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Abstract—We conducted a thorough evaluation of various
state-of-the-art strategies to prepare the ground state wavefunc-
tion of a system on a quantum computer, specifically within the
framework of variational quantum eigensolver (VQE). Despite
the advantages of VQE and its variants, the current quantum
computational chemistry calculations often provide inaccurate
results for larger molecules, mainly due to the polynomial growth
in the depth of quantum circuits and the number of two-qubit
gates, such as CNOT gates. To alleviate this problem, we aim
to design efficient quantum circuits that would outperform the
existing ones on the current noisy quantum devices. In this
study, we designed a novel quantum circuit that reduces the
required circuit depth and number of two-qubit entangling gates
by about 60%, while retaining the accuracy of the ground state
energies close to the chemical accuracy. Moreover, even in the
presence of device noise, these novel shallower circuits yielded
substantially low error rates than the existing approaches for
predicting the ground state energies of molecules. By considering
the umbrella inversion process in ammonia molecule as an
example, we demonstrated the advantages of this new approach
and estimated the energy barrier for the inversion process.

Index Terms—variational quantum eigensolver, symmetric
double minima potential, umbrella inversion, active space, ansatz

I. INTRODUCTION

Quantum computing promises computational advantages
over its classical counterpart for certain applications. Among
the areas expected to benefit from the use of a quantum
processor, quantum simulation of molecules comes at the
forefront owing to the inherent capability of quantum com-
puters to model systems at the atomic scale [1]. However, the
numerous limitations of the present-day noisy intermediate-
scale quantum (NISQ) computers, such as shorter coherence
times, and smaller qubit count, prompt researchers to look for
more resource-efficient ways to compute molecular properties
using these devices. Since its introduction in 2014 [2], the

variational quantum eigensolver (VQE) algorithm has been
extensively applied in estimating the ground state energies of
molecules on these devices. Although various research groups
have demonstrated its efficiency in estimating the ground state
energies of small molecules [3], [4], VQE is known to provide
erroneous energies for large molecules, mainly due to the huge
depths of chemically inspired quantum circuits (ansatzes) used
in simulating these molecules.

Fig. 1. The double minima potential energy curve representing the NH3
umbrella inversion process.

In this work, we demonstrate how to design shallow
ansatzes for VQE algorithm based on Givens rotation gates
[5]–[7]. The resulting ansatzes also possess fewer two-qubit
entangling gates than the conventional ansatzes. We demon-
strate the advantages of the Givens-based ansatzes by simu-
lating the symmetric double minima potential (SDMP) using
different types of ansatzes. SDMP is a characteristic of various
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chemical processes like ammonia (NH3) molecule’s umbrella
inversion process, proton transfer between water molecules,
and others [8]. Here, we focus on NH3 and estimate the
resources required by each ansatz to accurately compute the
energy barrier for its inversion. The inversion process and the
associated SDMP are depicted schematically in Fig. 1. In its
equilibrium state, NH3 has a pyramidal structure with three
hydrogens in one plane (H3 plane) and a nitrogen atom above
the H3 plane, exhibiting a C3v point-group symmetry. During
the inversion process, the nitrogen atom moves along the three-
fold symmetry axis across the H3 plane through a high energy
planar structure, where the molecule exhibits D3h symmetry
[9], [10]. This results in an identical C3v pyramidal structure,
but with the mirror image of the initial structure.

II. METHODOLOGY

A. Active Space Selection

The electronic Hamiltonian of a molecule, within the
Born-Oppenheimer (BO) approximation and using a finite
set of molecular orbitals, can be written using the second-
quantization formalism as

Ĥele =
∑
p,q

hpqa
†
paq +

1

2

∑
p,q,r,s

hpqrsa
†
pa

†
qaras (1)

where, hpq and hpqrs are the one- and two-electron integrals,
respectively, computed efficiently on a classical computer. a†p
and ap are the canonical fermionic creation and annihilation
operators for the orbital p, respectively. To simulate chemical
systems on a quantum computer, the fermionic operators in 1
have to be mapped to Pauli operators acting on qubits. Among
the existing fermion-to-qubit mapping techniques, we used
the Jordan-Wigner (JW) mapping without additional tapering
of qubits [11] for our simulations. This encoding yields the
same number of qubits as there are spin-orbitals in the system.
Interested readers are directed to Ref. [12] for a detailed review
of other encoding schemes, such as Partiy, Bravyi-Kitaev, and
other mapping schemes.

