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Abstract—Efficient utilisation of scarce resources, mainly radio
and power, are the key research issues in the future Internet of
Things (IoT) networks. This paper proposes an ambient energy
harvesting and backscatter-enabled, energy-constrained cognitive
IoT network. In our proposed scheme, the nodes in the secondary
network efficiently utilise the primary network. More specifically,
depending on the communication states (i.e. between busy or
idle) of the primary network, the secondary nodes chose to
operate either in energy harvesting mode (EHM), backscattering
mode (BSM), or radio-frequency transmission mode (RFM).
Furthermore, to maximise the sum-throughput of the secondary
network, an optimisation problem is formulated and solved. The
simulation results show that the proposed scheme outperforms
the existing scheme regarding network sum-throughput.

Index Terms—IoT, RF energy harvesting, ambient backscatter-
ing, cognitive IoT networks.

I. INTRODUCTION

Internet-of-Things (IoT) basically refers to small physical
devices that wirelessly communicate or exchange information
and are connected to the internet. With the growing applications
of IoT, it is anticipated that more than 50 billion IoT devices
will be connected to the internet by 2025 [1], [2]. Because of
their small and compact size, these IoT devices have limited
battery life and are highly energy-constrained. In practice,
replacing their batteries is either impossible or cost-ineffective,
which yields an overall constrained network lifetime. Hence,
to prolong the network lifetime, one of the convenient options
is to utilise the ambient radio and power resources from the
environment by exploiting wireless energy harvesting (WEH)
and ambient backscatter (ABS) technologies [3], [4].

In WEH technology, ambient radio frequencies (RF) avail-
able in the surroundings are harvested to recharge the IoT
devices [5]. However, in the case of ABS communication, the
transmitter in ABS switches its mode between reflecting and
non-reflecting modes to transmit bits “1“ and “0“, respectively.
At the receiving end, envelope detection and averaging tech-
niques are used to decode the received backscattered informa-

tion [4]. Both WEH and ABS communication technologies can
simultaneously be used in a cognitive radio environment, where
secondary network nodes (SNs) opportunistically utilise the
radio and power resources of the primary network (PN) for both
powering up its battery and information transmission [6]–[10].
More specifically, in WEH and ABS communication-enabled
cognitive radio networks (CRN), the SNs can either adopt RF
energy harvesting mode (EHM) or ABS communication mode
(BSM) during the PN’s busy period. Likewise, during the idle
period, the SNs use the PN’s idle radio resources and perform
radio communication by utilising the energy harvested in the
busy period.

An RF-powered cognitive radio network (CRN) with ABS
communication capabilities has been studied in [11]. A network
throughput maximization problem is formulated to find the
optimal time-sharing among multiple SNs. It has also been
shown that an optimal trade-off point exists between energy
harvesting (EH) time and backscattering time. Gong et al. [10]
proposed a novel method for wireless power transfer (WPT)
to secondary networks via beacon stations. In their proposed
scheme, the secondary nodes used the stored energy for RF
transmission, whereas the other nodes in the network cooperate
as backscatter relay nodes to enhance the overall network
performance. Furthermore, the overall network throughput was
also maximised by optimising both the WPT and relay strategy
to backscatter.

A decode and forward (DF) relay-based cognitive network
with EH and ambient backscatter capabilities was proposed
in [12]. The source node communicates with the destination
node via an energy constraint relay in their proposed scheme.
Besides relaying operation, the relay also cognitively performs
ABS communication to transmit its information to a secondary
node. The performance of the proposed scheme has been
evaluated in terms of outage probability, energy efficiency(EE),
and network sum-rate. In [13], the authors presented a hetero-



