Automated Middleware QoS Configuration Techniques
for Distributed Real-time and Embedded Systems*

Amogh Kavimandan and Aniruddha Gokhale
Dept. of EECS, Vanderbilt University, Nashville, TN
{amoghk,gokhale } @dre.vanderbilt.edu

Abstract

Quite often the modeling tools used in the development
lifecycle of distributed real-time and embedded (DRE) sys-
tems are middleware-specific, where they elevate middle-
ware artifacts, such as configuration options, to first class
modeling entities. Unfortunately, this level of abstraction
does not resolve the complex issues in middleware configu-
ration process for QoS assurance. This paper describes GT-
OMAP (Graph Transformation for QoS MAPping) model-
driven engineering toolchain that combines (1) domain-
specific modeling, to simplify specifying the QoS require-
ments of DRE systems intuitively, and (2) model transfor-
mations, to automate the mapping of domain-specific QoS
requirements to middleware-specific QoS configuration op-
tions. The paper evaluates the automation capabilities of
GT-QMAP in the context of three DRE system case stud-
ies. The results indicate that on an average the modeling
effort is reduced by over 75%. Further, the results also in-
dicate that GT-QMAP provides significant benefits in terms
of scalability and automation as DRE system QoS require-
ments evolve during its entire development lifecycle.

Keywords: MDE, Graph/model transformations, QoS,
middleware configuration.

1 Introduction

Component-based software engineering (CBSE) is find-
ing wide acceptance in the development of modern dis-
tributed real-time and embedded (DRE) systems. Con-
sequently component middleware platforms, such as
Lightweight CORBA Component Model (LwCCM), are de-
signed to be highly flexible to support a large class of DRE
systems from multiple domains. These middleware plat-
forms therefore provide a number of configuration mech-
anisms for (1) allocating CPU, network and OS resources
a priori, (2) (re)configuring and (re)deploying distributed
system components, and (3) (de)marshaling communication
requests, component activation/deactivation and persistence

*This work was sponsored in part by Lockheed Martin Advanced Tech-
nology Laboratories.

services, all of which are decoupled from the functional
composition aspects of DRE systems.

Assuring DRE system QoS properties involves multiple
different factors. Apart from making the right decisions on
deployment and functional composition, it is critical to per-
form the middleware QoS configuration activity i.e., cor-
rectly mapping system QoS properties onto the underlying
middleware configuration options. Such an activity requires
insights about different middleware configuration options,
their impact on resulting QoS, and their inter-dependencies.
DRE system developers understand application-specific de-
sign and implementation issues but seldom have the nec-
essary expertise to perform middleware QoS configuration.
Failure to carefully map domain-level QoS requirements
onto low-level middleware-specific configuration options
can lead to a suboptimal middleware configuration degrad-
ing the overall system performance, and in worst cases
cause runtime errors that are costly and difficult to debug.

Existing works in QoS assurance for DRE systems have
focused on: (1) application functional specification, decom-
position and analysis [6] to capture and study application
structure and behavior, (2) QoS analysis, optimization and
adaptation [12] to allocate resources to applications, pro-
vide for application QoS optimization and adaptation in
multiple QoS dimensions, and (3) schedulability and timing
analysis [16, 5] to determine exact priorities and time peri-
ods for applications. Some work has also been done in QoS
specification languages [14, 2, 17] for capturing application
QoS properties by elevating middleware artifacts (such as
its configuration options) to first class modeling entities. We
argue that this level of abstraction does not resolve the chal-
lenges involved in middleware QoS configuration, which is
the focus of this paper.

Solution Approach — Model-driven Middleware QoS
Configuration. Model driven engineering (MDE) has
shown significant promise and success in enabling the rea-
soning of system properties using domain-specific nota-
tions, and automating platform-specific artifacts using gen-
erative capabilities. MDE has been successfully used in ver-

ification of system correctness properties [6], and functional
and QoS modeling [2], among others.

Our earlier work [9] outlined the challenges and concep-
tual ideas in middleware QoS configuration and described
the QUICKER MDE toolchain. This paper delves into the
details of the automated transformation capabilities, which
are the cornerstone of tools like QUICKER. In particular,
we describe GT-QMAP (Graph Transformations for Quality
of service MAPping), which uses graph transformations on
system models to automate the middleware QoS configura-
tion. Our approach begins with domain-specific, platform-
independent models (PIMs) of DRE system QoS require-
ments that are automatically transformed to more refined
and detailed middleware platform-specific models (PSMs).
In this paper we focus only on the automated QoS config-
urations for real-time (RT) request-response and publish-
subscribe communication dimensions.

To describe and evaluate the algorithms developed for

GT-QMAP, we use the following domain specific modeling
languages (DSMLs) as input and output typed graphs for the
automated QoS mapping: (1) Platform Independent Com-
ponent Modeling Language (PICML) [2] used for model-
ing component assemblies, inter-and intra-assembly inter-
actions and interfaces, and simplifying various activities of
component-based system development such as packaging,
and deployment, and (2) LwCCM QoS Modeling Language
(CQML)that allows system developers to express QoS con-
figurations at different levels of granularity using intuitive,
visual representations.
Paper Organization. The remainder of this paper is orga-
nized as follows: Section 2 describes motivating DRE sys-
tems we use to describe the challenges in QoS mapping;
Section 3 describes the GT-QMAP toolchain and how it ad-
dresses the challenges outlined in Section 2; Section 4 eval-
uates GT-QMAP QoS configuration capabilities in the con-
text of the DRE system case studies; Section 5 describes re-
lated research; and Section 6 describes concluding remarks
outlining lessons learned and future work.