In general, while using the JW mapping, owing to the
limitations of the NISQ devices, it is not feasible to map
all the spin-orbitals of a system onto the qubits. A widely
adapted approach in this regard is to choose a few orbitals
(and electrons) that contribute significantly to the electron
correlation, forming the so-called active space, while taking
into account the effect of the remaining orbitals (and electrons)
in a mean-field manner [13], [14]. Traditionally, one chooses
the highest occupied molecular orbitals (HOMO) and lowest
unoccupied molecular orbitals (LUMO) lying near the Fermi-
energy level (HOMO-n to LUMO+m) as the active space.
For studying the inversion in NH3 molecule, we model the
system in the minimal STO-6G basis resulting in a total of
10 electrons and 8 molecular orbitals. After running a series
of classical simulations, we formed the complete active space
(CAS) consisting of two electrons and two orbitals (2e, 2o),
by selecting one occupied and one unoccupied orbitals that
capture the dominant electronic excitations.

B. Ground State Preparation

Gaining a true quantum advantage in simulating molecules
using the VQE algorithm involves multiple challenges [15],
such as the need for (a) exponentially large number of mea-
surements for achieving chemical accuracy [16], (b) novel op-
timization processes to overcome the barren-plateau problem,
(c) quantum noise and error mitigation schemes [17], [18],
and (d) designing a highly expressive and trainable ansatz
amenable to the near-term machines. Here, we focus on the
challenges associated with the ansatz design. In general, the
ansatz has two important attributes, namely, expressibility,
and trainability. Here, expressibility refers to the size of
the subspace (of Hilbert space) spanned by the ansatz, and
trainability refers to the ability in finding the optimal set of
parameters of the ansatz that minimizes a given cost function
in a tractable time [19]. Accordingly, the higher the size of
subspace, the more expressive the ansatz is [20], [21], but its
trainability could become difficult. Apart from the above, how
the circuit depth and the number of two-qubit gates scale with
the system size will have a profound impact on the ground
state energy predicted using the VQE algorithm on NISQ
devices (since they dictate the robustness of the method under
noisy conditions). In the remainder of the section, we discuss
some of the state-of-the-art approaches to ansatz construction.

1) RyRz Ansatz: This ansatz belongs to the class of hard-
ware efficient (HE) ansatzes that are tailored to use the native
gates of the quantum hardware on which the experiment is
conducted [3]. A schematic of the RyRz ansatz with two
layers of rotation gates applied on each qubit and two layers of
CNOT gates entangling all qubits is shown in Fig. 2. Similar
circuits are used as parameterized ansatzes in various quantum
computing applications, such as machine learning.

Fig. 2. A schematic of the RyRz Ansatz, where the rotation and entangling
blocks are repeated twice.

As the name implies, an RyRz ansatz consists of layers
of parameterized single-qubit Ry and Rz rotation gates, inter-
leaved with layers of two-qubit CNOT gates. Here, the Ry and
Rz gates are given by:

Ry(θ) = e−iθY/2 =

(
cos θ/2 − sin θ/2
sin θ/2 cos θ/2

)
(2)

Rz(θ) = e−iθZ/2 =

(
e−iθ/2 0

0 eiθ/2

)
(3)

Since the Rz gate applies a complex phase of e±iθ/2 to
the qubit states, it produces complex-valued wavefunctions.
Therefore, in principle, if the interest is to obtain a trail
wavefunction with exclusively real amplitudes (as is the case
for most molecular ground states), including only the Ry gates
in the rotation blocks is sufficient. However, the convergence



of such circuits needs to be further analyzed (since more
repetitions of the blocks might be required, which increases
the circuit depth).