geneous IoT network that utilises an opportunistic backscatter
communication medium access control (OBM) protocol. The
proposed protocol improves the network’s EH process and data
transmission efficiency. The network’s throughput and overall
EE are enhanced by optimizing transmission probabilities and
using different contention techniques to minimize collisions. A
novel approach to enhancing the EE of full-duplex backscatter
communications with multiple backscatter devices (BDs) by
enabling EH from both the energy source and preceding BDs
through energy recycling is proposed in [14]. A joint optimiza-
tion of time scheduling, beamforming, and reflection coefficient
adjustment is formulated and solved through Dinkelbach’s
method and an iterative algorithm. Their simulation results
show improved performance compared to legacy schemes. In
[15], the authors propose a novel approach to address the
challenges of localizing and energy harvesting in dynamic RF
environments for IoT networks using backscatter communi-
cation systems. By integrating a machine learning framework
with K-Nearest Neighbors and Random Forest classifiers, they
achieve over 99% precision in localization and demonstrate
the feasibility of RF energy harvesting, ensuring the system’s
robustness and self-sustainability. The authors in [16] intro-
duce a sustainable approach for enhancing the throughput
and enabling wireless charging in underwater networks via
simultaneous wireless information and power transfer (SWIPT)
from an autonomous underwater vehicle (AUV). Addressing
the environmental and operational challenges of the Internet
of Underwater Things (IoUT), they employ a reinforcement
learning (RL) model, formulated as a Markov decision process
(MDP), to optimise AUV trajectories for maximum throughput
and energy efficiency. Preliminary results in a bespoke 3-D RL
MATLAB environment demonstrate a 207% increase in energy
efficiency over conventional methods.

Unlike the above-mentioned papers, this paper focuses on a
WEH and ABS communication-enabled cognitive IoT network.
In our considered scheme, the SNs scavenge the primary net-
work’s ambient power and idle radio resources. Specifically, the
secondary nodes operate in either radio-frequency transmission
mode (RFM), energy harvesting mode (EHM), or backscatter-
ing mode (BSM), depending on the conditions of the primary
network. Moreover, an optimisation problem is formulated and
solved to maximise the overall secondary network throughput.
The optimisation problem aims to find the optimal values
for backscattering time and radio transmission time during
busy and idle states of the primary network, respectively. The
obtained results show that the proposed scheme significantly
improves the overall network sum-rate and superiority over the
existing schemes.

The remainder of this paper is structured as follows: Section
II outlines the considered system model and proposed scheme,
along with the requisite assumptions. Subsequently, the nu-
merical results and findings are detailed in Section III, while
Section IV concludes the paper with a summary of the findings
and implications.

II. SYSTEM MODEL AND PROPOSED SCHEME

We consider a CRN where two different networks, namely,
a primary radio network and a secondary IoT network, exist.
The primary network is assumed to operate in a licensed
band, whereas the secondary IoT network opportunistically
utilizes the ambient power and radio resources of the primary
network. As depicted in Fig.1, the Primary network consists
of a primary transmitter (PT) and multiple primary receivers
(PRs). Likewise, the secondary IoT network is comprised of
𝐾 secondary transceivers (SNs) and a secondary receiver (SR),
also termed the gateway. The Rayleigh fading channel gains
from PT-to-𝑆𝑁𝑘 and 𝑆𝑁𝑘-to-SR are respectively denoted by
𝑔𝑝𝑠𝑘 and ℎ𝑠𝑔𝑘 , whereas 𝑘 ∈ K and K= (1, 2, 3...𝐾). Similarly,
the distance from PT-to-𝑆𝑁𝑘 and 𝑆𝑁𝑘-to-SR are denoted by
𝑑𝑝𝑠𝑘 and 𝑑𝑠𝑔𝑘 , respectively.

The overall transmission time frame of the considered CRN
is depicted in Fig.2. The idle and busy periods of the primary
network are denoted by 𝛼 and (1 − 𝛼), respectively. It can
be observed from Fig.2 that during the busy period of the
primary network, the SNs either adopt the BSM or EHM. The
backscattering time and normalized EH time of 𝑘 𝑡ℎ SN are
denoted by 𝜁𝑘 and (1 − 𝛼 − 𝜁𝑘), respectively. Likewise, when
the primary network is idle, SNs either adopt the BSM or RFM.
The data transmission time during the idle period for 𝑆𝑁𝑘 is
represented by 𝜏𝑘 .

