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Abstract—Synthetic Aperture Radar (SAR) can be used to
create realistic and high-resolution 2D or 3D reconstructions of
landscapes. The data capture is typically deployed using radar
instruments in specially equipped, low flying planes, resulting
in a large amount of raw data, which needs to be processed
for image reconstruction. However, due to limited on-board
processing capacities on the plane (power, size, weight, cooling,
communication bandwidth to ground stations, etc.) and the
need to capture many images during a single flight, the raw
data must be processed on-board and then sent to the ground
station efficiently as image products. In this paper we describe
the processing architecture of the digital beamforming SAR
(DBFSAR) of the German Areaospace Center (DLR) and the
special steps that had to be taken to enable the on-board
processing. We explain the required software optimizations and
under which conditions their integration in the SAR imaging
process leads to (near) real-time capability. We further describe
the lessons learned in our work and discuss how they can
be applied to other processing scenarios with limited resource
availability.

Index Terms—Synthetic Aperture Radar, High Performance
Algorithms, Resource Constrained Processing, On-Board Radar
Processing;

I. INTRODUCTION

Over the last decades, SAR systems have been exten-
sively used for earth remote sensing. They provide high-
resolution, light and weather-independent images for many
applications, including climate change research, environmental
and earth system monitoring, change detection or security-
related applications like the Maritime Moving Target Indica-
tion (MMTI) [1] employed for monitoring the marine environ-
ment. Similar to a conventional radar, electromagnetic waves
in the form of a series of short pulses are transmitted from
a low-flying plane, back-scattered and finally collected by the
receive antennas on the moving plane. The combination of
the echo signals received over a period of time allows for the
construction of a virtual aperture that is much longer than the
physical antenna length. SAR images result from processing
the raw data and are a measure of the scene’s reflectivity [2].
The generation of these images involves a significant amount
of handling, processing and data transfer. For example, a typi-
cal DBFSAR image has 32k x 285 k complex-valued samples,
which translate to around 70 GB of single precision float raw
data.
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Fig. 1: Extended Omega-K algorithm

SAR imaging routines are divided into time and frequency
domain based algorithms. For an in-depth analysis of the
subject, the interested reader is referred to the textbook on
SAR signal processing by Cumming et al. [3]. In this paper, we
investigate the acceleration of the Extended Omega-K (EOK)
algorithm shown in Figure 1. It is a representative of the class
of frequency-based algorithms and can be divided into five
major processing steps: range compression, velocity interpo-
lation, motion compensation, EOK kernel (2D FFTs and stolt
mapping), and finally azimuth compression. According to Fig-
ure 1, the Fast Fourier Transforms (FFTs) and interpolations
are the fundamental functions of this SAR imaging process,
because they are repeatedly used on large amounts of data.
The FFT is well known as an efficient way of calculating
the Discrete Fourier Transform (DFT), an essential tool for
spectrum analysis. It is widely employed, especially in filtering
algorithms, and thus appears in almost every processing step
of the frequency domain based SAR algorithms and hence
dominates the overall processing performance.

In order to assess our development regarding real-time
capability, we first derive an appropriate definition of real-time
for SAR image processing. During a flight, the aircraft with
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the radar equipment needs to be re-positioned, realigned and
readjusted after each image sequence in order to map the same,
or potentially different, areas with another set of parameters.
In this context, we then speak of a real-time capability, when
SAR images can be produced within this time window of
repositioning and realignment before the next image sequence
starts. However, this only serves as a minimal requirement
of the current state-of-the-art system. We expect that new
operational airborne SAR sensors require significantly faster
image processing. Achieving such real-time capabilities is far
from trivial, especially as the equipment on board of planes
is a) severely resource limited, restricting the computational
capabilities and b) very static and typically limited to hardware
available at the initial commissioning of the SAR radar itself,
which has much longer life cycles than the IT equipment. The
latter stems from the fact that airborne hardware cannot be
effortlessly replaced or extended due to tedious and complex
certification steps. Consequently, any application targeted for
such environments must be optimized to fully exploit the
underlying hardware, and embedded in an environment and
workflow that can be efficiently executed on it.

