SYLPH: An Ambient Intelligence Based Platform for Integrating
Heterogeneous Wireless Sensor Networks

Dante 1. Tapia, Ricardo S. Alonso, Fernando De la Prieta, Carolina Zato, Sara Rodriguez, Emilio
Corchado, Javier Bajo, Juan M. Corchado

Abstract — The significance that Ambient Intelligence (AmI)
has acquired in recent years requires the development of
innovative solutions. Nonetheless, the development of Aml-
based systems requires the creation of increasingly complex
and flexible applications. In this regard, the use of context-
aware technologies is an essential aspect in these developments
to perceive stimuli from the context and react upon it
autonomously. This work presents a novel platform that
defines a method for integrating dynamic and self-adaptable
heterogeneous Wireless Sensor Networks (WSNs). This
approach facilitates the inclusion of context-aware capabilities
when developing intelligent ubiquitous systems, where
functionalities can communicate in a distributed way.
Furthermore, the information obtained must be managed by
intelligent and self-adaptable technologies to provide an
adequate interaction between the users and their environment.
Agents and Multi-Agent Systems are one of these technologies.
The agents have characteristics such as autonomy, reasoning,
reactivity, social abilities and pro-activity which make them
appropriate for developing dynamic and distributed systems
based on Aml. This way, the integration of the platform with a
Service-Oriented Multi-Agent architecture is proposed. Finally,
conclusions and future work are presented.

Manuscript received January 31, 2010. This research is funded through
the Junta de Castilla y Leon (BUO06A08) and the Spanish Ministry of
Education and Innovation (CIT-020000-2008-2 and CIT-020000-2009-12).
The authors would also want to thank the vehicle interiors manufacturer
Grupo Antolin Ingenieria, S.A. for supporting the project through the
MAGNO2008 — 1028 - CENIT Project funded by the Spanish Ministry of
Science and Innovation.

D. I. Tapia is with the Department of Computer Science and Automatic.
University of Salamanca. Plaza de la Merced, S/N, 37008, Salamanca,
Spain. Phone: (+34) 923 294400 (Ext: 1525); fax: (+34) 923 294514; e-
mail: dantetapia@usal.es.

R. S. Alonso is with the Department of Computer Science and
Automatic. University of Salamanca. Plaza de la Merced, S/N, 37008,
Salamanca, Spain. E-mail: ralorin@usal.es.

F. de la Prieta is with the Department of Computer Science and
Automatic. University of Salamanca. Plaza de la Merced, S/N, 37008,
Salamanca, Spain. E-mail: fer@usal.es.

C. Zato is with the Department of Computer Science and Automatic.
University of Salamanca. Plaza de la Merced, S/N, 37008, Salamanca,
Spain. E-mail: carol zato@usal.es.

S. Rodriguez is with the Department of Computer Science and
Automatic. University of Salamanca. Plaza de la Merced, S/N, 37008,
Salamanca, Spain. E-mail: srg@usal.es.

E. Corchado is with the Department of Computer Science and
Automatic. University of Salamanca. Plaza de la Merced, S/N, 37008,
Salamanca, Spain. E-mail: escorchado@usal.es.

J. Bajo is with the Department of Computer Science and Automatic.
University of Salamanca. Plaza de la Merced, S/N, 37008, Salamanca,
Spain. E-mail: jbajope@usal.es.

J. M. Corchado is with the Department of Computer Science and
Automatic. University of Salamanca. Plaza de la Merced, S/N, 37008,
Salamanca, Spain. E-mail: corchado@usal.es.

978-1-4244-8126-2/10/$26.00 ©2010 IEEE

I. INTRODUCTION

EOPLE are becoming increasingly accustomed to
living with more and more technology in the hopes of
increasing their quality of life and facilitating their day-to-
day living. However, there are situations where technology
is difficult to handle or people lack the knowledge of how to
use it. Ambient Intelligence (Aml) tries to adapt technology
to people's needs by incorporating omnipresent computing
elements that communicate ubiquitously amongst
themselves [1], [2]. In addition, the continuous advancement
in mobile computing makes it possible to obtain information
about the context and to react physically to it in more
innovative ways [3]. Therefore, it is necessary to develop
new solutions capable of providing adaptable and
compatible frameworks, allowing access to functionalities
regardless of time and location restrictions.