Secondary 
Receiver

Primary 
Transmitter

Primary Signal 
RF-Transmission
Backscatter Signal in busy and idle period

Fig. 1: System model (during busy and idle period).
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Fig. 2: The overall transmission time frame of the considered
CRN.



A. Mode Selection During Busy Period
In our proposed setup, during a busy period, the SNs can

either recharge their batteries by harvesting primary signals or
choose the backscattering mode to transmit their data. More
specifically, the whole busy period is divided into sub-slots
such that each SN gets an opportunity to backscatter its data
to the gateway to operate in BSM while all other SNs operate
in EHM. Precisely, during busy periods, the received primary
signal at 𝑆𝑁𝑘 can be expressed as

𝑌𝑘 =
𝑇𝑝 |𝑔𝑝𝑠𝑘 |2𝑥1(

1 + 𝑑𝑝𝑠
)𝛾 + 𝑛𝑘 , (1)

where as 𝑇𝑝 is the transmit power of PT, 𝑥1 is the information
signal, 𝛾 is the path loss exponent, and 𝑛𝑘 is the receiver noise
introduced at 𝑘 𝑡ℎ SN. The total amount of energy harvested by
𝑘 𝑡ℎ SN during an idle period can be expressed as

𝐻𝐸𝑘 = (1 − 𝛼 − 𝜁𝑘)𝐸𝑘 , (2)

where 𝐸𝑘 = 𝜂𝑇𝑝 |𝑔𝑝𝑠 |2

(1+𝑑𝑝𝑠)𝛾 and 𝜂 is the energy conversion efficiency.

During a busy period, the 𝑘 𝑡ℎ SN operates in BSM for
𝜁𝑘 time when all other nodes operate in EHM. The 𝑆𝑁𝑘
backscatter the signals received from the PT towards the SR.
The throughput of 𝑆𝑁𝑘 operating in BSM for 𝜁𝑘 time during
a busy period can be calculated as:

𝑈𝐵𝑘 = 𝜁𝑘𝐵𝐵𝐵𝑘 , (3)

here 𝐵𝐵𝐵
𝑘

represents the backscatter transmission rate. Note
that for total 𝐾 SNs, the overall busy period is equally divided
using TDMA, and the total backscattering time does not exceed
the busy period, i.e., (𝜁𝑘 < 1 − 𝛼).
B. Mode Selection During Idle Period

In our proposed scheme, SNs adopt two different modes of
communication during the idle period, i.e., RF transmission
mode (RFTM) and BSM. The proposed approach is different
from [11], where SNs during the idle period only operate in
RFTM. More specifically, in our proposed scheme, a 𝑘 𝑡ℎ SN
operates in RFTM for 𝜏𝑘 duration of idle time 𝛼 and operates in
BSM for the rest of the (𝛼 − 𝜏𝑘) time. To perform backscatter
communication during idle time, the SNs exploit the RF signals
of the nodes operating in RFTM. Precisely, for each 𝜏𝑘 time
when the 𝑘 𝑡ℎ SN is operating in RFTM, the 𝐾 − 1 SNs utilise
the RF signals to perform backscatter operation. The achievable
throughput of 𝑘 𝑡ℎ SN while operating in RFTM and BSM can
respectively be calculated as

𝑈ℎ𝑘 = 𝜔𝑘𝜏𝑘𝑊𝑙𝑜𝑔2

(
1 +

𝑆𝑘

𝑃𝑜
𝑘

)
, (4)

𝑈ℎ𝑘 = (𝛼 − 𝜏𝑘) 𝐵𝐵𝐼𝑘 , (5)

where 𝑆𝑘 = 𝐻𝐸𝑘

𝜏𝑘
, is the transmit power of 𝑘 𝑡ℎ SN, 𝜔𝑘 is

the transmission efficiency during the idle period, W is the
primary channel bandwidth, and 𝑃𝑜

𝑘
is the ratio between noise

power and channel gain (𝜎/ℎ𝑠𝑔), respectively. Likewise, in (5)
(𝛼 − 𝜏𝑘) is the backscattering time of the 𝑘 𝑡ℎ SN and 𝐵𝐵𝐼

𝑘
is

the backscattering rate during the idle period.