In this paper, we introduce DLR’s DBFSAR platform, as
one of the state-of-the-art systems to capture airborne based
SAR images and discuss its hardware setup, limitations, and
the requirements that stem from it. We present a series of
novel optimizations targeting both the computational kernels
and the overall processing workflow. In particular, we make
the following contributions:

o We optimize the computational kernels to make full use of
the underlying hardware. We not only vectorize the core
functions of the EOK algorithm but also align them with
the register sizes, caches, and memory space of the given
system. This precise alignment results in very high SIMD
levels and, thus, we achieve an ideal hardware utilization
rate.

o We efficiently distribute the fast kernels over many com-
pute cores and processing boards to further parallelize the
data processing.

o« We further optimize the execution environment, data
management and a multi-processor setup and show how
this enables real-time SAR processing.

The results shown here are typical for edge-based applications,
which not only require high-performance, but also have to
work under the constraints typically found in remote or
isolated platforms. Finally, we show the lessons learned and
how our work can also benefit other application areas with
limited resources.

II. RELATED WORK

Several real-time processing approaches have addressed
the issue of accelerating SAR algorithms using field pro-
grammable gate arrays (FPGAs) [9], digital signal processors
(DSPs) [10], central processing units (CPUs) [11] and graphics
processing units (GPUs) [12]. Le et al. [9] introduced an
FPGA design that processes the SAR image using a Range-
Doppler Algorithm (RDA) [4]-[6], which due to its use of

approximations, is less accurate and less robust towards higher
squint angles if compared to the proposed EOK algorithm [8].
In fact, a crucial problem in most airborne SAR sensors is
the compensation of motion errors, induced by atmospheric
turbulence and/or air pressure. If not compensated, the image
resolution will considerably deteriorate. The motion compen-
sation requires an enormous increase in computational effort.

Wang et al. [10] proposed a multi-core and memory op-
timized implementation of the RDA using a DSP. SAR raw
data is usually stored in a row-major-order, which results in
an efficient range processing. On the other hand, azimuth
operations are slow because of non-sequential data access.
Therefore, it is convenient to transpose the data after range
processing in order to overcome this issue. For the same rea-
son, Wang et al. [10] use a block-wise ping-pong DMA based
corner turn that enables fast azimuth processing. Similarly,
we implement an efficient vectorized transpose function that
is executed prior to an azimuth operation.

Fatica et al. [12] accelerated the SAR processing by em-
ploying a GPU on a mobile platform. The use of a GPU in
the context of SAR represents a reasonable solution because
various functions in the SAR processing flow (e.g., matrix-
vector multiply) can be highly parallelized in a SIMD fashion.

SAR processing works with complex data. Usually, libraries
use the interleaved-complex data format which stores real
and imaginary values as pairs sequentially in memory. As
Popovici et al. [20] indicated by showing a vectorized complex
multiply, this format comes with an avoidable overhead, which
is why we split the complex format that stores real and
imaginary data into separate memory spaces. Furthermore, it
facilitates the implementation of SIMD instructions.

III. THE DBFSAR SYSTEM AND PROCESSING UNITS

As described in detail by Reigber et al. [21], the Ger-
man Aerospace Center (DLR) developed the state-of-the-art
advanced high-resolution airborne SAR system with digital
beam-forming capabilities, known as DBFSAR, and uses it
routinely to capture high-quality SAR-based images. It op-
erates at X-band and features twelve simultaneous receive
and four sequential transmit channels each with 1.8 GHz
bandwidth, flexible DBF antenna setups. Furthermore, it is
equipped with a high-precision navigation and positioning
unit.

Fig. 2: DLR’s aircraft with the SAR equipment (rectangle at
the back of the plane).

The system is certified and mounted on an aircraft, as shown
in an example in Figure 2. In addition, an LTE mobile network



is installed below the aircraft’s fuselage in order to transmit
the on-board processed data to a ground station.

Figure 3 outlines the on-board processing system architec-
ture used for SAR image reconstruction. It consists of three
low-power, real-time processor boards (RTPs), each with an
Intel central processing unit (CPU) of four cores and 16 GB
of random access memory (RAM). The system was state-of-
the-art at the time the aircraft was commissioned, and cannot
be updated anymore due to regulatory and re-certification
restrictions. We note that, if built today, other hardware may
be installed (including the potential use of accelerators, as far
as the low power constraints would allow), but the problems
would ultimately be the same. Similar requirements exist in
many other processing scenarios in which high-performance
processing has to be executed on hardware with severely
limited resources.
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Fig. 3: System setup and simplified SAR imaging flow.