One key aspect in any Aml-based system is the use of
context-aware technologies. The context is defined as any
information used to characterize the situation of an entity,
which can be a person, a place or an object [4]. This
information is important for defining the interaction between
users and the technology that surrounds them. However, it is
not enough to gather information about the context, but that
information must be processed by self-adaptable and
dynamic mechanisms and methods that can react
independently of each particular situation that arises. In this
sense, agents and Multi-Agent Systems (MAS) comprise
one of the areas that can contribute expanding the
possibilities of Ambient Intelligence [5]. Furthermore, most
of the context information can be collected by distributed
sensors throughout the environment and even by the users
themselves. It is possible to distinguish between two types
of sensor networks: wired and wireless. Wireless Sensor
Networks (WSNs) are more flexible and require less
infrastructural support than wired sensor networks [6].
Although there are plenty of technologies for implementing
WSNs (e.g. ZigBee, Wi-Fi or Bluetooth), it is not easy to
integrate devices from different technologies into a single
network [7], [8]. The lack of a common architecture may
lead to additional costs due to the necessity of deploying
non-transparent interconnection elements amongst different
networks [9]. Moreover, the developed elements are
dependent on the application to which they belong, thus
complicating their reutilization.

This work describes the Services laYers over Light
PHysical devices (SYLPH) platform. This platform is aimed
at facilitating the development of Aml-based systems with
context-aware capabilities by using dynamic and self-
adaptable heterogeneous WSNs. Although there is currently
a wide range of WSN technologies, most of them are not
compatible with each other. SYLPH solves this problem by
implementing a middleware that consists of additional layers
added over the application layer of each WSN's stack.
SYLPH implements an approach based on Service-Oriented
Architectures (SOA). The platform provides a flexible
distribution of resources and facilitates the inclusion of new
functionalities in Ambient Intelligence environments. Unlike
other SOA-WSNs approaches [10], [7], SYLPH allows both
services and services directories to be embedded in devices
with limited computational resources, regardless of the radio
technology they use. Futhermore, SYLPH can be integrated
with Flexible User and Services Oriented multiageNt
Architecture (FUSION@) [11], an architecture that
combines a SOA approach with intelligent agents for
building Aml-based systems. Thus, context-aware
information gathered by SYLPH WSNs can be used by
intelligent applications based on agents that use reasoning
mechanisms to adapt their behavior to the context.

Next, the problem description is introduced and it is
explained why there is a need for defining a new platform.
Later, the proposed platform and its integration with the
FUSION@ architecture are described in Section III. Finally,
Section IV depicts the conclusions and future lines of work.

II. MOTIVATION AND PROBLEM DESCRIPTION

Ambient Intelligence proposes three essential concepts:
ubiquitous computing, ubiquitous communication and
intelligent user interfaces [1]. Aml-based systems must be
dynamic, flexible, robust, adaptable to changes in context,
scalable and easy to use and maintain. The development of
Aml-based systems that integrate different subsystems
demands the creation of complex and flexible applications.
As the complexity of an application increases, it needs to be
divided into modules with different functionalities. Since
different applications could require similar functionalities,
there is a trend towards the reutilization of resources that can
be implemented as part of other systems. This trend is the
best long-term solution and can be accomplished by using a
common platform. However, it is difficult to carry out
because the systems in which those functionalities are
implemented are not always compatible with other systems.

An alternative to such an approach is the
reimplementation of the required functionalities. Although it
implies more development time, it is generally the easiest
and safest solution. However, reimplementation can lead to
duplicated functionalities and more difficult system
migration. A distributed architecture provides more flexible
ways to move functions to where actions are needed, thus
obtaining better responses, autonomy, services continuity,

and superior levels of flexibility and scalability than
centralized architectures [2]. In addition, excessive
centralization negatively affects system functionalities,
overcharging or limiting their capabilities. For this reason, it
is difficult for the system to dynamically adapt its behavior
to changes in the infrastructure. Thus, distributed
architectures look for the interoperability amongst different
systems, the distribution of resources and the independence
of programming languages [2].

One of the most prevalent alternatives in distributed
architectures are agents and multi-agent systems. An agent
can be defined as a computational system situated in an
environment and is able to act autonomously in this
environment to achieve its design goals [5]. Expanding this
definition, we have that an agent is anything with the ability
to perceive its environment through sensors and respond in
the same environment through actuators, assuming that each
agent may perceive its own actions and learn from the
experience [12]. A multi-agent system is defined as any
system composed of multiple autonomous agents with
incomplete capabilities to solve a global problem, where
there is no global control system, the data is decentralized
and the computing is asynchronous [5]. As can be seen, the
definition itself of an agent and a multi-agent system is
closely related to Ambient Intelligence. There are several
agent frameworks and platforms [13] which provide a wide
range of tools for developing distributed multi-agent
systems. The development of agents is an essential piece in
the analysis of data from distributed sensors and gives those
sensors the ability to work together and analyze complex
situations, thus achieving high levels of interaction with
humans [14]. Agent and multi-agent systems have been
successfully applied to several Ambient Intelligence
scenarios, such as education, culture, entertainment,
medicine, robotics, etc. [15]. Furthermore, agents can use
reasoning mechanisms and methods in order to learn from
past experiences and to adapt their behavior according the
context [11].

