LAUR- 00 -894%

Approved for public release;
distribution is unlimited.

Title: | Scheduling with Global Information in Distributed Systems

Author(s): | Fabrizio Petrini and Wu-chun Feng

Submitted to: | The 20th International Conference on Distributed Computing

Systems

Los Alamos

NATIONAL LABORATORY
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S.
Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government
retains a nonexclusive, royalty-free ficense to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S.
Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the
auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to
publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.
Form 836 (10/96)

DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefuiness of any
information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States

Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document..

Scheduling with Global Information in Distributed Systems *

Fabrizio Petrinit and Wu-chun Feng!®
{fabrizio, feng}@lanl.gov

t Computing, Information, and Communications Division
Los Alamos National Laboratory

d

2UTe

JEGEIVED
0CT 0 4 2800

Los Alamos, NM 87545

¥ School of Electrical & Computer Engineering

OST

Purdue University
W. Lafayette, IN 47907

_Abstract

Buffered coscheduling is a distributed scheduling
methodology for time-sharing communicating processes in
a distributed system, e.g., PC cluster. The principle mech-
anisms involved in this methodology are communication
buffering and strobing. With communication buffering,
communication generated by each processor is buffered and
performed at the end of regular intervals (or time slices)
to amortize communication and scheduling overhead. This
regular communication structure is then leveraged by in-
troducing a strobing mechanism which performs a total ex-
change of information at the end of each time slice. Thus,
a distributed system can rely on this global information to
more efficiently schedule communicating processes rather
than rely on isolated or implicit information gathered from
local events between processors.

In this paper, we describe how buffered coscheduling is
implemented in the context of our SMART simulator. We
then present performance measurements for two synthetic
workloads and demonstrate the effectiveness of buffered
coscheduling under different computational granularities,
context-switch times, and time-slice granularities.
Keywords: distributed resource management, parallel job
scheduling, distributed operating systems, co-scheduling,
gang scheduling.

1. Introduction

The scheduling of parallel jobs has long been an active
area of research [7, 8]. It is a challenging problem because

*This work was supported by the U.S. Dept. of Energy through Los
Alamos National Laboratory contract W-7405-ENG-36.

the performance and applicability of parallel scheduling al-
gorithms is highly dependent upon factors at different lev-
els: the workload, the parallel programming language, the
operating system (OS), and the machine architecture.

Time-sharing scheduling algorithms are particularly at-
tractive because they can provide good response time with-
out migration or predictions on the execution time of the
parallel jobs. However, to achieve good performance,
time-sharing algorithms require communicating processes
to be scheduled simultaneously. This is a critical prob-
lem because the software communication overhead and the
scheduling overhead to wake up a sleeping process domi-
nate the communication time on most parallel machines.

In recent years, researchers have developed parallel
scheduling algoﬁthms that can be loosely organized into
three main classes, according to the degree of coordination
between processors: explicit coscheduling, local scheduling
and implicit or dynamic coscheduling.

On the one end of the spectrum, explicit coscheduling [6]
ensures that the scheduling of communicating jobs is coor-
dinated by creating a static global list of the order in which
jobs should be scheduled and then requiring a simultaneous
context-switch across all processors. Unfortunately, this
approach is neither scalable nor reliable. Furthermore, it
requires that the schedule of communicating processes be
precomputed, thus complicating the coscheduling of appli-
cations and requiring pessimistic assumptions about which
processes communicate with one another. Lastly, explicit
coscheduling of parallel jobs also adversely affects perfor-
mance on interactive and 1/0-based jobs [13].

At the other end of the spectrum is local schedul-
ing, where each processor independently schedules its pro-
cesses. While this approach is attractive due to its ease of
construction, the performance of fine-grain communicating

buffering can theoretically achieve performance compara-
ble to user-level network interfaces (i.e., OS-bypass proto-
cols) [2] without using specialized hardware.

