces to compute
weighted sum of theK distances between the two items. UC-
GANs is the unsupervised version of SC-GANs, with only
distribution-level distance minimization.

3.3. Experimental Settings

We set the dimensionality of style vectors d in all compared
methods as 128, the orthogonal regularization coefficient λ as
0.01, η as 0.1. RMSProp is adopted for gradient descent, with
the learning rate 0.001. The gradient clip bound l is −1 and
the batch size m is 30. ncritic is 5, i.e., we train the critic
5 iterations per generator iteration. When testing, for each
compatible pair (x, y) ∈ Ptest we randomly select an item to
replace y to generate a negative pair (x, y−). We adopt the
widely used AUC (Area Under the ROC curve) as metric,

AUC =
1

|Ptest|
∑

(x,y)∈Ptest

δ
(
r(x, y) > r(x, y−)

)
, (12)

where δ (a) is an indicator function that returns one if the ar-
gument a is true and zero otherwise.

2 https://tianchi.aliyun.com/datalab/index.html.

https://tianchi.aliyun.com/datalab/index.html


Table 1. Performance comparison on the Amazon “also-
bought” dataset evaluated by AUC. Seed refers to the permil-
lage of compatible pairs in the whole dataset.

Method Seed Women Men Girls Boys Baby

NN 0 0.5674 0.5900 0.5229 0.5799 0.5340

CT
0.5 0.5813 0.5943 0.5100 0.5181 0.5206
1 0.6159 0.6235 0.5510 0.5796 0.5859
2 0.6373 0.6341 0.6073 0.6182 0.6049

LMT
0.5 0.6802 0.6722 0.6162 0.6062 0.6301
1 0.6892 0.6812 0.6616 0.6822 0.6518
2 0.7270 0.7111 0.6707 0.6984 0.7391

Monomer
0.5 0.6897 0.6892 0.6613 0.6691 0.6307
1 0.6911 0.6923 0.6977 0.6742 0.6422
2 0.7311 0.7403 0.7210 0.7301 0.6506

UC-GANs 0 0.7369 0.7248 0.6916 0.7307 0.6565

SC-GANs
0.5 0.7554 0.7620 0.7183 0.7311 0.6997
1 0.7634 0.7702 0.7682 0.7391 0.7297
2 0.7899 0.7906 0.7778 0.7574 0.7434

Table 2. Performance comparison evaluated by AUC on the
whole Taobao Dataset, in which the annotated compatibility
relationships don’t cover all the items.

Method NN CT LMT Monomer UC-GANs SC-GANs

TaoBao 0.5183 0.6168 0.7335 0.7897 0.8239 0.8421

3.4. Performance Comparison

The performances on Amazon dataset and Taobao dataset are
shown in Table 1 and 2 respectively. On both datasets, CT
achieves better performance than NN, which indicates that
categorical information is necessary for learning compatibil-
ity. As can be seen, the performances of supervised mod-
els improve with supervision increasing on Amazon dataset,
which demonstrates that these supervised methods need mas-
sive supervision to achieve considerable performance. Com-
pared with the supervised methods LMT and Monomer, UC-
GANs achieve highly competitive performance on Amazon
dataset and much better performance on Taobao dataset,
which may due to the higher quality of annotated compatible
relations in Taobao dataset. In a word, this finding confirms
the effectiveness of distribution alignment on the task of com-
patibility learning across categories. SC-GANs outperform
UC-GANs with item-level supervision, suggesting the com-
bination of item-level distance minimization and distribution-
level can better align distributions indeed. Overall, we can see
that our semi-supervised method SC-GANs outperform other
supervised methods in case of lacking massive supervision
covering enough items, which is effective in real applications.

3.5. Model Analysis

We first verify that aligning the distributions can make the
compatible items close. The Wasserstein distance between

0 1 2
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Fig. 3. The change of AUC and Wasserstein distance along
with the training process on a toy dataset consisting of two
categories in the Taobao dataset.

Table 3. The AUC results of ablation study on SC-GANs

Method TaoBao
Amazon

Women Men Girls Boys Baby

SC-GANs(-O) 0.5947 0.5412 0.5318 0.5612 0.5042 0.5528

SC-GANs(-A) 0.7119 0.6608 0.6463 0.6174 0.6007 0.5519

SC-GANs(1G) 0.6856 0.7187 0.7278 0.6373 0.6815 0.6555

SC-GANs 0.8421 0.7899 0.7906 0.7778 0.7574 0.7434

two distributions indicates the degree of their alignment. We
train the model on a toy dataset consisting of two randomly
selected categories in the Taobao dataset. The change of AUC
and Wasserstein distance along with the training process is
shown in Figure 3. It is obvious that the Wasserstein dis-
tance is strongly correlated with AUC, which suggests that
it’s effective to minimize the Wasserstein distance (aligning
the distributions) for shortening the distances between com-
patible items.

We then look into each component in SC-GANs, the or-
thogonal constraint, category-specific style transformations
and adversarial learning strategy. We compare our full model
with the following models. SC-GANs(-O) doesn’t have the
orthogonal constraint on generators. SC-GANs(-A) min-
imizes the Wasserstein distance without using adversarial
learning strategy [11]. SC-GANs(1G) has only one trans-
formation matrix for all categories. The experiments are con-
ducted on the whole Taobao datatset and Amazon dataset with
2‰ annotated relationships.

Performance comparison is shown in Table 3. We no-
tice that without the orthogonal constraint the performance is
nearly equal to random guess. A possible explanation is that
the transformation matrix may try to map all the items into a
tiny area, in which case it’s hard to distinguish which are com-
patible. SC-GANs outperforms SC-GANs(-A), which im-
plies that the adversarial learning strategy can better minimize
the distances of distributions. Compared with SC-GANs(1G),
the better performance of SC-GANs suggests that it’s hard to
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Fig. 4. Visualization of the original and transformed distri-
butions in the learned style space of tops and shoes. Circles
represent shoes and triangles represent tops. The circles and
triangles in same colors have same styles.

learn one general transformation matrix for all the categories.
Therefore, it’s necessary to give different categories different
transformation matrices.

3.6. Visualization

To intuitively illustrate that our proposed method can align
the distributions and make compatible items with same styles
close, we randomly select some tops and shoes from the
Taobao dataset and show their original and transformed dis-
tributions in Figure 4, with their raw image features and style
vectors reduced to 2-D by PCA. Circles represent shoes and
triangles represent tops. The circles and triangles in same
colors have same styles. Red represents casual style, blue
represents formal style and green represents sports style. It
can be seen the items in the original space cluster accord-
ing to category and the compatible tops and shoes with same
styles are distant. The distributions of tops and shoes have
similar structures but different orientations and scales. After
transformed into the learned style space, the two distributions
become close. The items cluster according to style instead of
category, which verifies the effectiveness of our method.

4. CONCLUSIONS

In this work, we first propose to consider the task of compat-
ibility learning from item level to distribution level. We find
that aligning distributions of different categories can make
compatible items with same styles close. Achieving the align-
ment by minimizing the distance between distributions and
also some annotated compatible items, we propose a semi-
supervised method SC-GANs to learn compatibility across

categories for clothing matching. In fact, the item-level dis-
tance minimization part in our work can be replaced with any
supervised clothing matching method, which can be improved
in the future work.
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