Nevertheless, multi-agent systems do not always cover
the actual necessities of distributed systems. Thus, several
developments consider the integration between agents and
modern functional architectures, such as Service-Oriented
Architectures (SOA) [16] [17]. These developments try to
improve the distribution of the available resources, facilitate
the reutilization of functionalities and optimize the
compatibility amongst different platforms. In classic
functional architectures the modularity and structure are
oriented to the systems themselves. Modern functional
architectures such as SOA allow functionalities to be created
outside the system, as external services linked to it. The term
“service” can be defined as a mechanism that facilitates the
access to one or more functionalities (e.g. functions,
network capabilities, etc.) [2]. Services are integrated
through communication protocols that have to be used by
applications to share resources in the network.

One of the key aspects for the construction of Aml-based
systems is obtaining information from the context through
sensor networks. The context includes information about the
people and their environment. The information may consist
of many different parameters such as location, the building
status (e.g. temperature), vital signs (e.g. heart rhythm), etc.
Sensor networks need to be fast and easy to install and
maintain. Each element that forms part of a sensor network
is called a node. In an Aml scenario, nodes must
communicate directly with one another in a distributed way
[9]. In a centralized architecture, most of the intelligence is
located in a central node. That is, the central node is
responsible for managing most of the functionalities and
knowing the existence of all nodes in a specific WSN. That
means that a node belonging to a certain WSN does not
know about the existence of another node forming part of a
different WSN, even though this WSN is also part of the
system. Nonetheless, this model can be improved using a
common distributed architecture where all nodes in the
system can know about the existence of any other node in
the same system regardless of the technology or interface
they use or the sub-network to which they belong.

Fig. 1 shows a centralized versus a distributed model for
integrating heterogeneous WSNs. A centralized model
consists of a central component that gathers all the data
forwarded by the nodes connected to it. The main
component can be a computer with several wireless
hardware interfaces (i.e. wireless network cards). Each of
these interfaces is connected to one or more of the WSNs
deployed in the system. One of the main problems in this
model is that most of the intelligence of the system is
centralized. That is, the central component is the responsible
for knowing what nodes are in all WSNs. Thus, it gathers
the required data from the nodes and, based on such data, it
decides what commands will be sent to the each node. That
means that a node belonging to a certain WSN does not
know about the existence of another node forming part of a
different WSN, although this WSN is also part of the
system. This problem can be seen in Fig. 1a. For this reason,
it is difficult for the system to dynamically adapt its behavior
to the changes in the environment.

Nonetheless, this model can be improved using a common
platform where all the nodes in the system can know about
the existence of any other node in the same system no matter
the technology they use. This is achieved by adding a
middleware logical layer over the existing application layers
on the nodes. Fig. 1b shows a distributed model for
integrating heterogeneous WSNs. The code executing in a
certain node can invoke functionalities (i.e. services) offered
by any other node in the system, regardless the latter node is
in the same WSN or not. This way, the central component
now only has to act as a gateway amongst the distinct WSN’s
connected to it. Thus, it has not to keep track of either the
nodes in the system or the functionalities they offer. Some
nodes in the system can integrate services directories for

distributing the registration and discovering of services. This
way, a node can know about the existence of other nodes
and services offered by them. Thus, it can directly
communicate with other nodes in order to execute
commands or gather data. Moreover, a node belonging to
the system can react to a certain change in the environment
with no need of having into account all the factors involved
on the system. In addition, the node registration is done in
the corresponding WSN and the service registration is
maintained by the service directories. Therefore, the process
of connecting a new node offering more functionalities to
the system is performed in a dynamical way.

Some developments try to reach integration between
WSNs by implementing some kind of middleware, which
can be applied as reduced versions of virtual machines,
middleware or agent approaches [18] [7] [19]. However,
these developments require devices whose microcontrollers
have large memory and high computational power, which
increases costs and physical size. These drawbacks are very

(a) Centralized model

Distributed /
Heterogenous 7
WSN 7T

O‘I///

Fig. 1. A centralized versus a distributed approach for integrating
heterogeneous WSNs.

important when it comes to WSNs, as it is essential to
deploy applications with reduced resources and low
infrastructural impact, especially in Aml scenarios. A
service-oriented approach is adequate for implementing in
WSNss since it allows the distribution of functionalities (i.e.
services) into small modules that can be executed by devices
with limited computational resources, such as wireless
sensor nodes.