2 Challenges in Automated Middleware QoS
Configuration

Section 1 outlined the need for automating the tedious
and error-prone process of middleware QoS configuration.
Developing a scientific approach to automate this activity
poses a certain set of challenges. We discuss these chal-
lenges in the context of three case studies, which we also
use in the paper for evaluating our approach.

2.1 DRE system Case Studies

We chose the following DRE systems as the application
scenarios for our experiments:

BasicSP. The Basic Single Processor (BasicSP) is a sce-
nario from The Boeing Bold Stroke component avionics
computing product line. BasicSP uses a publish/subscribe
service for event-based communication among its compo-
nents, and has been developed and configured using a QoS-
enabled component middleware platform. The application
is deployed using a single deployment plan on two physical
nodes.

get_data () get_data ()

AIRFRAME

}“3 o ,—

TSP ata_avail

data_avail

Figure 1: Basic Single Processor

A GPS device sends out periodic position updates to a
GUI display that presents these updates to a pilot. The de-
sired data request and the display frequencies are fixed at
20 Hz. The scenario shown in Figure 1 begins with the GPS
component being invoked by the Timer component. On re-
ceiving a pulse event from the Timer, the GPS component
generates its data and issues a data available event. The
Airframe component retrieves the data from the GPS com-
ponent, updates its state and issues a data available event.
Finally, the NavDisplay component retrieves the data from
the Airframe and updates its state and displays it to the pilot.
MMS. NASA’s Magnetospheric MultiScale (MMS) mis-
sion is a representative DRE system consisting of several
interacting subsystems with a number of complex QoS re-
quirements. It consists of four identical spacecrafts that or-
bit around a region of interest in a specific formation. These
spacecrafts sense and collect data specific for the region
of interest and at appropriate time intervals send it to the
ground stations for further analysis.

Gizmo 1 }D—D—[Filter 1 }D~—D{Analys\s 1

Science Gi P Eilter 2 Analysis 2
‘Agent izmo ilter nalysis

40{ Gizmo 3 }D—D{ Filter 3 }D—D—[Analysls 3

@ Receptacle [[) Event Source

Comm }D—D—[Ground J

O Facet 1) Event Sink
Figure 2: MMS Mission System Components

Figure 2 shows the components and their interactions
within a single spacecraft. Each spacecraft consists of a
science agent that decomposes mission goals into naviga-
tion, control, data gathering, and data processing appli-
cations. Each science agent communicates with multiple
Gizmo components, which are connected to different pay-
load sensors. Each Gizmo component collects data from the

sensors, which have varying data rate, data size, and com-
pression requirements.

The data collected from the different sensors have vary-

ing importance, depending on the mode and on the mission.
The collected data is passed through Filter components,
which remove noise from the data. The Filter components
pass the data onto Analysis components, which compute a
quality value indicating the likelihood of a transient plasma
event. This quality value is then communicated to other
spacecrafts and used to determine entry into burst mode
while in fast mode. Finally, the analyzed data from each
Analysis component is passed to a Comm (communication)
component, which transmits the data to the Ground compo-
nent at an appropriate time.
SCE. The Shipboard Computing Environment (SCE) con-
sists of a sequence of several components connected to-
gether to form multiple operational strings. Each opera-
tional string has different importance levels and these levels
are used to resolve any resource contention between them.

pL_A]—[p2_A]—[p3A - coa H eca
I—l—l

[smi_A][sm2_A] Ey

[el A][e2 A][e3 A]

Figure 3: Shipboard Computing Environment

As shown in Figure 3, each operational string contains a

number of sensor components (e.g., edI_A,ed2_A) and sys-
tem monitor components (e.g., sml_A, sm2_A) that publish
data from the physical devices to a series of planner compo-
nents (e.g., pI_A, p2_A). Once the inputs from sensors and
system monitors has been analyzed, the planners perform
control decisions using the effector components (e.g., e/_A,
e2_A). As shown in Figure 3, each operational string con-
tains ten components altogether. SCE has ten operational
strings that are deployed using ten deployment plans on five
physical nodes.
Configuration complexity of scenarios. As already men-
tioned, in this paper we have focussed on QoS specification
for request-response and publish-subscribe communication
paradigms. From our past experiences with developing and
configuring QoS for DRE systems [9], we chose a 3-tuple
{C;I; D} to represent configuration complexity of our appli-
cation scenarios where,

o (defines the number of components of the application.

o] defines distinct number of interactions between com-
ponents of the application. An interaction exists be-
tween two components if the outgoing port of one is
connected to incoming port of the other.

e D defines the distinct number of dependencies between

components of the application. A dependency exists
between two components if a change in the QoS con-
figuration of one necessitates a change in configuration
of the other.

Table 1: Complexity of application scenarios

Application #of com- | # of component | # of component
scenarios ponents interactions dependencies
BasicSP 4 5 6

MMS 12 11 43

SCE 150 260 950

The application scenarios described above illustrate dif-
ferent levels of configuration complexity and can be sum-
marized using our 3-tuple definition as shown in Table 1.

2.2 Design Challenges

In the remainder of this section, we discuss the chal-

lenges in automating the QoS configurations:
Challenge 1: Specifying domain-specific QoS require-
ments System developers are domain experts who can
understand and reason about various domain-level issues.
Therefore, the QoS requirements of a DRE system must be
expressible in terms of domain concerns rather than in terms
of low-level, middleware-specific mechanisms required to
satisfy these concerns.