3.2 Strobing

The uneven resource utilization and the periodic, bursty
communication patterns generated by many parallel appli-
cations can be exploited to perform a total exchange of in-
formation and a synchronization of processors at regular in-
tervals with little additional cost. This provides the paral-
lel machine with the capability of filling in communication
holes generated by parallel applications.

In order to provide the above capability, we propose a
strobing mechanism to support the scheduling of a set of
parallel jobs which share a parallel machine. Let us assume
that each parallel job runs on the entire set of p proces-
sors, i.e., jobs are time-sharing the whole machine. At a
high level, the strobing mechanism performs an optimized
total-exchange of control information which then triggers
the downloading of any buffered packets into the network.

~ The strobe can be implemented by designating one of the
processors as the master, the one who generates the “heart-
beat” of the strobe. The generation of heartbeats is achieved
by using a timeout mechanism which can be associated with
the network interface card (NIC). This ensures that strob-
ing incurs little CPU overhead as most NICs can count
down and send packets asynchronously. This is true for a
wide range of NICs, ranging from simple 100-Mb/s Ether-
net cards to more sophisticated cards such as Myrinet [3].

On reception of the heartbeat, each processor (exclud-
ing the master) is interrupted and downloads a broadcast
heartbeat into network. After downloading the heartbeat,
the processor continues running the currently active job.
(This ensures computation is overlapped with communica-
tion.) When p heartbeats arrive at a processor, the proces-
sor enters a strobing phase where its kernel downloads any
buffered packets to the network!.

Figure 2 outlines how computation and communication
can be scheduled over a generic processor. At the beginning
of the heartbeat, ¢y, the kernel downloads control packets
for the total exchange of information. During the execu-
tion of the barrier synchronization, the user process then re-
gains control of the processor; and at the end of it, the kernel
schedules the pending communication accumulated before
tg to be delivered in the current time slice, i.e., . At ¢;, the
processor will know the number of incoming packets that it
is going to receive in the communication time-slice as well

!Each heartbeat contains information on which processes have packets
ready for download and which processes are asleep waiting to upload a
packet from a particular processor. This information is characterized on a
per-process basis so that on reception of the heartbeat, every processor will
know which processes have data heading for them and which processes on
that processor they are from.

Computation

Communication

K = kemel
TIME

Figure 2. Scheduling Computation and Com-
munication. The communication accumu-
lated before t; is downloaded into the network
between ¢, and ¢,.

as the sources of the packets and will start the downloading
of outgoing packets.

This strategy can be easily extended to deal with space-
sharing where different regions run different sets of pro-
grams {6, 12, 21]. In this case, all regions are synchronized
by the same heartbeat.

The total exchange of information can be properly op-
timized by exploiting the low-level features of the inter-
connection network. For example, if control packets are
given higher priority than background traffic at the send-
ing and receiving endpoints, they can be delivered with
predictable network latency? during the execution of a di-
rect total-exchange algorithm® (Figure 3). We generated

Network latency distribution of the control packets
1400 T T T T T

1200

1000

800

Packets

600

400

0 5 10 15 20 25 30
Network latency {isec)

Figure 3. Network Latency Distribution.

this distribution using a network of 256 processing nodes
equipped with wormhole routers similar to those in the SGI

2The network latency is the time spent in the network without including
source and destination queueing delays.

3In a direct total-exchange algorithm, each packet is sent directly from
source to destination, without intermediate buffering.

communicating processes do not need to be simultaneously
scheduled to perform the communication.

3.4 Bulk-Synchronous Parallel Programs

Using our proposed strobing and buffering mechanisms,
any generic parallel program can be transformed into a
Bulk-Synchronous Parallel (BSP) one [19]. Although the
buffering and strobing mechanisms alone improve parallel
program performance, transforming a parallel program into
a BSP one not only can improve performance further but
also allows for accurate prediction of the execution times.