The SYLPH platform tackles some of these issues by
enabling an extensive integration of WSNs and optimizing
the distribution, management and reutilization of the
available resources and functionalities in such networks.
There are other developments that integrate WSNs and
SOA. Reference [10] presents a SOA-based environment in
which a WSN acts as service provider. Nevertheless,
services are not implemented on each node, but offered by a
centralized gateway. Reference [7] proposes a SOA-WSN
approach that implements three additional layers. However,
this approach needs special bridge nodes that implement the
Universal Plug and Play standard for the interconnection of
WSNs. Therefore, these developments do not consider the
necessity of minimizing the overload of the services on the
devices. In contrast, SYLPH allows the services to be
directly embedded in the WSN nodes and invoked from
other nodes either in the same network or another network
connected to the former. It also focuses specifically on using
devices with small resources to save CPU time, memory size
and energy consumption. Furthermore, SYLPH can be
integrated with FUSION@ [11], a multi-agent architecture,
so that information from WSN nodes can be managed by
intelligent agents running on an Aml-based multi-agent
application. SYLPH is presented in detail in the following
section.

III. DESCRIPTION OF THE SYLPH PLATFORM

The Services laYers over Light PHysical devices
(SYLPH) platform follows a SOA model [2] for integrating
heterogeneous WSNs in Aml-based systems. The main
objective is to distribute resources over multiple WSNs by
modeling the functionalities as independent services. The
SYLPH platform has been successfully applied in some
Ambient Intelligence scenarios as a healthcare
telemonitoring system [20]. The information gathered by
SYLPH nodes is managed by intelligent agents by means of
the integration of SYLPH with the FUSION@ multi-agent
architecture. Thus, the agents running on FUSION@ can use
reasoning mechanisms to adapt their behavior to the context
information obtained through SYLPH nodes.

SYLPH covers aspects relative to services such as
registration, discovering and addressing. Additionally, a
node can invoke functionalities offered by any other node in
the system, regardless of whether they are in the same WSN
or not. Some nodes in the system can integrate services
directories for distributing registration and discovering
services. Node registration is done in the corresponding

WSN (i.e. specific network) and service registration is
maintained by multiple services directories. Thus, the
process of connecting new nodes to the system is performed
in a dynamic way. A node can know about the existence of
other nodes and the services they offer. Therefore, it can
directly communicate with other nodes to perform a specific
service.

A SOA model was chosen because architectures based on
this model are asynchronous and non-dependent on context
(i.e. previous states of the system, which must not be
confused with context-aware environments) [2]. Thus,
devices working on them do not continuously take up
processing time, consume less energy, and are free to
perform other tasks.

SYLPH can be executed over multiple wireless devices
independently of their microcontroller or the programming
language they use. SYLPH works in a distributed way so
that the application code does not have to reside almost
completely on an only central node. SYLPH allows the
interconnection of several networks from different wireless
technologies, such as ZigBee or Bluetooth. Thus, a node
designed over a specific technology can be connected to a
node from a different technology. In this case, both WSNs
are interconnected by means of a set of intermediate
gateways connected to several wireless interfaces
simultaneously. SYLPH allows applications to work in a
distributed way and independently of the lower layers
related to the WSNs formation (i.e. network layer) and the
radio transmission amongst the nodes that conform them
(i.e. data link and physical layers).

The services can be executed from multiple wireless
devices. Given that neither developers nor users have to
worry about what kind of technology each node in the
system uses, the experience is transparent for everybody
involved. This facilitates the inclusion of context-aware
capabilities into AmlI-based systems because developers can
dynamically integrate and remove nodes on demand.

SYLPH implements an organization based on a stack of
layers [6]. Each layer in one node communicates with its
peer in another node through an established protocol. In
addition, each layer offers specific functionalities to the
immediately upper layer in the stack. These functionalities
are usually called interlayer services, which must not be
confused with the services invoked from node to node.
These interlayer services are abstract functions and
independent of the implementation of the platform. The
SYLPH layers are added over the existent application layer
of each WSN stack, allowing the platform to be reutilized
over different technologies. The structure of SYLPH will
now be described.

