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Abstract—Wearable devices enable users to collect health data
and share them with healthcare providers for improved health
service. Since health data contain privacy-sensitive information,
unprotected data release system may result in privacy leakage
problem. Most of the existing work use differential privacy for
private data release. However, they have limitations in healthcare
scenarios because they do not consider the unique features of
health data being collected from wearables, such as continuous
real-time collection and pattern preservation. In this paper, we
propose Re-DPoctor, a real-time health data releasing scheme
with w-day differential privacy where the privacy of health
data collected from any consecutive w days is preserved. We
improve utility by using a specially-designed partition algorithm to
protect the health data patterns. Meanwhile, we improve privacy
preservation by applying newly proposed adaptive sampling tech-
nique and budget allocation method. We prove that Re-DPoctor
satisfies w-day differential privacy. Experiments on real health

data demonstrate that our method achieves better utility with
strong privacy guarantee than existing state-of-the-art methods.

I. INTRODUCTION

The proliferation of wearable devices, such as Fitbit and

Apple Watch, enables the continuous collection of personal

health data including heart rate, walking steps, and sleep

condition. The personal health data can be a good indication

for users to keep track of their tness and can be further shared

with healthcare providers for various purposes. For example,

users could share data with an insurance company for a lower

premium, and tness advisor for a better health plan. In these

cases, users prefer to share minimum amount of information to

healthcare providers. From [1], the disclosure of unnecessary

health data may result in severe privacy violations. We consider

a scenario where a healthcare provider requires a user to

provide the health data collected during the next two weeks.

The user needs to consider two factors, i) utility, the disclosed

data must be useful; ii) privacy, the disclosure must consume

less than a privacy budget.

Health data collected from wearable devices has following

unique properties. First, it contains signicant health patterns,

which may imply health conditions. The patterns need to be

reserved in the privacy protection algorithm. Second, health

data is generated continuously. The usefulness of data varies

from day to day. Generally, when the data is not useful, the

data does not need to be disclosed. On the other hand, if the

data is useful, the data need to be disclosed with a privacy

constraint. Given a privacy budget for two weeks, for example,

the budget should be adaptively arranged on a daily basis. As

such, the utility of the disclosed data can be maximized while

the privacy goal is achieved.

Differential Privacy [2], proposed by DWork, is a popular

paradigm to provide privacy in the data release. A common way

to achieve differential privacy is to perturb data with noise [3],

[4]. Most existing literatures has mainly focused on the one-

time release of static data [5]–[9]. However, in health releasing

scenario, data has to be collected and released continuounsly

due to the power limit of wearable devices. Several studies

[10]–[13] have been focused on real-time data releasing with

differential privacy guarantee. In [14], Wang et al. proposed

a scheme achieving w-event privacy. However, their schemes

have limitations. Its decision on data usefulness only depends

on the data dynamics and ignore the health condition of the

user. Thus it does not fit in our case.

In this paper, we propose Re-DPoctor for Real-time e-doctor

health data releasing with differential privacy to solve our

problem. The contributions of this paper can be summarized

as follows.

• We proposed a practical releasing scheme Re-DPoctor

which guarantees w-day privacy, a new privacy level denition in

the continuous data stream. Its key modules include adaptive

sampling, adaptive budget allocation, DP-Partition, perturba-

tion, feature extraction and ltering.

• The design of Re-DPoctor achieves better accuracy and

privacy level. It uses partition algorithm to protect health pattern

to improve the accuracy while using adaptive sampling and

budget allocation algorithm which takes health condition and

data dynamic into account to improve privacy level.

•We prove that our scheme satises w-day privacy and do ex-

periments on real collected wearable device data. Compared to

others, we have better results on utility and privacy guarantee.

II. PRELIMINARIES

A. Differential Privacy

A mechanism which satisfies Differential Privacy should

guarantee that the query result remains approximately the same

if a single record is added or deleted.