For example, a requirement for the asynchronous con-
nection between Comm and Analysis components in the
MMS mission is that its access be thread safe such that only
one Comm component thread can access the asynchronous
connection (for retrieving its events, for example) at any
given time. Real-time publish/subscribe service provides
advanced synchronization mechanisms in order to address
such application requirements. It is highly desirable, how-
ever, for system developers to be able to specify these re-
quirements at the domain-level instead of the middleware.

Addressing this challenge requires tool support for intu-
itive modeling capabilities that capture QoS concerns of a
system using semantics and notations that are closer to the
domain. Further, since DRE systems exhibit multidimen-
sional QoS requirements, the tool should provide clearcut
separation of concerns during system QoS specification.
Section 3.1 illustrates how our GT-QMAP toolchain ad-
dresses this challenge.

Challenge 2: Identifying the middleware-specific QoS
configuration options for satisfying QoS requirements
Although a tool may provide modeling capabilities to spec-
ify system-level QoS requirements, there remains the need
to identify the right middleware-specific QoS configura-
tion options that will satisfy the system QoS requirements.
This identification process can be a challenging task be-
cause of the following factors: (1) systems evolve either

as part of the software development lifecycle, or modified
domain requirements/end-goals. Naturally, the new mid-
dleware configurations would have to be identified again,
which is a tedious and error-prone process, and (2) for large-
scale systems this process becomes too time consuming,
and in some cases infeasible.

For example in the SCE application, the planner com-
ponent pI_A has the following requirements: (1) asyn-
chronous connections with its client components (i.e., here
the system monitors) must support bursty service invoca-
tions from each of these components, and (2) service in-
vocations from each of its client components must be pri-
oritized. A way to satisfy the second requirement is by
configuring the planner to have SERVER_DECLARED real-
time CCM (RT-CCM) policy that handles invocations at
pre-determined priorities. In addition, sufficient thread re-
sources should be available to handle all client priority lev-
els. This can be achieved by configuring ThreadPool with
Lanes feature where a single lane corresponds to an individ-
ual priority level. Such a QoS design scheme also ensures
a predictable application execution and does not exhibit un-
bounded priority inversions. Finally in order to satisfy the
first requirement, it is prudent and economical to assign
dynamic thread resources for bursty clients that reserving
them in a static manner for the entire application life-cycle.

An automated QoS configuration tool should be able to
codify these proven patterns and correctly identify the QoS
options necessary to achieve desired system QoS from a
given (semantically-correct) input model. If QoS require-
ments have been specified across more than one RT QoS
dimensions, the tool should identify corresponding options
pertaining to each of these dimensions. Section 3.2 illus-
trates how GT-QMAP addresses this requirement.
Challenge 3: Mapping the QoS requirements onto QoS
configuration options Even if the QoS configuration op-
tions that satisfy the system QoS requirements may be iden-
tified, appropriate values for each of the configuration op-
tions must be chosen in order to correctly configure the mid-
dleware and realize system level QoS properties. Such a
step would have to potentially be performed several times
during the development cycle of a system and thus should
be easily (and relatively quickly) repeatable.

For our MMS mission, the Comm component is best re-
alized using the RT-CCM Threadpool_with_lanes
feature so that it can provide varying levels of service to its
clients. Similarly, the Analysis components requires the
use of banded connections to prevent priority of inversions
on the communication links. In both these cases it is neces-
sary to identify how many lanes are needed in a thread pool,
what priority values should be set per lane, how many bands
of communication are needed, and what priority ranges are
handled by each band.

Depending on the individual QoS requirements, one or

more alternative QoS options may be identified in the pre-
vious step. A QoS configuration tool should choose suit-
able values for each of these QoS options. Additionally, it
should ensure that QoS options are valid, both for the as-
sociation entity (in the context of component middleware,
an association entity would be, for example, a component,
a connection between components, or an assembly to which
a QoS configuration is associated), as well as for the entire
component-based application. Section 3.2 illustrates how
GT-QMAP addresses this requirement.

3 Design of GT-QMAP

This section describes the GT-QMAP QoS mapping
toolchain for QoS-enabled component middleware. GT-
QMAP is a MDE framework, which relies on DSMLs for
the description of high-level, domain-specific QoS require-
ments that enable capturing the (platform-independent) sys-
tem requirements across various QoS dimensions. Addi-
tionally, GT-QMAP uses model-driven graph transforma-
tions [8] for the translation of these QoS requirements into
platform-specific QoS configuration options necessary to
realize these QoS requirements on the underlying platform.

Figure 4 shows the overall GT-QMAP toolchain. DRE
system developers use the Requirements DSML in GT-
QMAP to specify the system QoS requirements. A specifi-
cation of system QoS requirements acts as the source model
of the GT-QMAP transformation. Similarly, middleware-
specific QoS configuration options are captured as models
using the QoS Configurations DSML which serves as the
target model in the transformation process.

“Assembly
Metamodel

Requirement
Metamodel
Package
Metamodel PICML

System-level
QoS
requirements

System Developer

QoS
Configuration |
Metamodel

cQML

System Configuration Evolution
) GT-QuAP Metamodels
:) Existing Metamodels.

Figure 4: GT-QMAP toolchain for mapping QoS re-
quirements to platform-specific QoS Options

GT-QMAP uses the Generic Modeling Environment
(GME) [11] toolkit for developing the modeling languages
used to describe the above, which provides a graphical user
interface that can be used to define both DSML semantics
and system models that conform to the DSMLs defined in
it. Model interpreters can be developed using the generative
capabilities in GME. The interpreters are used to traverse

the models for generating artifacts for analysis tools such as
model-checking, emulation tools, etc.