1) SYLPH Message Layer (SML). The SML offers the
upper layers the possibility of sending asynchronous
messages between two nodes through the SYLPH
Services Protocol (SSP). These messages specify the
source and destination nodes and the service invocation

2)

3)

4)

5)

in a SYLPH Services Definition Language (SSDL)
format. The SSDL describes the service itself and the
parameters to be invoked. The SML not only transports
the services invocations over the network, but also the
services registration and search functions.

SYLPH Application Layer (SAL). The SAL allows
different nodes to directly communicate with each other
using SSDL requests and responses that will be
delivered in encapsulated SML messages following the
SSP. The SAL implements the service code (i.e.
firmware) from within each node, allowing each one to
communicate with the SYLPH platform and invoke
services located in other nodes. Moreover, there are
other interlayer services for registering services or
finding services offered by other nodes. In fact, these
interlayer services for registering and searching services
call other interlayer services offered by the SYLPH
Services Directory Sub-layer (SSDS). Therefore, the
SAL can use the interlayer services of the SML either
directly or through the SSDS.

SYLPH Services Protocol (SSP). The SSP is the
internetworking protocol of the SYLPH platform. SSP
has functionalities similar to those of the Internet
Protocol (IP). That is, it allows sending packets of data
from one node to another node regardless of the WSN
to which each one belongs. Every node has a unique
SSP 32-bit address in the SYLPH network. Therefore, a
SSP packet includes a header that describes the SSP
addresses of the source node and the destination node,
as well as information for managing transmissions that
involve multiple SSP packets (i.e. number of SSP
packet and remaining bytes).

SYLPH Services Definition Language. The SSDL is
the IDL (Interface Definition Language) used by
SYLPH. Unlike other IDLs such as WSDL (Web
Services Definition Language) [21], SSDL does not use
as many intermediate separating tags, and the order of
its elements is fixed. SSDL has been specifically
designed to work with limited computational resources
nodes. Nodes can request the SSDS for the location of
services and their specifications using SSDL.

SYLPH Services Directory Sub-layer (SSDS). The
SSDS creates dynamical services tables to locate and
register services in the network. A node that stores and
maintains services tables is called SYLPH Directory
Node (SDN). These tables are made up of a list of
services entries, each of which includes the description
of a service in SSDL format and the SSP address of the
node that offers the service. In addition, each entry
stores additional information about the service whose
location and description is maintained in the network.
Such information includes, for instance, a Quality of
Service (QoS) rate and the last time the SDN checked if
the service was available. A node in the network can
make a request to the SDN to know the location (i.e.

network address) of a certain service. Requests are
packed in SML messages and must follow the SSP. The
SSDS is also used by the SAL when registering a new
service.

A. SYLPH Services

The behavior of SYLPH is in essence similar to the one of
any other service oriented architecture. However, SYLPH
has several characteristics and functionalities that make it
different to other models.

First, a service registers itself on the SDN and informs its
location in the network, the parameters it requires and the
type of returned value after its execution. In order to do that,
it is used SSDL which has been created to work with limited
resources nodes. SSDL is the IDL (Interface Definition
Language) used by SYLPH. Distributed architectures use an
IDL in order to enable communication between software
components regardless their programming language or
hardware implementation. Unlike other IDLs as WSDL,
based on XML and used on Web Services [21], SSDL does
not use almost any intermediate separating tags and its
services descriptions are short binary data sequences.

The reason for these constraints is to reduce processing in
the devices microcontrollers. Using a simple IDL allows,
consequently, utilizing nodes with fewer resources, less
power consumption and lower cost. In most cases it is
enough with a few float point data for informing the status
of a sensor. Thus, most service definitions require only a
few bytes. SSDL considers the basic types of data (e.g.
integer, float or boolean), allowing more complex data
structures as variable length arrays or character strings. In
this way, SSDL is flexible enough to specify more complex
services if required.

Once the service has been registered in the SDN, it can be
invoked by any application by means of SYLPH. Both the
SDN and the services can be stored in any node of the WSN
or in other subsystem connected to the WSN. This system
can be, for instance, a simple personal computer connected
through a USB port to a wireless interface. Thus, developers
decide which nodes or subsystems will implement each part
of the distributed application. Any node in the network can
ask the SDN for the location of a determined service and its
specification using SSDL. This aspect is described in the
following section.

With the aim of the architecture to be the more distributed
as possible, it is allowed to be more than one SDN in the
same network, so that can exist redundancy or services
organized in different directories. The SDN can be stored in
a node of the network, with a memory external to the
microcontroller if necessary, or be contained on a
computationally higher machine connected to the WSN, as
is the case of a data server or a personal computer with
wireless connection.

