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Abstract—We have developed a new semi-automatic neural 
network based method to detect blotches with low false alarm 
rate on archive films. Blotches can be modeled as temporal 
intensity discontinuities, hence false detection results originate 
from object motion (e.g. occlusion), non-rigid objects or 
erroneous motion estimation. In practice, usually, after the 
automatic detection step the false alarms are removed manually 
by an operator, significantly decreasing the efficiency of the 
restoration process. Our post-processing method classifies each 
detected blotch by its image features to minimize false results and 
the necessity of human intervention. The proposed method is 
tested on real archive sequences. 

Keywords-digital film restoration; blotch detection; machine 
learning 

I.  INTRODUCTION 
In national film archives there are huge amounts of archive 

films to be restored. These films suffer from several 
degradations such as blotches, scratches, flickering (intensity 
fluctuation), image vibration (displacement of adjacent frames), 
fading, discoloring, etc. Besides traditional analog techniques, 
semi-automatic digital restoration methods provide an efficient 
way to achieve cost efficient saving and reconstruction of the 
film heritage, i.e. fast, robust and automatic processing with a 
minimal human invention.  

Some types of very annoying errors are called one frame 
defects and they are mostly visible as blotches. These artifacts 
appear at random positions on consecutive frames and with 
high contrast against the background. They have arbitrary 
shape, size and varying range of intensity (from bright to dark). 
Blotches are usually caused by dirt, damage of the film surface 
and chemical or biological processes such as mold. Blotches 
can be modeled as temporal discontinuities of pixel intensity 
not originating from object motion (occlusion, disocclusion) or 
non-rigid objects. A typical restoration procedure of one-frame 
defects is the following [9]: (1) detection of the defected 
regions, (2) interpolation of the corrupt image regions by 
spatio-temporal inpainting methods. In practice, after the 
automatic detection an operator manually verifies and corrects 
false results. In case of lots of false alarms the latter step is time 
consuming and results in a bottleneck of the restoration 

process. Our paper deals with an automatic detection step and 
with the minimization of the human intervention. The tuning of 
the detection parameters gives a trade-off between high correct 
detection and low false alarm rate (when an object is wrongly 
detected as artifact). In general, we prefer lower false alarm 
rate rather than high detection rate because the replacement of a 
real object with any inpainting, due to false detections, causes 
loss of original image details (e.g. buttons on the clothes) not 
acceptable by archivists. Hence an automatic method is needed 
to reduce false alarms of the previously detected blotches by 
classifying them. Serious problems are the influence of 
local/global motion and the presence of other film degradations 
such as vibration or flickering that yield false alarms in the 
detection phase. Further difficulty is the huge amount of data to 
be processed (e.g. motion estimation) at high resolution 
processing (2000x1500 pixels (2K) or higher) of 35mm archive 
films.  

Our paper presents a blotch detection method with 
hierarchical gradient-based motion estimation with low 
computational cost. Optical flow calculation reduces false 
alarm detection rate owing to the object motion or image 
vibration. This step contains a preliminary detection step that 
speeds up the computation time of the optical flow by a pre-
selection of the regions to be processed. Our main result is the 
improvement of detection efficiency during post-processing by 
a feature based neural network (NN) classification. This is 
essential to achieve a cost effective and efficient restoration by 
the reduction of the human intervention. 

II. OTHER WORKS 
Main approaches of blotch detection methods are in the 

following two groups: (1) detection by analysis of contrast or 
local maxima/minima; (2) methods based on the detection of 
temporal discontinuities. The first group includes 
morphological operator based methods [12],[7],[14],[4] 
resulting in low complexity because they do not require 
temporal analysis such as motion estimation. Methods in the 
second group are based on the detection of temporal 
discontinuities like the SDI (Spike Detection Index) [9], ROD 
(Rank Ordered Differences) [11][5], MRF (Markov Random 
Field) [8] methods. According to the comparative evaluation of 
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these methods [11] ROD resulted in the highest accuracy while 
its computational cost was lower than MRF but higher than 
SDI.  

A simplified ROD detector (SROD) was introduced in [13], 
which has lower complexity with approximately the same 
accuracy and moreover it comprises only one parameter. 
According to the temporal characteristics of blotches the 
SROD method analyses the maximal intensity difference 
between the actual pixels and the set of neighboring pixels on 
the preceding and consecutive images [6].  