We have used the Graph Rewriting And Transformation
(GReAT) [8] language for defining model-to-model transla-
tions of QoS requirements.GReAT, which is developed us-
ing GME, can be used to define transformation rules us-
ing its visual language, and executing these transforma-
tion rules for generating target models using the GReAT
execution engine (GR-Engine). The graph rewriting rules
are defined in GReAT in terms of source and target typed
graph (i.e., metamodels). GT-QMAP transformation rules
are used by the GR-Engine in order to create the QoS op-
tions model of a DRE system from its QoS requirements
model.

For evaluating GT-QMAP modeling capabilities and
demonstrating them through a prototypical implementa-
tion, our Requirements DSML has been superimposed on
PICML. The requirements modeling abstractions however,
are not tied to PICML alone and thus can be generally asso-
ciated with any other structural modeling language that pro-
vides capabilities for modeling functional entities (for ex-
ample, a component, an assembly, or connections thereof)
of a component-based system.

3.1 Specifying QoS Requirements using GT-
QMAP Modeling Capabilities

In Challenge 1 of Section 2 we motivated the need
for domain-specific QoS specification for component-based
DRE systems. We define modeling constructs in GT-QMAP
that can be used by the DRE system developers to define
models that capture QoS requirements. This section de-
scribes this capability and how it resolves Challenge 1.

3.1.1 Modeling QoS Requirements using GT-QMAP
GT-QMAP defines the Requirement element as a gen-
eralization of QoS requirements. As shown in Figure 5,
source elements Component, ComponentAssembly or
Port connections can be associated with a Require-
ment element. Modeling abstractions in GT-QMAP al-
low association of multiple source elements with the same
Requirement as long as those source elements are of the
same fype. Moreover a ComponentAssembly’s Reqg—
uirement is also associated with all the components con-
tained in that ComponentAssembly. Such associations
provide significant benefits in terms of flexibility in the cre-
ation of QoS requirements models and scalability of the
models. The metamodels we describe below have been in-
tegrated with PICML using these associations, thus a single
model of DRE system captures its entire QoS requirements
specification.

Next we discuss the requirements specification across
the following two RT QoS dimensions: (1) RT-CCM that
is used to specify requirements for components and syn-
chronous connections between components, and (2) RT

I ComponentAssembly |

0}

Component

T
I ProvidedRequestPort

o

I RequestConnector

|

j
} -
B o

I RequiredRequestPort

Figure 5: Simplified UML notation of QoS Requirements
Associations in GT-QMAP

publish/subscribe service that is used to specify require-
ments for asynchronous connections between components.
Real-time QoS requirements. Real-time requirements
have component-level granularity. A RTRequirement
element which is derived from Requirement, captures
real-time requirements of a component and may have the
following two attributes:(1) fixed_priority_servi-
ce_execution, a server component Boolean property
for specifying whether or not it modifies client service in-
vocation priorities, and (2) bursty_client_reque-
sts, a server component Boolean property for specifying
the profile of service invocations made by its client compo-
nents.

Publish/subscribe QoS requirements. We have modeled
requirements for real-time publish/subscribe event service
to enable specification of QoS across asynchronous and
anonymous interactions in component-based DRE systems.
In the context of a publish/subscribe service, a Subscriber
component subscribes to receive events from a Publisher
component that generates events. Publisher (subscriber)
component connects to a mediator entity, an Event Chan-
nel, to publish (subscribe to) events.

The ECRequirement element is derived from
Requirement. It models the properties of the
event channel and can be used to specify the fol-
lowing QoS requirements: (1) network_quality, a
connection-level property that captures the quality value
of network used for running the application. 2)
connection_frequency, a component-level prop-
erty specifying the frequency at which the compo-
nent (dis)connects with the publish/subscribe connection.
(3) event_distribution_ratio, a connection-level
property that specifies the ratio: g—z‘ where E“. denotes
number of events available for subscfiption at connection ¢
and E°. denotes average number of events subscribed to at

connection ¢ by each subscriber component. These model-
ing capabilities are at a sufficiently high level of abstrac-
tion and are intuitive to be applied to a variety of pub-
lish/subscribe mechanisms. All the requirements have an
enumerated data type with values LO and HI.

3.2 Automating QoS requirements mapping using
GT-QMAP

Challenge 2 and 3 in Section 2 motivated the need for
an automated toolchain for performing QoS configuration
of the underlying middleware platform. In this section, we
first describe CQML QoS Configuration DSML that defines
middleware-specific QoS options and outline our transfor-
mation algorithm that transforms system QoS requirements.

3.2.1 Modeling Middleware QoS options in CQML
Rather than directly transforming source models of DRE
system into configuration descriptors required for deploy-
ing it on the middleware, we chose to generate models of
middleware-specific QoS options from these source mod-
els such that they can be used for further analysis such as
model-checking QoS properties of the DRE system. We
have developed interpreters for parsing CQML system mod-
els and generating deployment descriptors in preparation of
deploying the DRE system on target environment.
Real-time QoS options. CQML defines the following
elements corresponding to several RT-CCM configuration
mechanisms: (1) Lane, which is a logical set of threads
each one of which runs at lane_priority priority
level. It is possible to configure static thread (i.e., those
that remain active till the system is running and dynamic
thread (i.e., those threads that are created and destroyed
as required) numbers using Lane element. (2) Thread-
Pool, which controls various settings of Lane elements,
or a group thereof. These setting include stacksize of
threads, whether borrowing of threads across two Lane
elements is allowed, and maximum resources assigned
to buffer requests that cannot be immediately serviced.
(3) PriorityModelPolicy, which controls the pol-
icy model that a particular ThreadPool follows. It
can be set to either CLIENT_PROPAGATED if the invoca-
tion priority is preserved, or SERVER_DECLARED if the
server component changes the priority of invocation. (4)
BandedConnections, which defines separate connec-
tions for individual (client) service invocations.
Publish/subscribe QoS options. For QoS configuration
of asynchronous event communications, CQML defines the
following elements: (1) Publisher and Subscriber
modeling elements contain all the event source and sink
settings, respectively. These include, for example, thread
locks management mechanisms for publishers (subscribers)
that are accessed by multi-threaded systems, and types of
event filtering used, (2) RTECFactory element contains