Definition 1 (Differential Privacy [2]): A randomized mech-

anismM gives ǫ-differential privacy if for all data sets D1 and

D2 differing on at most one, and all O ⊆ Range(M),

Pr[M(D1) ∈ O] ≤ exp(ǫ) · Pr[M(D2) ∈ O] (1)
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ǫ is the privacy budget. A smaller ǫ means more noise and

stronger privacy level.

Laplace mechanism is the most common one to guarantee

ǫ-differential privacy.

Theorem 1 (Laplace Mechanism [5]): For any function f :
D → Rd, the Laplace Mechanism f for any dataset D ∈ D

M(D) = f(D) + Lap(
∆(f)

ǫ
) (2)

satisfies ǫ-differential privacy. Here, ∆(f) is sensitivity defined

in [5] and ǫ represents the privacy level.

B. w-day Privacy

w-day ǫ-differential privacy is a concept improved from

[10], which is a new way to define privacy level over infinite

stream information. It guarantees that for any successive events

happened in a window of w days; the privacy leakage level is

no more than ǫ.
We model the data stream as an infinite stream tuple S =

(D1, D2, ...), where S[i] is the ith element of S, i.e. Di. The

stream prefix of S at t represents as St = (D1, D2, ..., Dt).
Definition 2 (w-neighboring): Let w to be a positive integer.

Two stream prefixs St,S
′
t are w-neighboring, if

1) for each pair St[i] 6= S′
t[i] with i ∈ [t], it holds that

St[i],S
′
t[i] are neighboring (e.g.St[i],S

′
t[i] have at most one

row different);

2) for each St[i1],St[i2],S
′
t[i1],S

′
t[i2] with i1 < i2,St[i1] 6=

S′
t[i1]and St[i2] 6= S′

t[i2], it holds that i2 − i1 + 1 ≤ w.

Definition 3 (w-day Privacy): Let M be a mechanism

that takes as input a stream prefix of arbitrary size. Let

O = Range(M) be the set of all possible outputs ofM. Then

we call that M satisfies w-day ǫ-differential privacy if for all

sets O ⊆ O, all w-neighboring stream prefixes St[i],S
′
t[i] , and

all t, it holds that

Pr[M(St) ∈ O] ≤ exp(ǫ) · Pr[M(S′
t) ∈ O] (3)

Theorem 2 [10]: LetM be a mechanism that takes as input

stream prefix St, where St[i] = Di ∈ D, and outputs a transcript

o = (o1, ..., ot) ∈ O. Suppose that we can decompose M into

t mechanisms M1, . . . , Mt, such that Mi(Di) = oi, Let

Mi be ǫi-differential private for some ǫi. Then,M will satisfy

w-differential privacy if

∀i ∈ [t],

i∑

k=i−w+1

ǫk ≤ ǫ (4)

It means we could view ǫ as the whole privacy budget in a

w-day sliding window and any budget falls out of the window

could be recycled and reused.

III. RE-DPOCTOR: REAL-TIME HEALTH DATA RELEASING

WITH W-DAY PRIVACY

Consider the scenario where the user has a wearable device

to monitor his health data. Also, there exists an E-doctor that

the wearable tracking device would release heart rate data to

the server in hospital from time to time. When the user goes

to the hospital, the doctor can pull out the data and do the

analysis. However, the dilemma is, how could we design the

health histogram releasing mechanism to only release useful

data for diagnosing needs while maintaining the privacy? One

common way is to perturb the data with noise. But applying

unifying noise to the original data will cause the decreasing

precision of histogram. Besides, there are many patterns in

the original histogram that could be buried in too much noise.

The solution is to design a mechanism that could preserve the

desired patterns and protect the privacy.

In this section, we present a real-time health data releasing

with w-day differential privacy. Figure 1 shows an overview of

the proposed scheme, which contains six modules: Partitioning,

Perturbation, Feature Extraction, Adaptive Sampling, Adaptive

Budget allocation, Filtering.