B. SYLPH Services Definition Language
The next example shows the use of SSDL to define a

SYLPH service. There is defined a simple service called
registerServiceOnFloodAlarm. This service is stored in a
flood sensor device that belongs to a WSN with the SYLPH
architecture running over it. The service can be invoked by
any other node in the SYLPH network to register another
service that will act as a callback. Thus, when the flood
sensor obtains a read over the specified threshold, the node
where it is stored will invoke the service labeled as callback
in the interface definition:

service registerServiceOnFloodAlarm {
input {
uintl6 t threshold;
servicepoint callback {
output {
boolean status; }; }; }s
output {
boolean status;

Yoods

(a) SSDL Service definition sent by the SDN over SSP

a SSDL header which specifies the SSDL data length and
the kind of frame it is (registration, definition, invocation or
response). As can be seen, there is an ouftputs mark for
denote the input parameters end there and the output
parameters follow it. In the example of the
registerServiceOnFloodAlarm service showed, a service
callback is described as an input parameter. For specifying
that issue, there are some service start and end marks. As
the service callback has no input parameters, the outputs
mark is the first field inside its definition in the parameters
description. Once the invoker node knows the service
definition, it can call the service sending a SSP frame to the
node which stores the service. This frame (Fig. 2b) does not
need marks inside it, because the input parameters have to
follow the specified order. Thus, the SSDL combines ease of
parsing with flexibility in the type and size of the utilized
parameters. The SSP header includes the destination node
SSP address. In the response frame there is the only output
parameter (Fig. 2c).

SSsP SSDL Service Id | Node Id uint16_t service outputs boolean service outputs boolean SSP
header header mark start mark mark mark end mark mark mark trailer
(b) SSDL Service invocation over SSP
Hop Sobl Service Id | threshold | callback SSP
header header trailer

(c) SSDL Service response over SSP

SSP
header

Fig. 2. Examples of SSDL frames over SSP.

SSDL
header

SSP
status 5
trailer

In fact, this representation of the SSDL syntax is the one
used by developers to specify the services in the firmware of
the devices attached to SYLPH architecture. After
specifying the service by means of SSDL human-readable
syntax, developers translate definitions to specific code for
the target language (e.g. C or nesC) and microcontroller
where service will run. When the node registers its service
in a SDN, SYLPH layers do not transmit the human-
readable SSDL message, but a more compact array of bytes
which describes the service and how to invoke it from other
nodes. Fig. 2 shows the SSDL frames involved in the
registerServiceOnFloodAlarm service definition (a),
invocation (b) and response (c¢) when transmitted over SSP.
When a node asks a SDN for the service definition, the SDN
answers with a frame as showed in Fig. 2a. Such frame
describes the service identification, the address of the node
which stores the service, the definition of the input and
output parameters and the QoS offered by the service. It has

C. SYLPH Gateways

As mentioned above, a node in a specific type of WSN
(e.g. ZigBee) can directly communicate with a node in
another type of WSN (e.g. Bluetooth). Therefore, several
heterogeneous WSNs can be interconnected through a
SYLPH Gateway. A SYLPH Gateway is a device with
several hardware network interfaces (e.g. a Wi-Fi network
card), each of which is connected to a distinct WSN. As an
IP gateway, a SYLPH Gateway does not need to implement
the layers over the SML. The SYLPH Gateway stores
routing tables for forwarding SSP packets amongst the
different WSNs with which it is interconnected. The
information transported in the SSP header is enough to route
the packets to the corresponding WSN. If several WSNs
belong to the SYLPH network, there is no difference
between invoking a service stored in a node in the same
WSN or in a node from a different WSN. For example, if a

source node invokes a service stored in a destination node
located in a different WSN, the source node looks for the
service in a SDN present in the WSN to which it belongs. In
fact, the entry stored in the services table of that SDN points
to the SSP address of the SYLPH Gateway. When the
source node invokes the service in the destination node, the
SYLPH Gateway forwards the call message to the
destination node through its hardware interface connected to
the WSN where the destination node is located

D. Integration of SYLPH and FUSION@

In order to interact with a SYLPH network from a system
that is not made up of WSNs, it is proposed to use
FUSION@ [11], a Multi-Agent architecture for distributed
services and applications. FUSION@ (Flexible User and
Services Oriented multiageNt Architecture) proposes a new
perspective, where Multi-Agent Systems and SOA-based
services are integrated to provide ubiquitous computation,
ubiquitous communication and intelligent interfaces
facilities. The FUSION@ framework defines four basic
blocks: Applications, Services, Agents Platform and
Communication Protocol. This framework has been
designed following the SOA model, but adding the
applications block which represents a fundamental part in
Ambient Intelligence: the interaction with users. These
blocks provide all the functionalities of the architecture.
There are predefined agents that provide the basic
functionalities of the architecture: CommApp Agent,
CommServ Agent, Directory Agent, Supervisor Agent,
Security Agent, Admin Agent and Interface Agent. Interface

Agents Platform
FUSION@

(WSN node #0 (SDN) \

Agents were designed to be embedded in users' applications
and are simple enough to allow them to be executed on
mobile devices, such as cell phones or PDAs. FUSION@
exploits the agents' characteristics to provide a robust,
flexible, modular and adaptable solution that can cover most
requirements of a wide diversity of Ambient Intelligence
projects.