A BSP computation consists of a sequence of parallel
supersteps. During a superstep, each processor can per-
form a number of computation steps on values held locally
at the beginning of the superstep and can issue various re-
mote read and write requests that are buffered and delivered
at the end of the superstep. This implies that communica-
tion is clearly separated from synchronization, i.e. it can
be performed in any order, provided that the information is
delivered at the beginning of the following superstep. How-
ever, while the supersteps in the original BSP model can be
variable in length, our programming model generates com-
putation and communication slots which are fixed in length
and are determined by the time-slice.

One important benefit of the BSP model is the ability to
accurately predict the execution time requirements of paral-
lel algorithms and programs. This is achieved by construct-
ing analytical formulae that are parameterized by a few
constants which capture the computation, communication,
and synchronization performance of a p-processor system.
These results are based on the experimental evidence that
the generic collective communication pattern generated by
a superstep called h-relation* can be routed with predictable
time [9, 17]. This implies that the maximum amount of in-

formation sent or received by each processor during a com- -

‘munication time-slice can be statically determined and en-
forced at run time by a global communication scheduling
algorithm. For example, if the duration of the time-slice is
¢ and the permeability of the network (i.e., the inverse of the
aggregate network bandwidth) is g, the upper bound h,q,
of information, expressed in bytes, that can be sent or re-
ceived by a single processor is fipey = %. Furthermore, by
globally scheduling a communication pattern, as described
in Section 3.2, we can derive an accurate estimate of the
communication time with simple analytical models already
developed for the BSP mode] [4].

Another important benefit of the BSP model is higher
resource utilization over the parallel machine, irrespective
of the computational and communication patterns. For ex-
ample, a sparse communication pattern (where a single pro-

4h denotes the maximum amount of information sent or received by
any process during the superstep.

cessor receives hyp,, bytes) or a more dense communica-
tion pattern (where more processors share the same upper
bound) can be routed in the same communication time-
slice. This means that it is possible to use spare commu-
nication bandwidth to deliver packets generated by other
parallel jobs without detrimental effects. More generally,
as with any multiprogrammed system, multitasking a col-
lection of bad (paraliel) programs, i.e., unbalanced compu-
tation or communication, may produce the same behavior as
a single well-behaved (parallel) program. Multitasking can
provide opportunities for filling in “spare communication
cycles” by merging sparse communication patterns together
to produce a denser communication pattern.

Lastly, the BSP model is also beneficial for fault tol-
erance’. Fault tolerance can be naturally implemented by
checkpointing the machine at the synchronization points at
the end of a time-slice.

4 Experimental Results

Our preliminary results include a working implemen-
tation” of a representative subset of MPI-2 on a detailed
(register-level) simulation model [18]. The simulation en-
vironment includes a standard version of MPI-2 and a mul-
titasking one that implements the main features of our pro-
posed methodology.

4.1 Characteristics of the Synthetic Workloads -

As in {5], the workloads used consist of a collection
of single-program multiple-data (SPMD) parallel jobs that
alternate phases of purely local computation with phases
of interprocess communication. A parallel job consists
of a group of P processes where each process is mapped
onto a processor throughout its execution. Processes com-
pute locally for a time uniformly selected in the interval
(9 — 3,9+ %). By adjusting g, we model parallel pro-
grams with different computational granularities; and by
varying v, we change the degree of load-imbalance across
processors. The communication phase consists of an open-
ing barrier, followed by an optional sequence of pairwise
communication events separated by small amounts of local
computation, ¢, and finally an optional closing barrier.

We consider two communication patterns: Barrier and
Transpose. Barrier consists of only the opening barrier and
thus contains no additional dependencies. This workload
can be used to analyze how our methodology responds to
load imbalance. Transpose is a communication-intensive
workload that emulates the communication pattern gener-
ated by the FFT transpose algorithm

5This is of vital importance to the large ASCI supercomputers where
the MTBF can be on the order of hours.