Fig. 1. Overview of Real-time e-doctor histogram releasing with differential

privacy

Firstly, adaptive sampling mechanism adjusts the sampling

rate based on data dynamics and health condition, which

perturbs histograms at sampling day and approximate the non-

sampled day with perturbed histograms at last sampling day.

Then budget allocation mechanism dynamically allocates the

privacy budget ǫ at sampling days. The first two steps make

sure the non-sampled points can be approximated without any

budget allocation. Thus, given a fixed ǫ more precious privacy

budget can be allocated to the histogram needed to be released

and reduce the errors caused by Laplace noise and improve

overall accuracy. Then, the DP-Partitioning mechanism could

preserve desired patterns for health diagnose. Then Laplace

mechanism is used to perturb the partitioned histogram. At

last,filtering mechanism helps to improve the accuracy of the

released data.

The followings are the main components of the proposed

scheme in details.

A. Adaptive Sampling

When a user publishes all the histograms at every day,

it will introduce large noise and affect the utility of the

released histograms. Here comes the seemingly non-negotiable

tradeoff between the accuracy and privacy of the histogram

releasing. Thus, sampling will be a great method to deal with

such a dilemma that we sample the important histogram at

certain selected days and leave the non-sampled ones to be

approximated. Since the non-sampled histograms do not cost



any privacy budget, the selected one can be allocated more

budget and improve their accuracy.

Several earlier researchers have proposed methods to adjust

sampling rate but didn’t fit in our scenario of health data.

DSAT [12] failed to apply in health data because it uses a

fixed sampling rate which is unrealistic in real-time health

monitoring. Another approach by Wang [14] fails to fit in health

monitoring because it ignores the health condition of the user

as a dynamic factor which could affect the sampling rate.

In this paper, we proposed a new adaptive sampling mech-

anism, which takes the current health condition, histogram

dynamics, and remaining budget into consideration. Suppose

the current sample day is ti and the last sample day is ti−1. The

heart rate records are dti , dti−1
respectively. We use Pearson

correlation coefficient as the feedback error:

Eti = ρdti
,dti−1

=
Cov(dti , dti−1

)

σdti
σdti−1

(5)

Here we choose to use the released histogram instead of

the raw histogram to protect the privacy. It may introduce a

little error which is relatively small compared to the privacy it

provides.

The PID error is defined as:

uti = θP × eti + θI ×

∑ti
o=ti−w+1 eo

w
+ θD ×

eti
ti − ti−1

(6)

where the θP ,θI ,θD are the proportional gain, the integral gain,

and the derivative gain.

Proportional term: The first term is proportional to the

current error eti =
|Eti

−δ|

δ where Eti is the feedback error, and

the parameter δ is the set point. We set δ as 5% experiments

as the maximum tolerance of the feedback error.

Integral term: The second term stands for the accumulation

of past error θI ×
∑ti

o=ti−m+1
eo

w where θI is the integral gain

and the m is how many samples are taken into account.

Derivative term: The third term
eti

ti−ti−1
just determines the

slope of error over time and predicts the future error.

Intuitively, the sampling interval should be small if user’s

health condition changes rapidly. However, if the remaining

budget is small, sampling at the next day will introduce a

high perturbation error. A more reasonable choice is to use

a relatively large sampling interval so that previously allocated

budget could be recycled and to approximate the histogram

with the previous publication.

Besides histogram dynamics and remaining privacy budget,

another factor we need to consider is the health condition of

the user. Imagine two users have same histogram dynamics

and remaining privacy budget but one in sick condition and

another one in good health. Applying same sampling method

are not applicable because the sick user apparently needs more

concerns and needs to release histograms more frequently than

the healthy one. One rule for health data releasing is that we

should never sacrifice the user’s health for privacy. We use cti
to denote user’s health condition which can get from the feature

extraction module.