This way, we have designed two agents in SYLPH in
order to interact with FUSION@: Sylphlnterface Agent and
SylphMonitor Agent. The Sylphinterface Agent allows the
rest of agents to discover and invoke services offered by
SYLPH WSN nodes. Moreover, the Sylphinterface Agent
can offer services to the wireless nodes. In order to do this,
the WSN node in the FUSION@-SYLPH gateway stores
services entries on its SSDS table. As can be seen in Fig. 3,
the Sylphinterface Agent performs as a broker between the
SYLPH network and the FUSION@ architecture. The
SylphMonitor Agent allows the agents platform to monitor
the state and operation of the SYLPH network. Thus,
SylphMonitor Agent monitors all the traffic (i.e. service
invocations, responses, registrations or searches) in the
SYLPH network. It is necessary for the nodes to operate in
debug mode, so that every time a node invokes a service it
also invokes a monitoring service on a node connected to the
SYLPH WSN node in the gateway. The node gathers all the
invocations and forwards them to the SylphMonitor Agent
running on the agents platform. The same process is done
for service responses, searches and registrations. The
SylphMonitor Agent makes it possible to observe when a
node is searching for a certain service in the network, the

WSN node #1

/ SDN #0 SSDS entry]

on gateway
(SylphMonitor Agent >

(Sylphinterface Agent)

Service on node #1 SSDS entry

T Service on node #2 SSDS entry
Services on Sylphinterface Agent

SerVIces on SylphMonitor Agent

:)"

Fig. 3. Interaction between SYLPH and FUSION@.

\ _

SDN #0 SSDS entry J

services offered by the nodes, and the contents of the SSDS
entries tables stored in the SDNs.

IV. CONCLUSIONS AND FUTURE WORK

Ambient Intelligence is an emerging multidisciplinary
area based on ubiquitous computing that proposes new ways
of interaction between people and technology, adapting
them to the needs of users and their environment. Ambient
Intelligence improves the quality of life of the people
providing them with easier and more efficient ways to
communicate and interact with other people and systems.
Ambient Intelligence based applications involve complex
design and implementation stages. This is because such
applications must be highly distributed, dynamic and
scalable, as well as ubiquitous for users from both software
and hardware point of views. One of the most successful
approaches to Ambient Intelligence is agents and multi-
agent systems.

The integration of SYLPH and the FUSION@ multi-
agent architecture allows developing Aml-based
applications where context information gathered by
heterogeneous WSN nodes is managed by intelligent agents.
These intelligent agents can use reasoning mechanisms and
methods in order to learn from past experiences and to adapt
their behavior according the context. The use of a SOA-
based approach provides a flexible distribution of resources
and facilitates the inclusion of new functionalities in highly
dynamic environments. Furthermore, SYLPH allows
integrating heterogeneous WSNs in a distributed way. Thus,
functionalities are modeled as independent services offered
by nodes (i.e. wireless devices) in the network. These
services can be invoked by any node in the SYLPH
infrastructure, regardless the physical WSN which they
belong. In addition, SYLPH nodes do not need large
memory chips or fast microprocessors. The easy deployment
of SYLPH-based systems reduces the implementation costs
in terms of development and infrastructure support.

Future work includes the development of new
applications for Ambient Intelligence scenarios through the
implementation of multi-agent systems based on the use of
heterogeneous WSNs under the SYLPH platform.
Surveillance and educational applications are our most
immediate challenges. Furthermore, the next stage of the
union between FUSION@ and SYLPH is being designed.
This stage is aimed at considering wireless nodes as
hardware agents. This way, there will be no distinction
amongst software agents and hardware agents in the
platform under development. Therefore, the platform will
run software agents and hardware agents that offer services
to other agents and applications, regardless if the agent is a
piece of code or a wireless sensor. Consequently, it will be
possible to build Ambient Intelligence scenarios where users
cannot distinguish what part of the system is interacting with
them, achieving a higher level of ubiquitous and pervasive
computing.