The system operates a network attached storage (NAS) that
is connected to each RTP via Ethernet and using the Network
File System (NFS) protocol. All RTPs communicate through
a 10 Ethernet Gbit/s switch allowing fast data access with an
average throughput of 750 MB/s. During the data acquisition
step, the two dimensional raw data acquired from the receive
antennas is written through the receive channels to the NAS
drives. Optimally, all twelve CPU cores should be used for
the SAR processing. However, one core per RTP is reserved
for system and OS tasks. Tablel displays the details about
the processing hardware and specifies one of the development
servers on the ground for DLR’s SAR software. The general
approach is to develop and test the SAR routines on the
server first and then to port them to the on-board system.
The supported vector instructions for the on-board system are
based on the Streaming SIMD Extensions (SSE4.2) and the
Advanced Vector Extensions (AVX). The development server
additionally supports AVX2, FMA and AVXS512 instructions.

To enable common but architecture independent develop-
ment, we followed a generic code design that allows us to
switch between different architectures efficiently. An example
gives Listing 1 for the _mm256_fimadd_ps FMA instruc-
tion which is only supported by the development server. It

multiplies and adds two single precision ymm vectors and
saves the result in the register labeled as dest. This instruc-
tion can be translated into AVX instructions by executing
_mm256_add_ps and then _mm256_mul_ps. We defined a new
macro fima_add() that performs this operation depending on
the supported instruction sets. In order for this to work, we
generated a CPU configuration file that appends the appropri-
ate instructions to the context.

I #include “cpu_config.h”

. #if FMA == TRUE
#define fma_add(dest, vl, v2, v3) { \
dest = _mm256_fmadd_ps(vl, v2, v3);}

6 #else

7 #define fma_add(dest, vl, v2, v3) { \
s vl = _mm256_mul_ps(vl, v2); \
o dest = _mm256_add_ps(vl, v3);}

0 #endif

Listing 1: Generic Code Design

In our context, we defined real-time ¢,;, for the previously
described DBFSAR system as a 5 minute delay using histor-
ical data. However, recent developments have led to a more
stringent real-time definition of ¢, , equivalent to the data
acquisition interval. Section IV discusses under which condi-
tions real-time image processing regarding ., , is possible.
For these investigations, we assume:

bysy = 3008 M
t'rtl = 90s (2)

TABLE I: Hardware line for development and on-board system

On-Board Hardware Development Server

Processor

Name Intel® Core™ Intel(R) Xeon(R)
i7-3610QE Gold 6154

Code Name Ivy Bridge Skylake

Cores 3x4 2x18

Hyper threading Off Off

Base frequency 2.3 GHz 3.0 GHz

Supported SSE4.2, AVX SSE4.2, AVX, AVX2,

instructions AVX512, FMA

Memory

Type DDR3 DDR4

Capacity 16384 (2x8192) GB 394 GB

Operation Dual Channel -

Frequency 1333 MHz 2400 MHz

Operating System

Distribution

Linux / openSUSE

Linux / Ubuntu

We note that the software was originally designed for the

initial workloads during the aircraft’s commissioning time.
In the meantime, though, the application requirements and



complexity have changed, increasing the workload, while the
underlying system has to stay constant. In order to success-
fully deploy the SAR application on the given hardware, we
therefore must increase the efficiency in processing.

IV. COMPUTE KERNEL OPTIMIZATIONS

In this section, we focus on the optimization of the computa-
tional kernels and their usage of the installed system hardware.
In addition, we discuss optimizations regarding system and
workflow usage, as well as parametric optimizations. The
following tests were executed on the development server. We
will provide an estimation for the on-board computer based
on the findings.

A. Evaluation of the Base Model

Since SAR image processing is a complex task, we use
DLR’s already existing Python pipeline of the EOK for on-
ground processing as our base model and investigate its
performance towards real-time capability. For this, we measure
the processing time of each function of the EOK blocks and
additionally profile them by using Intel’s VTune profiling
software. This provided us with an in-depth insight into the
given code. While the Python prototype uses many libraries,
the most significant one is Numpy, which we label as Numpy+.
This reference shows good performance as it already implicitly
benefits from SIMD optimizations (as Figure 4 shows) and
therefore offers a realistic baseline.
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Fig. 4: Performance Profile for the Numpy+ prototype using
Intel VTune.