Combined all the three factors, the next sampling rate is

defined as below:

Iti = max{1, Iti−1
+η(1−(

uti

λ
)2), Iti−1+η(1−(

ci
λ
)2)} (7)

where Iti and Iti−1
is the next and last sampling interval

respectively. And λr = 1/ǫr is the scale of Laplace noise

where ǫr is the remaining budget. η is the scale factor to adjust

the sampling interval. Consequently, the sampling interval will

increase when the u < λ or c < λ and decrease otherwise.

B. Adaptive Budget Allocation

The definition of the w-day privacy requires the total budgets

within the sliding window of w equals a certain value ǫ.
For the ith sampling day , firstly, we have to calculate the

remaining budget in the window ǫr = ǫ−
∑ti−1

j=ti−w+1 ǫj . Note

that if ǫjis not a sampling day, then it equals zero. Then,

inspired by RescueDP, we allocate the remaining budget based

on the sampling interval. When the sampling interval is small,

it can be inferred that the histogram changes rapidly or the user

is the sick condition. Moreover, we can infer there will be a

large number of sampling points in the w time windows. Then,

we allocate a small portion of the remaining privacy budget to

the coming sampling point so that there will be more privacy

left for future use. Fortunately, natural logarithm could quantify

such a relationship. Define the portion as:

p = min(ln(φ · I + 1), pmax) (8)

where the φ is the scale factor to adjust the budget portion

and the pmax limits the maximum value of a portion. So the

allocated budget portion will increase as the sampling interval

increase. Meanwhile, it slows down when the interval is large

enough. Finally, we calculate the budget simply by applying the

portion to the remaining budget as ǫi = min(p·ǫr, ǫmax),where

the ǫmax limits the maximum value of budget because excessive

privacy budget could achieve little improvement to the utility

of histogram.

C. Partitioning

Health data histogram is different from other ordinary his-

tograms. Without suitable partition, health data histogram could

easily lose their important features or patterns, which are crucial

for diagnoses, during aggregation and randomization. The main

goal is to design an algorithm to preserve the desired pattern of

heart rate in releasing the histogram. We use partition algorithm

to protect certain patterns. In our case, we mainly focus on two

patterns: small but rapid change and slow but large change.

Before partition, the database records will be aggregated

into data bins on a 10 minutes basis. Then the bins will be

partitioned into the set of buckets based on the value, the

structure and the threshold of the original bins database. Since

the buckets structure may reveal information, and one could

infer private information in the database due to the small

changes in the database. To prevent such privacy leakage, we

decide to use part of the privacy allocated for the ith sampling

point to protect the threshold of the partition. Here we use a



constant q as the scale to denote the portion of privacy budget

for partition.

The algorithm of partitioning with differential privacy is in

Algorithm 2. Before the start of the algorithm, several variables

need to be declared: Variables di, bj are the value of ith bin of

histogram database D and the jth bucket, respectively. Integers

i, j, size are the indexes of the current bin and the current

bucket and the size of the current bucket,respectively. last holds

the value of last bin. The Min,Max indicates the maximum

and minimum value of current bucket. And three thresholds

which are learned from public information and are set based

on user setup:

• TD: the maximum difference between the maximum and

minimum value in one bucket, accords to slow but large

change

• TR: the maximum instant change of heart rate between

adjacent bins. Normally, this threshold is smaller than

TD because the change between two adjacent bins may

actually be smaller than TD, but since it happened in a

very small period of time, it must be preserved. It accords

to rapid change.

• TS : the maximum size of each bucket in case of the

oversize of a bucket.

Due to the privacy requirement of the partition algorithm, we

add Laplace noises Z,Z ′ to TD and TR threshold parameters

and get T̂D and T̂R.

The partition process could be easily understood. In the

beginning, it put the first bin into the first bucket and move

to next bin. Then the algorithm checks all the threshold

requirement, if they are all met then the current bin will be put

into the same bucket. Otherwise, a new bucket will be created.