configurations specific to the event channel itself. These in-
clude, for example, event dispatching method that controls
how events from publishers are forwarded to the respec-
tive subscribers, scheduling of events for delivery and other
scheduler-related coordination, and handling of timeout
events in order to forward them to respective subscribers,
and (3) FilterGroup element that specifies strategies to
group more than one filters together for publishers (sub-
scribers).

3.2.2 GT-QMAP Transformations for QoS Mapping

The GT-QMAP model transformation rules have been de-
fined in GReAT and are based on our past experiences in
configuring QoS for component-based DRE systems. They
are applicable to any system model that conforms to the Re-
quirements DSML, and thus can be used by the system de-
velopers repetitively during the development and/or mainte-
nance phase(s) of the DRE system. GT-QMAP model trans-
formations preserve the granularity specified in the source
models.

Mapping real-time QoS requirements. Let R,° and R,,i
denote, respectively, the set of outgoing (required/event
source) and incoming (provided/event sink) ports of com-
ponent p € P. Let S and C be the sets of server and client
components respectively and are given by:

pESIfR,#0and pe Cif R, #0

Algorithm 1 describes (non-exhaustive) RT-CCM QoS
mappings in GT-QMAP. Lines 5-13 show the thread re-
source allocation scheme for server components. For every
incoming port of a server component, the number of inter-
face operations and client components are counted (lines 9
and 10). These counts are used by the auxillary function
T hreadResources to calculate the total threads required for
handling all client service invocations at that server.

For handling bursts of client requests, server com-

ponents should configure their thread pool to grow
dynamically such that threads are created only when
required.assignT hreadResources function is used to adjust
the ratio of static and dynamic threads for a server, depend-
ing on whether its bursty_client_requests prop-
erty is set to TRUE. In addition, lane borrowing feature at
the server is set to TRUE such that the thread pool lanes
across various priority levels can be borrowed. Finally, Pri-
orityBands are configured and the their priority values are
matched with server-side lane values in line 24.
Mapping publish/subscribe QoS requirements. Let PC.*
denote the synchronization mechanism, PC.’ denote the
type, PC.' denote the iterator in proxy collection PC for
component c, respectively. Let L. denote the locking pol-
icy, CP, denote control policy, SF, denote supplier-based
filtering at component c, respectively. Algorithm 2 gives
the (non-exhaustive) publish/subscribe QoS mappings.

Algorithm 1: Real-time QoS Requirements Mapping

Input: set of client components C, set of server components S, set of bursty
client components B, set of threadPool lanes T PLanes

1 begin

2 InterfaceOperationsCount ioc; ClientsCount cc;

3 IncomingPort ip; OutgoingPort op;ThreadCount tc;

4 Component c;set of Components CPS; Buffering bf;

5 foreach p € S do

6

7

8

ioc < 0; cc «— 0;5tc < 0; bf — false;
CPS — ClientComponents(p);
foreach ip € R, do

9 ioc « ioc+ countOperations(p,ip);
10 cc — cc+ countClientComponents(p,ip);
11 end
12 tc — ThreadResources(ioc,cc);
13 createT PLanes(p,tc);
14 foreach c € CPS do
15 if ¢ € B then
16 bf «— true;
17 assignT hreadResources(
18 TPLanes,,c,tc);
19 assignT PoolAttributes(T PLanes,,bf);
20 ioc — 0;
21 foreach op € R.° do
22 ioc < ioc + countOperations(c,op);
23 end
24 createBands(c,ioc); matchPriorities(p,c);
25 end
26 end
27 end

A publish/subscribe service has several settings for con-
figuring the way collections of publisher and subscriber ob-
jectreferences are created and accessed, which must be cho-
sen appropriately for individual applications. Lines 6-9 in
Algorithm 2 show how the choice of serialization mecha-
nism is affected by the number of thread resources config-
ured at component c.

The choice of the type of collection is based on the
following: (1) RB_TREE data structure exhibits faster
(O(log(n))) insertion and removal operations. Therefore,
it is more suited for connections whose components have
a high (dis)connection rate; (2) LIST data structure on the
other hand, should be chosen in cases where iteration is fre-
quent (and therefore, more crucial for efficient application
execution) than modifications to it.

Lines 11-14 give the steps in algorithm that configure the
collection type. Finally, REACTIVE policy is chosen for ap-
plications that use low-quality value network on Lines 16-
19, which ensures that (publisher/subscriber) components
are periodically polled for determining their states (i.e.,
whether or not they are connected to the event channel).