C. Sum-Rate Optimisation

The overall throughput achieved by a 𝑘 𝑡ℎ SN in both busy
and idle periods can be expressed as

𝑈𝑘 = 𝑈𝐵𝑘 +𝑈ℎ𝑘 +𝑈 𝐼𝑘 . (6)

Likewise, in this paper, the term sum-rate is defined as the
overall throughput achieved by the network during both busy
and idle periods. Mathematically,

𝑈𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =
𝐾∑︁
𝑘=1

𝑈𝑘 =
𝐾∑︁
𝑘=1

(𝑈𝐵𝑘 +𝑈ℎ𝑘 +𝑈 𝐼𝑘). (7)

Note that for (7), in order to be valid, it must ensure that the to-
tal backscattering time does not exceed the overall busy period(
𝑖.𝑒.,

∑𝐾
𝑘=1 𝜁𝑘 ≤ 1 − 𝛼

)
and combined RF transmission time of

all SNs must not exceed the total idle period
(∑𝐾

𝑘=1 𝜏𝑘 ≤ 𝛼
)
.

1) Optimization Problem: The optimisation problem, which
aims to maximise the overall network sum-rate, can be formu-
lated as

(P1) max
𝜁 ,𝜏

(𝑈𝑜𝑣𝑒𝑟𝑎𝑙𝑙)

subject to


∑𝐾
𝑘=1 𝜁𝑘 ≤ 1 − 𝛼,∑𝐾
𝑘=1 𝜏𝑘 ≤ 𝛼,

𝜁𝑘 , 𝜏𝑘 ≥ 0,∀𝑘 ∈ K

(8)

The first constraint in (8) guarantees that the total backscat-
tering times of all 𝑆𝑁𝑘 will be less than equal to the busy
period. Likewise, the second constraint ensures that the total
transmit times of all 𝑆𝑁𝑘 will be less than equal to the idle
period. Furthermore, the third constraint clarifies that the lower
bonds of the corresponding variables are equal to zero. To
prove the concavity of 𝑈𝑜𝑣𝑒𝑟𝑎𝑙𝑙 w.r.t. 𝜁𝑘 and 𝜏𝑘 , we exam-
ine the second-order partial derivatives of each throughput.
𝑈𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = ∑𝐾

𝑘=1
(
𝑈𝐵
𝑘

+𝑈ℎ
𝑘

+𝑈 𝐼
𝑘

)
is a sum of individual SN

throughput functions, where 𝑈𝐵
𝑘

and 𝑈 𝐼
𝑘

are linear in 𝜁𝑘 and 𝜏𝑘 ,
and thus inherently concave. 𝑈ℎ

𝑘
is fundamentally concave due

to its logarithmic nature. This assumes all parameters, including
𝜔𝑘 , 𝑊 , and 𝜂, are positive. A detailed proof of the problem’s
convexity is provided in Appendix 1. Here, the optimization
problem is solved using the interior point method under some
imposed constraints to maximise the overall secondary network
throughput, and the QoS requirements are satisfied for individ-
ual secondary nodes. With the proposed scheme, optimal values
(of 𝜁 and 𝜏) are obtained by solving (8).

III. NUMERICAL RESULTS AND DISCUSSIONS

Numerical values of the transmit power of PT, primary
channel idle period, EH efficiency, transmission efficiency and

TABLE I: Simulation Parameters and Their Values

Parameters Studied Values
Primary channel idle period (𝛼) 0.3
Transmission power 𝑃𝑇(𝑇 𝑡 𝑝

𝑘
) 17kW

Backscatter transmission rate (𝐵𝐵𝐵
𝑘

) 25kbps
Energy Harvesting Efficiency (𝜂) 0.8
Transmission Efficiency (𝜔) 0.8



Fig. 3: Maximum achievable throughput of the network by
using optimal values of zeta and tau for every individual node.
Where no. of 𝑆𝑁𝑠 = 3-10, 𝐵𝐵𝐵