Timeskce 500 us, Context Switch 200 us.
soms 10ms &ms tme SO00us

o.
»
3
a;
o.
o.
o

£
)
¥

00

b)

Timeslice 500 us, Context Switch 100 us
m s

some j0ms Sms U $00us 100 us soms 10m
‘

v T BT 8T O 2
5 BE RE VAR =W =N
Timeslice 500

us, Context Switch 50 us
,50ms Joms Sms 1ma_ S00us 100us

Fracton of Tima
2 o08 s

o

o
. o
] Swich 7
Idie 52
0 Compute .§.

00 o8

l)c

Timeskoe 1 ms, Context
o Sma 1

T

ﬁ.,.., g
.
s toms Sms . .
=
2
T T T BT

Switch 100 us
ms 500us 400 us

Timesloce 1 ms, Context Switch 200 us
Soms 10ma Sms ims

5000s 100 ur

Timeslice 2 ms, Context Swiich 100 us
Sy ims S00us 100w

2 toms

CREar ey

T T
- as

Timeskes 2 ms, Context Switch 50 us
S0ms 10ms Sms 1ms 500us

100 us.

S 0a

Frackon of Tig

o5 800 ¢

) g

Figure 6. Execution Characteristics of the Barrier Workload.

5. Conclusion

In this paper we have presented buffered coscheduling,
a new methodology to multitask parallel jobs on a parallel
computer. Buffered coscheduling represents a significant
improvement over existing work reported in the literature.
It allows for the implementation of a global scheduling pol-
icy, as done in explicit coscheduling, while maintaining the
overlapping of computation and communication provided
by implicit coscheduling.

We initially addressed the complexity of a huge design
space using two families of synthetic workloads. The pre-
liminary experimental results reported in this paper show
that our methodology can provide betier resource utiliza-
tion, particularly in the presence of load imbalance and
communication-intensive jobs.

We plan to extend these preliminary results by consider-
ing the effects of the memory hierarchy in areal application
rather than in synthetic workloads and to implement a mul-
titasking version of MPI-2 in a Linux cluster.

References

[1]1 A. C. Arpaci-Dusseau, D. Culler, and A. M. Mainwaring.
Scheduling with Implicit Information in Distributed Systems.
In Proceedings of the 1998 ACM Sigmetrics International

{21

(3]

(41

{51

(61

(71

(8]

Conference on Measurement and Modeling of Computer Sys-
tems, Madison, WI, June 1998.

R. A. F. Bhoedjang, T. Riihl, and H. E. Bal. User-Level Net-
work Interface Protocols. IEEE Computer, 31(11):53-60,
November 1998.

N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawick,
C. L. Seitz, J. N. Seizovic, and W.-K. Su. Myrinet: A Gigabit-
per-Second Local Area Network. /EEE Micro, 15(1):29-36,
January 1995.

D. C. Burger and D. A. Wood. Accuracy vs. Performance in
Parallel Simulation of Interconnection Networks. In Proceed-
ings of the 9th International Parallel Processing Symposium,
IPPS’95, Santa Barbara, CA, April 1995.

A. C. Dusseau, R. H. Arpaci, and D. E. Culler. Effective Dis-
tributed Scheduling of Parallel Workloads. In Proceedings of
the 1996 ACM Sigmetrics International Conference on Mea-
surement and Modeling of Computer Systems, Philadelphia,
PA, May 1996.

D. G. Feitelson and M. A. Jette. Improved Utilization and
Responsiveness with Gang Scheduling. In D. G. Feitelson
and L. Rodolph, editors, Job Scheduling Strategies for Par-
allel Processing, volume 1291 of Lecture Notes in Computer
Science. Springer-Verlag, 1997.

D. G. Feitelson and L. Rudolph. Parallel job scheduling: is-
sues and approaches. In D. G. Feitelson and L. Rudolph,
editors, Job Scheduling Strategies for Parallel Processing,
volume 949 of Lecture Notes in Computer Science. Springer-
Verlag, 1995.

D. G. Feitelson and L. Rudolph. Toward Convergence in Job
Schedulers for Parallel Supercomputers. In D. G. Feitelson

4