The first checked threshold is TR due to its smaller value. If

the threshold is breached, two single bin buckets need to be

created, each containing the adjacent sudden change bins so

that their values won’t be averaged later. Based on the size of

the current bucket, three cases are considered. Moreover, the

second and third threshold will be tested and either the new

bucket will be created, or the current bucket will be enlarged.

D. Perturbation

The results from the previous step buckets then will be

randomized by simply adding noise which following Laplace

distribution at each sampling point.

After suitable partition, we firstly have to average the bins

in the same bucket first. Then, we just add Laplace noise to

the average value of bins of every bucket. Suppose the min-

imum possible change in the query result from neighborhood

databases is α and the remaining portion for randomization is

(1− q) · ǫi. So Laplace noise for ith sampling day will be

v′j = vj + Lap(
α

(1− q) · ǫi
) (9)

where v is the average value of bucket j.

E. Filtering

In order to eliminate the error introduced by using released

data in adaptive sampling and budget allocation mechanism, we

Algorithm 1 Differential-private partition Algorithm

Input: Dti , TD, TR, TL, q · ǫi;
Output: histogram buckets B;

1: Initialization: Set size = 0; i = 1; j = 1;B = ∅;
2: T̂D = TD + Z , T̂R = TR + Z ′ ⊲ Z, Z ′

:Lap((q · ǫi))
3: bj ← di; Min = Max = current = di; size++; i++;

4: while i ≤ length(D) do

5: if current 6= Null and |current− di|> T̂R then

6: if bj−1.length > 1 then

7: ⊲ Last bucket is not a single bin bucket

8: last = B.pop(); bj = last.pop();
9: B ← last;B ← bj;j ++; bj ← di;B ← bj ;

10: j ++;current = x;i ++;size = 0;

11: else ⊲ Last bucket is a single bin bucket

12: bj ← x;B ← bj ;

13: j ++,current = di;i ++;size = 0;

14: end if

15: else if size == 1 then

16: B ← bj ;j ++;bj ← di;j ++;

17: current = di;size = 0;i++;

18: else if size ≥ 1 then

19: last = bj .pop();B ← bj ;j ++; bj ← last;
20: B ← bj ;j ++; bj ← di;B ← bj ;j ++;

21: current = x;i ++;size = 0;

22: end if

23: Max = max(Max, di);Min = min(Min, di);
24: if |Max−Min| ≤ T̂D and size ≤ TS then

25: bj ← di; current = di; size+ +; j ++;
26: else

27: B ← bj ; current = di; size = 0; j ++;
28: end if

29: end while

30: return B

use Particle filter improve the accuracy of releasing histogram

by estimating the perturbed histogram. We chose Particle filter

instead of Kalman filter because in [11], it is proved that

although the Particle filter cost much more time and has greater

complexity, it achieves more accuracy. Moreover, when comes

to protect the health data, accuracy weighs better importance

than algorithm complexity. In the final releasing histogram pi at

the i, it releases posterior estimates of particle filter at sampling

points and prior estimates at non-sampling points. Due to the

space limit, we omit the details of filtering. Please refer to [11]

for details.

F. Feature Extraction

Then we need to level the health condition by extracting

features from the released histograms. Here we adopt the

simplest model just for explanation and focus on four features

of four typical rhythms for potential heart disease: hr: the

number of time when the user’s heart rate has a rapid increase

or decrease in a short period, which could be explained as the

signal of heart-attack; hg: the number of time when the user’s

heart rate has a great increase or decrease in a long time, which



could be explained as the signal of palpitation; hh: the time

when the user’s heart rate keeps above maximum threshold,

which could be explained as the signal of angina; hl: the time

when the user’s heart rate keeps below minimum threshold,

which could be explained as the signal of sinus bradycardia

Then we define the health condition ci at i as:

ci = max{
1

4
(
hr

nr
+

hg

ng
+

hh

nh
+

hl

nl
), 1} (10)

where nr, ng, nh, nl are the standard tolerant values from

medical references. So the calculated health condition ci could

be used in the adaptive sampling mechanisms. Since the feature

extraction is based on the released histogram, so it does not cost

any privacy budget, either.