3.3 Applying GT-QMAP for Middleware QoS
Configuration

The challenges described in Section 2 are resolved us-
ing GT-QMAP modeling and automated QoS configuration
capabilities as follows:

Resolving Challenges 1 & 2: Target typed graph elements
(i.e., QoS options), are well-understood by implementa-

Algorithm 2: Publish/Subscribe service QoS Require-
ments Mapping
Input: set of components CPS

1 begin
2 Component ¢; ThreadPoolLaneCount Ic;
3 NetworkQuality ng;
4 foreach c € CPS do
5 lc = countT hreadResources(c); ¢ f = connectionFrequency(c);
nq = networkQuality(c); dr = eventDistributionRatio(c);
6 if lc # 1 then
7 PC,* = MT; L. — THREAD;
8 else
9 PCS =ST;L. =NULL,
10 end
1 if ¢f # LO then
12 PC,! = LIST; PC./ = COPY_ON_READ:;
13 else
14 PC.! = RB_TREE; PC.,* = COPY_ON_WRITE;
15 end
16 if ng # LO then
17 CP. = NULL;
18 else
19 CP. = REACTIVE,
20 end
21 if ¢ € S then
22 if dr # LO then
23 SF. = PER_SUPPLIER;
24 else
25 SF. =NULL;
26 end
27 end
28 end

tion middleware experts. GT-QMAP transformation algo-
rithms 1 and 2 are designed in terms of source and tar-
get typed graphs by these experts. System developers can
describe their system QoS requirements using the mod-
eling capabilities discussed in Section 3.1.1. By provid-
ing platform-independent modeling elements in GT-QMAP
and defining representational semantics that closely follow
those of the system requirements, GT-QMAP allows sys-
tem developers to describe system QoS using simple, intu-
itive notations. Further, model transformations defined in
GT-QMAP automatically identify and deduce QoS config-
urations that are best suited to achieve the desired QoS for
DRE systems being configured.

For example, in the MMS mission, GT-QMAP auto-
matically identifies thread safety mechanisms applicable
for asynchronous connection between Comm and Analysis
components as can be seen from lines 6-9 in Algorithm 2.
In the SCE application, the requirement of prioritization of
service invocations at p/_A component can be easily spec-
ified by setting fixed _priority_service_execu-
tion to TRUE.

Resolving Challenge 3: GT-QMAP transformation rules
contain information about the semantics of the QoS options,
their inter-dependencies, and how they affect the high-level
QoS requirements of a DRE system and therefore are used
to asssign values to the subset of options chosen earlier.
Further, QoS options semantics are known precisely during
transformations, and thus GT-QMAP ensures preservation

of target typed graph semantics. Component interactions
defined in input typed graph instance (i.e., source model),
along with the user-specified QoS requirements captured in
that instance are used to completely generate an instance of
the output graph.

For example, in SCE application, in addition to setting
fixed _priority_service_execution to TRUE,
recall from discussion in Challenge 2 in Section 2 that suf-
ficient thread resources should also be configured to handle
all client priority levels at pI_A. ThreadResources on line
12 in Algorithm 1 calculates appropriate number of thread
resources as a function of client components of p/_A and
their interface operations.

4 Evaluating GT-QMAP Toolchain for Mid-
dleware QoS Configuration

In this section we evaluate GT-QMAP modeling (i.e., us-
ing its Requirements DSML) and transformation capabili-
tites in the context of DRE system case studies discussed
in Section 2.1. Class count metrics were used for evaluat-
ing modeling effort in using GT-QMAP. All the measure-
ments use GME 6.11.9, GReAT 1.6.0 software packages on
a Windows XP SP2 workstation. Our prototype implemen-
tation of GT-QMAP uses PICML and CQML from CoS-
MIC toolchain version 0.5.7.

CQML models represent detailed, middleware-specific
DRE system QoS configurations that are used for generat-
ing configuration descriptors necessary for its deployment.
In order to find the reduction in modeling effort using GT-
QMAP, we compare its (Requirements) modeling capabili-
ties with those of CQML.

Class counts is an important metric for model-based
quantitative software measurementsand has been applied
and adopted in industrial contexts [4]. For our measure-
ments, we use the following counts from the (meta)models:
(1) modeling elements, which includes all the concrete
modeling objects, (2) connections between modeling ele-
ments, (3) constraints that provide design-time type and/or
dependency checks for enforcing language semantics, and
(4) attributes of modeling elements. The counts were mea-
sured for both real-time and publish/subscribe QoS dimen-
sions.

A comparison of CQML and GT-QMAP metamodels in
terms of class counts given above is tabulated in Table 2.
The configuration space in this table simply refers to all of
CQML’s modeling elements each of which corresponds to
RT-CCM and publish/subscribe options as explained in Sec-
tion 3.2.1. Using GT-QMAP, the number of modeling ele-
ments are reduced by an average of ~58% while the number
of attributes are reduced by an average of ~81%.

The results from class count measurments for BasicSP,
MMS and SCE application scenarios are shown in Table 3.

From these results it is observed that the modeling elements
and number of attributes required for QoS specification for
the publish/subscribe QoS dimension reduced by an average
54.55% and 76.4%, respectively. Reductions for RT-CCM
were considerably higher i.e., modeling elements reduction
was 86.53% while number of attributes were reduced by
88.47%.

Table 2: Comparing Requirements DSML against configu-
ration space

[Effort measured on | # of modeling elements | # of attributes |

CQML
publish/subscribe 9 22
RT-CCM 6 14
GT-QMAP
publish/subscribe 4 5
RT-CCM 1 2

Connections defined in GT-QMAP are simple associa-
tions between modeling elements. For instance, recall from
Section 3.1.1 that real-time and publish/subscribe QoS re-
quirement elements have component- or connection-level
granularity. In contrast, modeling elements in CQML ex-
hibit more complex dependency relationships. For exam-
ple, e.g., a REACTIVE event dispatching method at an event
channel necessitates that ProxyCollection at corre-
sponding publisher and subscriber components be either MT
or ST.