A common way to improve the detection accuracy of the 
temporal discontinuities is the analysis of motion compensated 
images of the previous and the following frames (bi-directional 
compensation). Methods usually apply block matching 
methods with multi-scale processing [2][13][11], and several 
heuristic searching (e.g. logarithmic) methods [5][2] to increase 
the computation speed. The drawbacks are that they do not 
guarantee optimal detection and the estimation gives only pixel 
accuracy. Our method works on 2–6K [3] resolution at 
reasonable speed. For this reason we have developed a 
modified hierarchical gradient-based method, which results 
sub-pixel accuracy and it is optimized for the fast detection of 
blotches. 

III. THE PROPOSED BLOTCH DETECTION METHOD 
 

 

Fig. 1. Processing flow of the proposed blotch detection method. 

Our aim is to accelerate the motion estimation and to 
decrease the false results on the detected blotch mask. The 
main steps of our algorithm are the following (see Fig. 1): 

1. Initial detection: detection of the blotch mask by the 
low complexity SROD method without motion compensation. 
This operation serves high detection rate but also high false 
alarm rate due to uncompensated motions. Hence following 
steps aim at the decreasing of the false alarm results by filtering 
the detected blotches. 

2. Main detection step: SROD detection with bi-
directional motion compensation. This step reduces false 

alarms caused by object motion hence the motion estimation 
and compensation are done only on the initial blotch mask as 
ROI (region of interest). 

3. Post-processing step: a neural network based 
classification method investigates the features of the defected 
image regions and omits residual false detections originating 
from the erroneous motion estimation caused by complex 
motion or object occlusion problem.  

A. The blotch detector and the motion compensation 
At least three frames are necessary to find one-frame 

defects so estimation is calculated with bi-directional motion 
compensation between the actual and neighboring images. We 
use a hierarchical gradient-based motion estimation method [1] 
that is based on Horn and Schunck’s [6] optical flow constraint 
equations where the motion is modeled by simple translations. 
The applied constraints assume that pixel motion varies 
smoothly and continuously hence the frame-to-frame 
displacement is relatively small. To overcome this problem the 
method of Bergen [1] uses a multi-scale technique, employing 
a pyramid of successively low passed versions of the images. 
In this pyramid one finer image level is geometrically warped 
with bilinear interpolation by the scaled motion vectors of the 
previous level. Then the motion estimation on this warped level 
gives the residual finer motion resulting in a coarse-to-fine 
motion detection mechanism and this way we generate the 
motion compensated (MC) image at the same time.  

The bi-directional optical flow calculation and the motion 
compensation of neighboring images are only processed in the 
predefined ROI of the initial SROD detection. The increase of 
the computation speed depends on the amount of object 
motions that in our experiments was a factor of two. Our blotch 
detection method takes about 10 seconds on a standard 1.7Ghz 
PC on 2K resolution. The problem with the gradient-based 
motion estimation method is that it fails in the presence of 
temporal intensity variation (flicker), which is very common in 
case of archive films. Hence, we have to take into 
consideration the brightness variation and compensate it before 
the optical flow calculation. An efficient and robust flicker 
correction is implemented in [13]; the compensation parameters 
(1) of the linear flicker model (multiplicative and additive noise 
parameters) are calculated from the first order moments (mean: 
E[.], variance: Var[.]) in a given block (B) corresponding to the 
least mean square solution of the problem: 

][
][ 1

t

t

BVar
BVara −= , ][][ 1 tt BEaBEb ⋅−= − , (1) 

( ) ( ) byxBayxB tt +⋅=′ ,, , 

where a and b are the compensation parameters of block B 
to calculate corrected intensity values in coordinate points 
(x,y). The solution of the low variance and local motion is 
detailed in [13]. For more accurate detection the block 
positions between adjacent frames are compensated by global 
motion parameters [10]. 
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B. Post-processing method by neural network 
Several post-processing methods are implemented in [13], 

such as hysteresis thresholding or constrained region growing 
of blotches to complete partially detected blotches. These 
methods analyze only the probability mask of the detector. Our 
new approach is a blotch-analyzing step where the brightness 
(luminance channel) of the image, localized by the mask, is 
analyzed and classified as blotch or as real object (non blotch). 
This classification is done by a feed-forward neural network 
trained by the image features of the detected blotches.  

Our supervised training is divided into two phases: (1) 
detection and displaying of the blotches by the previously 
described automatic method in the selected frame for training 
purposes; (2) operator selects typical examples of positive 
(detected and displayed blotch is a real artifact) and negative 
(displayed blotch is not an artifact) samples by framing them 
with a rectangle. Features used to teach the neural network are 
as follows: the maximal horizontal and vertical intensity 
change inside the blotch area, local internal intensity contrast 
inside the blotch area, local internal mean and variance of the 
blotch area, and 3 parameters from the pixels neighboring the 
blotch candidate: external local contrast, mean and variance.  