B. Vectorization Techniques to Enhance Processing Time

For each bottleneck that we identified, the corresponding
function was outsourced into C code and manually SIMD
optimized using Intel’s Intrinsic Instruction Set Library (ISL).
It has the potential to enable a high degree of parallelism
by executing a single instruction on a set of data (vectors).
The ISL is implemented on Intel’s general purpose processors
in order to enhance the processing performance. Especially,
when the data is stored sequentially in memory, their use
can be applied efficiently to create fast single core kernels
(components). Thus, it provides a convenient solution to
implement SIMD instructions [22]-[24].

While we describe the enhanced Radix-4 FFT as an efficient
FFT algorithm in Schlemon et al. [19], in this paper we

focus on our algorithmic and optimization contributions of
the sinc interpolation as it is the dominant function in the
velocity interpolation and stolt mapping. We show how we
have aligned the algorithm to the hardware with a particular
view on vectorization. For the sake of brevity, we only consider
the single precision instructions labeled as _ps.

Equation 3 represents our version of the Whittaker—Shannon
(sinc) interpolation. The intention here is to give an easy
understanding of the subject and to avoid detailed descrip-
tions and derivations for which interested readers are referred
to Schanze et al. [25]. Equation 5 defines the number of input
samples z:(n) that are loaded to calculate the interpolated value
y(x). In general, the larger Ny is, the higher the interpolation
accuracy, but this also increases the computational effort which
leads to a trade-off. Hence, the operator is able to set Np
depending on the pre-defined objective.

+Ng
y(t) = Z z(n) sinc(t — n) 3)
nszH
sin (7n) it n ?é 0
: — ™m 4
sinc(n) 1, 0 4)
Ny =8,16 %)

However, following the idea of the base algorithm is not
sufficient when deploying it on modern hardware. We therefore
introduce a series of novel steps that enable such optimiza-
tions. It is important to align Ny to the register size of the
given CPU. The Intel i7-3610QE processor of the onboard
system has a total of 16 ymm registers that can hold 8 single
precision floating point values each. We set Ny as a multiple
of 8 (e.g., 8, 16,...) in order to align with the ymm registers
and thus reduce the scalar overhead. Figure 5 shows the SIMD
scheme of the sinc interpolation for Ny = 16.

.
.

Interpolation
. ‘ Point

S l"°-

o) ymmoO ymm1 © ymm3 O
© M ymms @ M ymm7 @
|

256 bit SIMD Vector Register

.
Data Stream —»

[0) ymm2
© ymmé

Scalar Add

L
T - \/7\/'\\ ] Vi VY, e
Sinc LUT Horizontal Add — ymmO
T
ymmO @ ymm2

Fig. 5: SIMD scheme of the sinc interpolation with Ny = 16

The corresponding sinc vectors need to be generated by
performing vectorized sine calculations. However, this is inef-
ficient considering that we first have to calculate the argument
of the sinc function according to Equation 3. The argument
vector is then passed to the _mm256_sin_ps instruction in



order to build the sine vectors. Intel points out that this
instruction generates a sequence of instructions, which may
perform worse than a native scalar operation. We solved this
issue by creating a look-up-table that sequentially stores the
relevant 2N sinc values to avoid the described overhead.
This allows us to use the relatively fast load instruction
_mm256_load_ps and, thus, we eliminate the argument and
sine calculation overhead. Once the vectors ymmO-ymm?7 are
loaded into the registers, we perform the instructions shown
in Listing 2. Since the dot product is not an elementary
instruction in Intel’s ISL, it needs to be manually developed,
which results in a sequence of instructions and thus in a high
computational effort. Therefore, we avoided the use of dot
products and implemented a horizontal add function hadd
that calculates the sum over a given vector efficiently. Our
implementation of hadd is shown Listing 2. The program was
compiled and tested with -march=native -O2 -mfma -std=c99.
The FMA flag was automatically included for the server de-
velopment. Apart from standard libraries, no external software
was utilized.

float hadd(__m256 vec) {

1

> xmm0 = _mm256_castps256_ps128(vec);

5 xmml = _mm256_extractf128_ps(vec, 1);
4+ xmm0 = _mm_add_ps(xmm0, xmml) ;

s xmml = _mm_movehl_ps(xmm0, xmm0) ;

6 xmm0 = _mm_add_ps(xmml, xmml) ;