It is easier to evolve DRE system QoS using GT-QMAP
owing to its automated requirements mapping capabilities.
For example, an additional requirement in the SCE sce-
nario during its development cycle necessitates that sim-
ilar to pI_A, component ec_A must prioritize its service
invocations. In GT-QMAP this is achieved simply by set-
ting fixed_priority_service_execution prop-
erty at ec_A (to TRUE). For the entire SCE application
since it contains 10 such application strings (and therefore,
10 ec_A components), this additional requirement requires
modification of 10 attributes in its GT-QMAP model. In
CQML, on the other hand, such an additional requirement
would require the following modifications: (1) Configur-
ing the PriorityModelPolicy to SERVER_DECLARED, and
assigning sufficient Lanes at ec_A for handling all of its
client service invocations. (2) Assigning PriorityBands at
client components (e/_A etc.) such that a separate connec-
tion is used for each request priority level. This configura-
tion further requires that these band priority values match
with some lane values at ec_A component. Even if smallest
possible number of Bands and Lanes are chosen at respec-
tive components, this requires specifying ~10 modeling el-
ements, ~4 connections, and ~16 attributes for each of the
10 application strings in SCE.

Table 3: Reduction in modeling effort using GT-QMAP

[Effort measured on [# of modeling elements [# of connections | # of constraints | # of Boolean [# of int/long [#of string | #of enum |
BasicSP in CQML
publish/subscribe 27 9 21 0 3 1 54
RT-CCM 18 9 9 4 28 6 2
BasicSP in GT-QMAP
publish/subscribe 12 3 0 3 0 0 12
RT-CCM 3 3 0 4 0 0 0
MMS in CQML
publish/subscribe 101 35 77 0 35 11 210
RT-CCM 87 44 21 14 163 20 7
MMS in GT-QMAP
publish/subscribe 46 11 0 11 0 0 46
RT-CCM 10 10 0 18 0 0 0
SCE in CQML
publish/subscribe 1100 390 840 0 390 120 2270
RT-CCM 980 390 360 240 1000 160 120
SCE in GT-QMAP
publish/subscribe 510 120 0 120 0 0 510
RT-CCM 120 120 0 240 0 0 0

5 Related Work

The COMQUAD project [15] discusses extensions to
model driven architecture (MDA) of OMG in order to allow
application developers to refine non-functional aspects of
their application from an abstract point of view to a model
closer to the implementation. Model transformations are
defined between different non-functional aspects and are
applied to QoS characteristics (i.e., measurement of qual-
ity value) definitions to allow for such a refinement. Au-
thors in [1] attempt to clearly define platform-independent
modeling in MDA development by introducing an impor-
tant architectural notion of Abstract Platform that captures
an abstraction of infrastructure characteristics for models of
an application at some platform-independent level in its de-
sign process. An important observation of the authors is
that design languages should allow for appropriate levels of
platform-independence to be defined at each development
steps.

GT-QMAP differs from the above projects as follows:
COMQUAD allows for specification and transformation of
non-functional aspects at different levels of abstraction as
the application itself evolves. For example, response time
of a function call may be expressed more clearly as the time
between reception of a request and sending the correspond-
ing response, or time between reception of a request and
reception of the corresponding response. Successive refine-
ment models in COMQUAD are exposed to the application
developers such that more details can be added.

Similarly, work discussed in [1] proposes that design lan-
guages should support platform-independence at each ab-
stract platform levels. GT-QMAP, on the other hand, deals
with mechanisms to translate QoS requirements a system
places on the implementation platform onto QoS configura-
tion options of that platform. Output models of GT-QMAP
can be treated as read only models. Application developers
model and modify only the high-level requirements mod-

els, and are thus shielded from the low-level details about
the middleware platform. Finally, we focus on QoS require-
ments (and mappings thereof) of an application at the mid-
dleware level while COMQUAD focuses on QoS character-
istics for an application (e.g., response time, delay, memory
usage).

Ritter et.al. [14] describe CCM extensions for generic
QoS support and discusses a QoS metamodel that supports
domain-specific multi-category QoS contracts. The work
in [7], focuses on capturing QoS properties in terms of
interaction patterns amongst system components that are
involved in executing a particular service and supporting
run-time monitoring of QoS properties by distributing them
over components (which can be monitored) to realize that
service. An approach that uses an aspect-oriented specifica-
tion techniques for component-based distributed systems is
discussed in [3].

In contrast to the above works, GT-QMAP focuses on
automating the error-prone activity of middleware QoS con-
figuration, i.e., mapping QoS requirements to QoS configu-
ration options. Such an automation along with a flexible and
intuitive QoS requirement specification mechanism natu-
rally supports application QoS evolution during its develop-
ment cycle. An interesting side effect of using model trans-
formations for QoS configuration is that since the changes
to application QoS are made only at QoS requirement speci-
fication time, the implementation platform details (i.e., mid-
dleware QoS options) always remain in-sync with the ap-
plication QoS requirements, thereby addressing the produc-
tivity problem [10] at the middleware level. Finally, since
the specification of the QoS requirements itself is platform-
independent, it allows for reconfiguring the QoS mappings
to suit other middleware platforms.