𝑘
= 25𝑘𝑏𝑝𝑠, 𝛼 = 0.3 and 𝜔 = 0.8.

backscatter transmission rate are mentioned in Table 1. The
bandwidth and frequency of the signal are 100 kHz and 100
MHz, respectively. The channel between PT to 𝑆𝑁𝑘 and 𝑆𝑁𝑘
to the gateway is considered as Rayleigh fading, and gain is
random for every secondary node. The distance from PT to
𝑆𝑁𝑘 is about 2km, and from 𝑆𝑁𝑘 to the gateway, it is set as 1
meter. Path loss exponent in urban area cellular radio is 2.7dB.
The proposed and legacy schemes’ performance analyses are
compared, and the optimised simulated results are evaluated in
terms of EH efficiency and throughput with varying values of
backscatter rate and channel idle ratio.

Fig. 3 evaluates the performance of the secondary system
with the increasing number of nodes plus with the varying
value of EH efficiency, i.e. 40%, 60%𝑎𝑛𝑑80% as shown in
the resulting graph. When the number of secondary nodes
increases, sum-rate also increases (see(11)). The increase in the
throughput is because, in this proposed scheme, optimal time
allocation is adopted between BSM, EHM and RFM during
busy and idle periods, i.e. during busy periods, the secondary
nodes either perform EH or backscatter communication subse-
quently and during idle periods if one of the nodes performs RF
communication rest of them adopt backscatter communication
this significantly increases the performance of the secondary
network sum-rate and that outperforms when compared with
wang et al. [11]. The sum-rate also increases when we increase
the EH efficiency value (see(2)); this is because by increasing
the value of EH efficiency, the nodes store more energy and use
that harvested energy for RF communication in the future. So,
the achievable throughput performance of the network increases
dramatically.

Fig.4 plots the performance of the secondary network by
varying the backscattering rate from 20-100kbps and keeping
the number of secondary nodes fixed; we achieve improved
throughput by increasing the backscatter rate (see(4)). This
is because the backscatter transmission rate is increased from
20-100kbps. For instance, before, the nodes were performing
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Fig. 4: Optimal analysis of secondary network sum-rate with
varying backscatter rate. Where 𝐵𝐵𝐵

𝑘
= 20 − 10𝑘𝑏𝑝𝑠, 𝛼 = 0.3,

𝜂 = 0.8 and 𝜔 = 0.8.
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Fig. 5: Secondary network performance for the proposed
scheme with varying channel idle ratio. Where no. of 𝑆𝑁𝑠 =
8, 𝐵𝐵𝐵

𝑘
= 25𝑘𝑏𝑝𝑠, 𝜂 = 0.8 and 𝜔 = 0.8.

backscatter communication with the rate of 20kbps in 0.3
backscatter time, and now the same nodes are using increased
rates, so the nodes are able to backscatter more than before due
to the improved transmission rates. The performance of the
secondary system increases, and the proposed solution gives
better results than Wang et al. [11].

Fig. 5 illustrates the maximum throughput for different
values of channel idle ratio. This figure depicts the change in
the idle channel ratio, which greatly affects the communication
modes. This is because if the channel idle ratio is equal to 0.1,
the nodes have more chance to store energy or backscatter
during the busy period, but the harvested energy cannot be
used for RF communication because of a limited idle period.
We achieve maximum RF and backscatter communication
value when the idle channel increases but lowers in EH and
backscatter communication due to a decrease in the channel’s
busy period.



IV. CONCLUSION

In this proposed study, we considered an ambient
backscatter-enabled, energy-constrained cognitive radio net-
work to optimise scarce resources by introducing a secondary
network to utilise the primary network efficiently. We for-
mulated an optimisation problem using an optimal trade-off
scheme among BSM, EHM, and RFM during the idle and busy
periods of the primary network. The optimal time allocation
mechanism is evaluated among multiple users in terms of sum
rate, backscatter rate, channel idle ratio, and EH efficiency. The
simulated results depict the suggested method outperforming
the legacy scheme.