G. Privacy Analysis

Theorem 3: Partitioning process satisfies q · ǫi-differential

privacy at the i.
Proof: Let the d0, d1 be the neighboring databases and the

M(d0),M(d1) be the output. To prove partition process is

q ·ǫi-differential private, we need to prove: Pr(M(d0) = B) ≤
eq·ǫi × Pr(M(d1) = B). Suppose the maximum difference in

the value of bins in two neigboring databases is bounded by α.

For each bucket, we have to meet the bound Maxj −Minj <
T̂D and |current − xi|< T̂R. And according to the sequential

composition property of DP, taking q · ǫi = ǫ1 + ǫ2. So the

inequality can be transformed into:

Pr(M(d0) = B)

Pr(M(d1) = B)
≤ eq·ǫi

⇔ X = (

∏
bi∈d0

Pr(Maxj0 −Minj0 < T̂D)

∏
bi∈d0

Pr(Maxj0 −Minj0 < T̂D)
≤ eǫ1)

× (

∏
bi∈d0

Pr(|current − xj0|< T̂R)

∏
bi∈d0

Pr(|current − xj1|< T̂R)
≤ eǫ2)

We try to solve the inequalities separately in order to find

the required Laplace distribution. Suppose the changed record

between the neighbouring databases falls into the bucket bj .

For the first inequality, the changed record may effect Maxj0

and Minj0 or an ordinary bin’s count of bj . If the changed

value only affects ordinary bins. Clearly, X1 = 1 < eǫ1 . If

the changed value effects either Maxj0 or Maxj1, we need to

find the suitable Laplace scale(b = s/ǫ1) in order to have this

change tolerated. Suppose the Maxj0 and Minj1 are changed

by α. Take Z ∼ Lap(s/ǫ1), t = Maxj0 −Minj1 and u =
t− TD. Here we only consider the change of Maxj0.

When Maxj0 = Maxj0 + α:

X1 =
t+ α < T̂D

t < T̂D

=
Z > u+ α

Z > u
< 1 ≤ eǫ1

When Maxj0 = Maxj0 − α:

X1 =
t− α < T̂D

t < T̂D

=
Z > u− α

Z > u
=

∫ +∞

u−α
fz(z)dz

∫ +∞

u
fz(z)dz

≤ eǫ1

And we discuss the above inequation in three cases:

• u ≥ α: X1 = eαǫ1/s ⇒ αǫ1/s ≤ ǫ1 ⇒ s ≥ α
• 0 < u < α:

X1 =
1/2 +

∫ 0

u−α fz(z)dz
∫ +∞

u fz(z)dz
=

2− e
u−α

b

e
−u

b

≤ eǫ1

Let v = eu/b,then X1 = 2v − e
−α

b v2 ≤ eǫ1 ⇒ s ≥ α
• u ≤ 0:

X1 =
1/2 +

∫ 0

u−α fz(z)dz

1/2 +
∫ 0

u
fz(z)dz

=
2− e

u−α

b

2− e
u

b

≤ eǫ1

⇔ eǫ1(euǫ1)1/s − [e(u−α)ǫ1 ]1/s ≤ 2eǫ1 − 2

Taking s = α, the inequality above holds. Thus, the first

inequality holds so b = α
ǫ1

is sufficient for differential privacy.

Due to the space limit, we omit the details of second

inequality. Because it is similar to the first part. So we can

get the proof of privacy for b = α
ǫ2

directly.

Theorem 4: The Re-DPoctor satisfies w-day ǫ-differential

privacy.

Proof: According to Axiom 2.1.1 in [15], post-processing

perturbed data maintain privacy as long as it does not use the

sensitive information. Since among all the components, only

the partition and perturbation process access to the raw data,

while the others operate on the perturbed data. Thus, if we

can prove that these two mechanisms together satifsfies w-

day ǫ-differential privacy, the Re-DPoctor will satisfy w-day

ǫ-differential privacy.