6 Concluding Remarks

In this paper we introduced an automated, reusable
model-driven QoS mapping toolchain that (1) raises the
level of specification abstraction for system developers
(who lack a detailed understanding of these QoS mecha-
nisms and their inter-dependencies) such that system QoS
requirements can be expressed intuitively, and (2) correctly
maps these QoS specifications to middleware-specific QoS
configuration options. In the future, we plan to extend
our GT-QMAP toolchain for other QoS dimensions, for ex-
ample, security and fault-tolerance, and for other middle-
ware technologies, such as EJB and Web Services. To this
goal, UML profile discussed in [13] can be used as a com-
mon modeling abstraction for various QoS dimensions and
platforms. We are also investigating the use of advanced
model-checking techniques to correctly perform middle-
ware QoS configuration simultaneously across various QoS
dimensions. GT-QMAP is available as open-source from
www.dre.vanderbilt.edu/CoSMIC/.

7 Acknowledgement

The authors would like to thank Reviewer 4 whose in-
sightful and constructive comments and suggestions im-
proved readibility and overall quality of the paper.

References

[1] J. P. Almeida, R. Dijkman, M. van Sinderen, and L. F. Pires.
On the Notion of Abstract Platform in MDA Development.
In Proceedings of the 3" IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2004),
pages 253-263, Sept. 2004.

[2] K. Balasubramanian, J. Balasubramanian, J. Parsons,

A. Gokhale, and D. C. Schmidt. A Platform-Independent

Component Modeling Language for Distributed Real-Time

and Embedded Systems. In RTAS '05: Proceedings of the

11th IEEE Real Time on Embedded Technology and Ap-
plications Symposium, pages 190-199, Los Alamitos, CA,

USA, 2005.

L. Blair, G. S. Blair, A. Anderson, and T. Jones. Formal Sup-

port For Dynamic QoS Management in the Development of

Open Component-based Distributed Systems. IEEE Soft-

ware, 148(3), Nov. 2001.

[4] B. H. C. Cheng, R. Stephenson, and B. Berenbach. Lessons
learned from automated analysis of industrial uml class
models (an experience report). In Model Driven Engineer-
ing Languages and Systems, 8th International Conference
(MoDELS 2005), volume 3713, pages 324-338, 2005.

[5] Z. Gu, S. Kodase, S. Wang, and K. G. Shin. A Model-
Based Approach to System-Level Dependency and Real-
time Analysis of Embedded Software. In Proceedings of
the IEEE Real-time and Embedded Technology and Appli-
cations Symposium (RTAS’03), pages 78-85, Washington,
DC, May 2003. IEEE.

3

—

[6] J. Hatcliff, W. Deng, M. Dwyer, G. Jung, and V. Prasad.
Cadena: An Integrated Development, Analysis, and Verifi-
cation Environment for Component-based Systems. In Pro-
ceedings of the 25th International Conference on Software
Engineering, Portland, OR, May 2003.

[7] Jaswinder Ahluwalia and Ingolf H. Kriiger and Walter
Phillips and Michael Meisinger. Model-Based Run-Time
Monitoring of End-to-End Deadlines. In Proceedings of
the Fifth ACM International Conference On Embedded Soft-
ware, Jersey City, NJ, Sept. 2005. ACM.

[8] G. Karsai, A. Agrawal, F. Shi, and J. Sprinkle. On the
Use of Graph Transformation in the Formal Specification of
Model Interpreters. Journal of Universal Computer Science,
9(11):1296-1321, 2003. www. jucs.org/jucs_9_11/
on_the_use_of.

[9] A. Kavimandan, K. Balasubramanian, N. Shankaran,
A. Gokhale, and D. C. Schmidt. Quicker: A model-
driven qos mapping tool for qos-enabled component mid-
dleware. In ISORC ’07: Proceedings of the 10th IEEE In-
ternational Symposium on Object and Component-Oriented
Real-Time Distributed Computing, pages 62—70, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

[10] A. Kleppe, J. Warmer, and W. Bast. MDA Explained:
The Model Driven Architecture(MDA™): Practice and
Promise. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, Apr 2003.

[11] A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei, G. Nord-
strom, J. Sprinkle, and G. Karsai. Composing Domain-
Specific Design Environments. /[EEE Computer, pages 44—
51, November 2001.

[12] C. Lee, J. Lehoczky, D. Siewiorek, R. Rajkumar, and
J. Hansen. A Scalable Solution to the Multi-Resource QoS
Problem. In Proceedings of the IEEE Real-time Systems
Symposium (RTSS 99), pages 315-326, Phoenix, AZ, Dec.
1999.

[13] Object Management Group. UML Profile for Modeling
Quality of Service and Fault Tolerance Characteristics and
Mechanisms Joint Revised Submission, OMG Document
realtime/03-05-02 edition, May 2003.

[14] T. Ritter, M. Born, T. Unterschiitz, and T. Weis. A QoS
Metamodel and its Realization in a CORBA Component In-
frastructure. In Proceedings of the 36" Hawaii International
Conference on System Sciences (HICSS’03), Honolulu, HI,
Jan. 2003.

[15] S. Rottger and S. Zschaler. Model-Driven Development
for Non-functional Properties: Refinement Through Model
Transformation. In Proceedings of the 7" International
Conference on Unified Modelling Language: Modelling
Languages and Applications (UML 2004), pages 275-289,
Oct. 2004.

[16] J. A. Stankovic, R. Zhu, R. Poornalingam, C. Lu, Z. Yu,
M. Humphrey, and B. Ellis. VEST: An Aspect-Based Com-
position Tool for Real-Time Systems. In RTAS ’03: Pro-
ceedings of the The 9th IEEE Real-Time and Embedded
Technology and Applications Symposium, page 58, Wash-
ington, DC, USA, 2003. IEEE Computer Society.

[17] D. Wichadakul. Q-Compiler: MetaData QoS-Aware Pro-
gramming and Compilation Framework. PhD thesis, Uni-
versity of Illinois at Urbana Champaign, 2003.