APPENDIX 1

To prove that 𝑈𝑜𝑣𝑒𝑟𝑎𝑙𝑙 is a concave function with respect to
the decision variables 𝜁𝑘 and 𝜏𝑘 , we analyse the second-order
partial derivatives of each 𝑈𝑘 and the conditions for concavity.
The objective function 𝑈𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = ∑𝐾

𝑘=1
(
𝑈𝐵
𝑘

+𝑈ℎ
𝑘

+𝑈 𝐼
𝑘

)
is a

sum of individual SN throughput functions, where 𝑈𝐵
𝑘

and 𝑈 𝐼
𝑘

are linear with respect to 𝜁𝑘 and 𝜏𝑘 , and thus inherently concave
as their second derivatives are zero. The term 𝑈ℎ

𝑘
, characterised

by a logarithmic function, is fundamentally concave. This
analysis assumes that all parameters, including 𝜔𝑘 , 𝑊 , and 𝜂,
are positive, ensuring the domain of the logarithmic function
remains positive and thus concave.

For a comprehensive understanding of 𝑈ℎ
𝑘

’s concavity, we
delve into its second-order derivatives with respect to 𝜏𝑘 , which
are derived as follows:

𝜕𝑈ℎ
𝑘

𝜕𝜏𝑘
= 𝜔𝑘𝑊 log2

(
1 +

𝑆𝑘

𝑃𝑜
𝑘

)
+𝜔𝑘𝜏𝑘𝑊

1

ln(2)
(
1 + 𝑆𝑘

𝑃𝑜
𝑘

) (
− 𝑆𝑘

𝜏2
𝑘
𝑃𝑜
𝑘

)
.

This yields a second derivative with respect to 𝜏𝑘 that is
negative, thus confirming 𝑈ℎ

𝑘
’s concavity in terms of 𝜏𝑘 :

𝜕2𝑈ℎ
𝑘

𝜕𝜏2
𝑘

=
−𝜔𝑘𝑊

ln(2)𝜏2
𝑘

(
1 + 𝑆𝑘

𝑃𝑜
𝑘

)2

(
𝑆𝑘

𝑃𝑜
𝑘

)
.

The indirect dependence of 𝑆𝑘 on 𝜁𝑘 through harvested energy
𝐻𝐸𝑘 suggests a similar concavity with respect to 𝜁𝑘 , albeit not
explicitly calculated here, the logical progression and effects
on 𝑆𝑘 imply this concavity.

Further substantiation of the concavity of 𝑈ℎ
𝑘

and conse-
quently 𝑈overall leverages the Hessian matrix 𝐻 composed of
the second-order partial derivatives concerning 𝜁𝑘 and 𝜏𝑘 . The
Hessian matrix for 𝑈ℎ

𝑘
is structured as:

𝐻 =

𝜕2𝑈ℎ

𝑘

𝜕𝜁 2
𝑘

𝜕2𝑈ℎ
𝑘

𝜕𝜁𝑘𝜕𝜏𝑘

𝜕2𝑈ℎ
𝑘

𝜕𝜏𝑘𝜕𝜁𝑘

𝜕2𝑈ℎ
𝑘

𝜕𝜏2
𝑘

 .
Given the inherently concave nature of the logarithmic com-
ponent within 𝑈ℎ

𝑘
, alongside the linear (and therefore concave)

nature of 𝑈𝐵
𝑘

and 𝑈 𝐼
𝑘
, the Hessian matrix’s entries associated

with the second derivatives are non-positive. This ensures
the Hessian’s negative semidefiniteness, a critical condition

affirming 𝑈ℎ
𝑘

, and by extension 𝑈overall’s concavity with respect
to 𝜁𝑘 and 𝜏𝑘 . Accordingly, the formulated optimisation problem
to maximise 𝑈overall subject to given constraints is recognised
as a convex optimisation problem, enabling the application of
standard convex optimisation techniques to ascertain the global
optimum efficiently.
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