According to Theorem 4, as previous proved, at i, the

partition process statisfies q · ǫi-differential privacy. According

to Theorem 1, at i, the perturbation process satisfies (1−q) ·ǫi-
differential privacy for applying Laplace noise. So for any i,
the Re-DPoctor provides ǫi-differential privacy. Since the adap-

tive budget allocation mechanism guarantees for any sliding

window w that
∑i

k=i−w+1 ǫk ≤ ǫ. Consequently, Re-DPoctor

satisfies w-day privacy.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of Re-DPoctor

on real health data. We have conducted real experiments

on captured heart rates from wearable devices attached to a

hospital patient during three months.

In the experiments, we set θP = 0.8, θI = 0.2, θD = 0 and

m = 3 for the PID controller. In Adaptive budget allocation, we

set φ = 0.2. In Partitioning, we use TD = 30, TR = 15, TL = 4
as the thresholds. Because heart rate usually changes between

50 and 200 and we track our w-day window as 14 days. So

we define our sensitivity α = 150
14 . Without explanation, we set

w = 14 and ǫ = 3 for all databases.

We use Mean Absolute Error(MAE) and Mean Relative

Error( MRE) as the utility metrics to evaluate the performance

of our scheme. The bound γ is set to 0.05% of
∑n

i=1 xi in

order to mitigate the effect of extra small bins which could

result from the take-off of the watch.



Fig. 2. Utility comparision when ǫ changes (w=14)

Fig. 3. Utility comparision when w changes (ǫ=1)

Utility vs Privacy: Figure 2 investigates how MAE and

MRE change with various ǫ values and makes the comparison

between Re-DPoctor and BA and BD [10]. We can see that

with the increasing of ǫ, both MAE and MRE of the dataset

decrease. It is natural because a larger ǫ means smaller boise.

Also, We can see that MAE and MRE both are smaller than

BD and BA over the whole time period.

The better utility performance of Re-DPoctor contributes

to three reasons. First, the Re-DPoctor adaptively adjust the

sampling and allocate the privacy budget more appropriately.

Within the fixed total budget, it samples the days with useful

data and allocates more budget to them. Second. the Re-

DPoctor has a more available budget for perturbation than other

methods at any w day window. In BD and BA, part of the

budget is used for calculating the similarity. Third, the proper

partition mechanism recognizes the patterns and improves the

accuracy of released data.

Utility vs w: In figure 3, we compare Re-DPoctor with BA

and BD while varying w values. We can see that the MAE and

MRE of BD and BA increase greatly when w increases. When

w increases, in order to ensure the total budget less than ǫ, BA

may skip the day which may contain useful data and results

larger errors. In contrast, Re-DPoctor is more stable because it

takes the window size and remaining budget into consideration

and adaptively change the budget of next sampling point.

Effect of Partitioning: We also conduct two experiments of

Re-DPoctor on the same dataset with and without partition to

evaluate the effects of our partition mechanism. We can see

from the results of Table 1 that the partition reduces MAE and

MRE significatly. Therefore, we can conclude that partition can

not only preserve the patterns but also improves the utility of

released data.

TABLE I
UTILITY WITH OR WITHOUT PARTITION

With Partition Without Partition

MAE 156 355

MRE 0.23 0.36

V. CONCLUSIONS

In this paper, we proposed Re-DPoctor, a real-time health

data releasing scheme with w-day differential privacy achieving

both utility and privacy guarantee. We designed a framework

for Re-DPoctor consisting of mechanisms of adaptive sampling,

adaptive budget distribution, partition, perturbation,ltering, and

feature extraction. The privacy analysis proves that Re-DPoctor

satises w-day differential privacy. Experiments on real health

data show that Re-DPoctor outperforms other methods and

achieves both utility and privacy required.
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