7 xmml = _mm_movehdup_ps (xmm0) ;

s xmm0 = _mm_add_ps(xmm0, xmml) ;

o return _mm256_cvtss_f32 (xmm0);}

11 ymm0 = _mm256_mul_ps (ymmO, ymm4)
2 ymml = _mm256_mul_ps(ymml, ymmS5);
3 ymm2 = _mm256_mul_ps(ymm2, ymm6) ;
14 ymm3 = _mm?256_mul_ps(ymm3, ymm?7) ;
15

16 ymmO = _mm?256_add_ps(ymmO, ymml) ;
17 ymm2 = _mm256_add_ps(ymm2, ymm3) ;
18

9 ymmO = _mm?256_add_ps(ymm0O, ymm?2) ;
20

21 float intp = x[x_pos] + hadd(ymm0) ;

Listing 2: SIMD sinc interpolation

We used the Intel VTune Profiler to evaluate our develop-
ments in performance-critical contexts and compared it with
the existing solution for the range compression. Figure 6
displays a vectorization snapshot of our implementations. By
aligning the functions to the CPU registers, we achieve ideal
vectorization levels and utilization rates. Figure 7 shows the
results. Our library, labeled as Sarcomp, reduces the processing
time by 50%. Furthermore, it reaches a significant higher
single-precision throughput by about 60% as well. Sarcomp
also shows improved performance in cycles per instruction.
Although both implementations have a comparable level of
vectorization, the reason for the performance gain of Sarcomp
lies in the distribution of the SIMD instructions. In our
FFT software we use the larger ymm registers, which are
able to handle more data simultaneously. However, we still

have a major scalar overhead in other parts of the EOK
processing pipeline which prevents us from reaching overall
higher vectorization levels. Therefore, a part of our future work
is to rearrange the algorithm with the goal of avoiding all
scalar operations, as well as utilizing longer vector lengths, as
this matches today’s architectural trends.
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Fig. 6: Ideal vectorization levels of Sarcomp’s core functions.
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C. Improving I/O Access

As shown in Figure 1, the range compression consists of
three processing steps: (1) an FFT of the raw data in the
range direction, (2) an element-wise complex matrix vector
multiply, and (3) an inverse range FFT in order to transfer the



data back to the time domain. These three steps represent a
matched filter, which is commonly used for data compression.
However, the data has to be provided efficiently. After the data
acquisition step, the real-valued raw data is saved as bytes on
a NAS drive. Since the kernels are based on single precision
SIMD instructions, the data first needs to be read from a file
and loaded to the memory, then converted to floating point
values and finally stored in an aligned memory space. For this
purpose, we implemented a memory mapped and vectorized
raw reader that additionally also handles the block processing
by shifting every block to the next stage of the processing
pipeline. Tests show that, in addition to vectorized reading,
memory mapping is a significant contributor to improvements,
as data is projected directly into memory providing faster
access. However, the block size has a major impact on the
overall performance. The reason behind that is that the radix
FFT requires the data shape to be power of two. When this is
not the case, a zero padding has to be performed that can lead
to a significant increase in data size and thus to processing and
memory consumption overhead. Figure 8 shows this effect by
comparing Sarcomp against Sarcomp Opt. or Numpy+ against
Numpy+ Opt, respectively. Opt. represents the case when
optimized block sizes are used. In addition, the improvement
of the run time by integrating the enhanced kernels into the
EOK pipeline is shown. Sarcomp speeds up the overall block
processing performance by a factor of 3.
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Fig. 8: Block performance comparison between Numpy+ and
Sarcomp.

D. Impact of the Image Resolution

The resolution of a SAR image has a major impact on the
processing time as well. Figure 9a shows the reference SAR
image with a resolution of (0.5m, 0.5m). In order to see the
effect of reducing the resolution, we generated the same image
but with lower resolutions as shown exemplary in Figure 9b.
The deterioration of the image quality is apparently visible.
This trade-off between processing time and image resolution is
clarified in the flight campaign and depends finally on its goal.
However, often it is necessary to quickly evaluate or verify
the current parameter settings during a flight. Therefore, it is
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Fig. 9: Resolution comparison