These parameters can distinguish real artifacts from false 
alarm objects, which are caused by erroneous motion 
estimation in case of small bright/dark objects (e.g. buttons on 
clothes) or fast moving objects, due to the motion blur or non-
rigid motion. The human operator trains the system with 20 – 
30 samples from 2 – 4 frames. After the back-propagation 
training of the network the blotches are detected automatically 
by the proposed method with neural network post filtering on 
the whole sequence. If the result is not satisfactory, the operator 
can expand the training set with new samples or rebuild the 
whole training set. This post-processing can reduce the false 
detection rate significantly. We tested a feed-forward neural 
network with back-propagation learning and found an optimal 
setup of the network configuration as follows: 6 inputs with 
extracted image features, 1 output with result of the decision 
and with 2 hidden layers with 6 and 4 neurons. 

IV. EXPERIMENTAL RESULTS 
The objective evaluation of detection methods are done by 

the Receiver Operating Characteristic (ROC) curve (Fig. 2) that 
summarizes the probabilities of the correct detection and false 
alarm rates measuring it with several detection parameters. 

Usually, the performance of other detection methods is 
statistically evaluated on artificially generated test sequences. 
Randomly selected image regions are replaced with a rendered 
blotch defined by a simple blotch model, i.e. homogenous 
blotch with sharp contour. On the contrary, our method is 
tested on real archive sequences so the ground truth data set of 
real artifacts is produced by manually marking blotches on real 
archive films. This is important because our post-processing 
method analyzes the intensity information of the detected 
regions and in case of artificially generated blotches the applied 
blotch model determines these. The test sequences are from the 
first Hungarian color film “Mattie the Goose-Boy”. In our 
example two sequences (marked as A and B) were tested after 
the operator trained them by samples from the two sequences. 

We compared our proposed method of post-processing and the 
method based on the SROD detector of motion compensation. 
In the first test configuration the system was trained on 
sequence A and then tested with both sequences while in our 
second test the system was trained on B by the operator. It can 
be observed that if the training samples are from the same shot 
as the testing sequence then our proposed method results lower 
false alarms (if the image contains lots of false alarm to be 
reduced). If the training samples and test images are from 
distinct sequences then the improvement is not guaranteed (see 
the bottom graphs on Fig. 2). Fig. 2 shows the test results on 
the ROC curves where samples were trained with the A and B 
sequences. The training set involved about 10–20 manual 
selections and the method was tested on about 200 blotches. 

 

 

Fig. 2. Receiver Operating Characteristic (ROC) curve: performance 
evaluation of the standard SROD and our proposed method on A and B 

sequences and trained by one of them. 

 

In Fig. 3 there is an example of our classification method 
where circles and rectangles indicate the detected blotches and 
the radius of them illustrate the size of the blotches. Rectangles 
indicate that our classification method identified the blotch as 
real object otherwise it is recognized as valid blotch. You can 
see that the buttons of clothes were recognized correctly as not 
being a blotch. 

 

Trained by "A" sequence

0.5

0.6

0.7

0.8

0.9

1

0.0001 0.001 0.01

False alarm rate

C
or

re
ct

 d
et

ec
tio

n 
ra

te SROD with MC on
A seq.

Our proposed NN
method tested on
seq A
SROD with MC on
B seq

Our proposed NN
method tested on
seq B

Trained by "B" sequence

0.5

0.6

0.7

0.8

0.9

1

0.0001 0.001 0.01

False alarm rate

C
or

re
ct

 d
et

ec
tio

n 
ra

te SROD with MC on
A seq.

Our proposed NN
method tested on
seq A
SROD with MC on
B seq

Our proposed NN
method tested on
seq B

II-564



 

Fig. 3. Classification results of our post-processing method: original image 
(top), classification results (middle) and its zoomed image parts (bottom), 

where false alarms of the initial detections are marked with rectangles. 

 

V. CONCLUSION AND FUTURE WORKS 

We showed that our neural network based post-processing 
method significantly improves the detection efficiency by the 
automatic reduction of the false alarms without human 
intervention. Furthermore our optimized blotch detector speeds 
up the main detection phase and the motion estimation is 
invariant to flicker artifacts. These improvements make our 
method a cost effective blotch detection tool. In the future we 
aim to determine more consistent and robust blotch features for 
the classification and we intend to combine temporal methods 
with morphological operators to improve recognition 
efficiency. 
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