[10]

(11]

[12]

[13]
[14]

[15]

[16

=

[17]

(18]

[19]

[20]

(21]

REFERENCES

E. Aarts and R. Roovers, “Embedded system design issues in Ambient
Intelligence,” Ambient Intelligence: impact on embedded system
design, Kluwer Academic Publishers, 2003, pp. 11-29.

K. Lyytinen and Y. Yoo, “Introduction,” Commun. ACM, vol. 45,
2002, pp. 62-65.

G.T. Jayaputera, A. Zaslavsky, and S.W. Loke, “Enabling run-time
composition and support for heterogeneous pervasive multi-agent
systems,” The Journal of Systems & Software, vol. 80, 2007, pp.
2039-2062.

A K. Dey and G.D. Abowd, “Towards a better understanding of
context and context-awareness,” CHI 2000 workshop on the what,
who, where, when, and how of context-awareness, 2000, pp. 304-307.
M. Wooldridge, An Introduction to MultiAgent Systems, Wiley, 2009.
J. Sarangapani, Wireless Ad hoc and Sensor Networks: Protocols,
Performance, and Control, CRC, 2007.

M. Marin-Perianu, N. Meratnia, P. Havinga, L. de Souza, J. Muller, P.

Spiess, S. Haller, T. Riedel, C. Decker, and G. Stromberg,
“Decentralized enterprise systems: a multiplatform wireless sensor
network approach,” Wireless Communications, IEEE, vol. 14, 2007,
pp. 57-66.

Jaekyu Cho, Yoonbo Shim, Taeckyoung Kwon, and Yanghee Choi,
“SARIF: A novel framework for integrating wireless sensor and RFID
networks,” Wireless Communications, IEEE, vol. 14, 2007, pp. 50-56.

S. Mukherjee, E. Aarts, R. Roovers, F. Widdershoven, and M.
Ouwerkerk, Amiware: Hardware Technology Drivers of Ambient
Intelligence, Springer, 2006.

A. Malatras, A. Asgari, and T. Bauge, “Web Enabled Wireless Sensor
Networks for Facilities Management,” Systems Journal, IEEE, vol. 2,
2008, pp. 500-512.

J.M. Corchado, J. Bajo, Y. de Paz, and D.I. Tapia, “Intelligent
environment for monitoring Alzheimer patients, agent technology for

health care,” Decision Support Systems, vol. 44, 2008, pp. 382-396.
S.J. Russell, P. Norvig, J.F. Canny, J. Malik, and D.D. Edwards,
Artificial Intelligence: a modern approach, Prentice Hall Englewood
Cliffs, NJ, 1995.

F. Bellifemine, A. Poggi, and G. Rimassa, “JADE-A FIPA-compliant
agent framework,” 1999, pp. 97-108.

F. Pecora and A. Cesta, “DCOP FOR SMART HOMES: A CASE
STUDY,” Computational Intelligence, vol. 23, 2007, pp. 395-419.

D. Tapia, J. Bajo, and J. Corchado, “Distributing Functionalities in a
SOA-Based Multi-agent Architecture,” Tth International Conference
on Practical Applications of Agents and Multi-Agent Systems
(PAAMS 2009), 2009, pp. 20-29.

E. Cerami, Web Services Essentials: Distributed Applications with
XML-RPC, SOAP, UDDI & WSDL, O'Reilly Media, Inc., 2002.

L. Ardissono, G. Petrone, and M. Segnan, “A conversational approach
to the interaction with Web Services,” Computational Intelligence,
vol. 20, 2004, pp. 693-709.

Min Chen, S. Gonzalez, and V. Leung, “Applications and design
issues for mobile agents in wireless sensor networks,” Wireless
Communications, IEEE, vol. 14,2007, pp. 20-26.

P. Schramm, E. Naroska, P. Resch, J. Platte, H. Linde, G. Stromberg,
and T. Sturm, “A Service Gateway for Networked Sensor Systems,”
IEEE Pervasive Computing, vol. 3, 2004, pp. 66-74.

J.M. Corchado, J. Bajo, D.I. Tapia and A. Abraham, “Using
Heterogeneous Wireless Sensor Networks in a Telemonitoring System
for Healthcare,” IEEE Transactions on Information Technology in
Biomedicine, vol. 14, Mar. 2010, pp. 234-240.

F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S.
Weerawarana, “Unraveling the Web services web: an introduction to
SOAP, WSDL, and UDDI,” IEEE Internet Computing, vol. 6, Apr.
2002, pp. 86-93.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