common to generate a SAR image with reduced resolution,
making quick adjustment possible. Figure 10 presents the
single core run-time of processing different image resolutions.
Regarding the real-time limit of .., ,, we conclude that the
real-time condition t,., is satisfied for all resolutions when
Sarcomp was used. However, real-time capability is regarding
ty¢, not given for any resolution in the single core case. One
might expect a decrease in computation time is proportional
to the selected resolution, e.g., if the resolution is scaled down
by a factor of 2, the computation time is reduced to the same
extent. However, Figure 10 shows that this is not the case. This
is a consequence of the SAR image formation process, which
needs to read in and pre-process all data first by means of
range compression and velocity interpolation, independent of
the selected resolution. The data sub-sampling is implemented
as part of these operations, as a simple sub-sampling at raw
data level is undesirable and would lead to image artifacts.
Consequently, only the subsequent EOK operations (2D-FFTs
and stolt mapping) are executed on a smaller amount of data.
Yet, a reduction in run-time is possible, when a decrease in
resolution is acceptable.
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Fig. 10: Single core performance comparison between
Numpy+ and Sarcomp for different resolutions.

E. Multi Core Implementation

Another aspect of optimal system usage is the parallel
exploitation of all components. Based on the optimized al-
gorithms tailored to the architecture, as described above, we



distribute the kernels over the cores of the 3 RTPs and thus
exploit all available parallelism on the target platform. Figure
11a shows our tests of the multi-core server implementation of
Sarcomp for each given resolution. As pointed out, our single
core implementation does not provide real-time capability as
the processing times for all resolutions are higher than ¢,+,. A
threshold case is given when two processing cores are used.
ty+, is met when the resolution is bigger than (0.5, 1.0), as
illustrated in Figure 1la. In Figure 11b, the corresponding
speedup is displayed. In the case of two cores, the speed-up
is close to ideal, improving the overall run-time by a factor
of two. This is also valid when 4 cores are employed, which
enables the real-time capability for all resolutions as the run
times are smaller than ¢,+,. The other cases show the impact
of using 8, 16 and 32 cores. For all of them, we achieve real-
time capability per our definition. However, the performance
gain is smaller when more processing cores are used as the
thread synchronization effort increases.
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Fig. 11: SAR image processing performance

Currently, Sarcomp uses the split-complex data format as
it simplifies vectorization using Intel’s ISL. As explained,
we used DLR’s already existing EOK Python pipeline that
works with the standard-complex format where the real and
imaginary parts are stored as adjacent pairs in main memory.
This leads to a major performance barrier because after each

processing stage an evaluation of the intermediate results is
necessary, which results in many copying procedures between
the two formats. As a result, the run-time increases rapidly.
Therefore, our future work consists of updating the pipeline
to enable the split-complex functionality. We assume that we
are able to improve the processing performance further.

V. LESSONS LEARNED

If we put our findings into the context of the on-board
processing, where a total of nine cores (three per CPU) are
available, we can state that the DBFSAR system is, per our
definition, beyond real-time capable for the specified image
resolutions. We achieved this by understanding the problem
entirely and thus being able to align performance critical
parameters such as block-size, resolution, accuracy etc. with
the architecture of the given system. Regarding algorithmic
performance, a gain can be realized by hardware-oriented
development. It turned out that SIMD instructions provide an
effective way of optimization with respect to computational
effort. This requires an increased programming effort and does
not ensure a performance improvement in terms of SAR image
quality. However, there is a clear benefit with respect to the
achievable resolution within the limited time-frame imposed
by the real-time requirement. We transfer the findings to a
project that started this year, in which we take the application
characterization gained here to a new platform to be deployed,
e.g. ensure that the CPU supports the needed instruction sets
and that a sufficient number of cores is available. In addition,
we select the dimensions in a way that block processing can
run without any loss of performance.

VI. CONCLUSION

We have shown that hardware-oriented optimizations to-
gether with the alignment of SAR parameters, e.g., block-size,
resolution, etc., accelerate SAR routines and thus the overall
SAR application run time. We have demonstrated significant
advances in optimization of key algorithms and have explained
how these algorithms can be deployed in the context of several
resource constraints.

In our future work, we will further improve the algorithms
based on the optimal utilization of all hardware resources
and increased vectorization levels. According to the performed
tests, it can be concluded that, by definition, DLR’s DBFSAR
system is capable of processing SAR data in real-time. In
particular, the chosen test data covering an area on ground
of 3 km by 10 km is shown to be processed efficiently on-
board with a resolution of 0.5 m by 0.5 m within the stringent
real-time requirements of 90 seconds using at least 3 cores. We
will verify this in the next flight campaign that is scheduled
in 2023. The developed hardware accelerations will also be
of benefit for the on-board processing of future drone-based
SAR systems and will be equally employed within the ground
segment servers for off-line processing.
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