As a general parameterized quantum circuit, the output
state of an RyRz ansatz would consist of all the possible
2n computational basis states of n qubits for any arbitrary
initialization of the parameters. However, not all these ba-
sis states preserve the particle number. Moreover, since the
number of electrons in a molecule will be preserved during
the measurement, for representing a molecular wavefunction
using this ansatz, we need to introduce a penalty term in the
cost function to penalize the states with unphysical occupation.
This is achieved by constructing a particle number operator P

P =
∑
i

a†iai (4)

where index i runs over all the spin-orbitals and mapping it
to qubit operators using JW encoding to yield

Ĥpn =
∑
j

hjPj =
∑
j

hj
∏
i

σj
i . (5)

The final cost function to be minimized to estimate the ground
state of the system becomes

E(θ) = ⟨ψ(θ)| Ĥelec |ψ(θ)⟩+ µ ⟨ψ(θ)| Ĥpn |ψ(θ)⟩ (6)

where µ is a parameter, which is large enough to increase
the energy of the qubit states that do not preserve the particle
number.

2) SwapRz Ansatz: It is one of the HE ansatzes that
preserves the particle number [22]. It uses parameterized two-
qubit entangling gates of the form given below to entangle all
qubits.

RXX(θ) ∗RY Y (θ) =


1 0 0 0
0 cos θ/2 −i sin θ/2 0
0 i sin θ/2 cos θ/2 0
0 0 0 1

 (7)

where RXX(θ) = e−iθX⊗X/2 and RY Y (θ) = e−iθY⊗Y/2.
Unlike the CNOT gates, the combination of RXX and RY Y

gates allows the degree of entanglement between two qubits
to be controlled by tuning the parameter θ. Also, from the
matrix form (see Eq. 7), it is apparent that this two-qubit gate
doesn’t modify the |00⟩ and |11⟩ states (columns 1 and 4), and
it produces a linear combination only between the |01⟩ and
|10⟩ states, which contain the same number of electrons (note
that we are in JW representation). Thus, this two-qubit gate
conserves the particle number. In the quantum circuit, a layer
of such two-qubit gates is sandwiched between two layers of
Rz gates that are applied on each qubit. Therefore, similar to
the RyRz ansatz, due to the presence of Rz gates, the SwapRz
circuit also yields complex-valued states. Moreover, since the
SwapRz ansatz is applied after initializing the qubits in the
Hartree-Fock (HF) state, an n-qubit SwapRz circuit with m
qubits excited to |1⟩ state (by applying Pauli-X gates) will give
an output consisting of

(
n
m

)
basis states. Although this ansatz

preserves the particle number symmetry, since the entangling

gates are applied between the spin-up and spin-down qubits,
it does not conserve the spin symmetries.

3) Unitary Coupled Cluster (UCC) Ansatz: This ansatz
belongs to the class of chemically inspired ansatzes that
are typically derived from classical computational chemistry
methods. In particular, the UCC family of ansatzes uses a
unitary version of the coupled cluster (CC) theory so that the
resulting operators can be directly implemented on a quantum
computer [23]. This involves applying an exponentiated uni-
tary operator on some reference state |ψRef ⟩ to generate the
excited electronic states

|ψUCC⟩ = eT−T †
|ψRef ⟩ (8)

where T is the excitation operator, which is given by the
sum over singles (T1), doubles (T2), . . . excitation opera-
tors, i.e., T =

∑n
i=1 Ti. These operators T1, T2, . . . excite

one, two, . . . electrons, respectively, from the occupied or-
bitals (indexed as i, j, ..) to unoccupied orbitals (indexed as
a, b, ..) in the reference state, i.e., T1 =

∑
i,a t

a
i a

†
aai, and

T2 =
∑

i,j,a,b t
ab
ij a

†
aa

†
baiab. Truncating T at doubles (i.e., if

T = T1+T2) results in the popular UCCSD ansatz. The UCC
ansatz features all the advantages of the CC method with the
added advantage of being variational [24].

4) Givens Rotation-based Ansatz: Two major bottlenecks
associated with the UCCSD ansatz are the quadratic scaling
of circuit depth and the fourth-order scaling of CNOT gates
with the number of spin-orbitals [15], making it impracti-
cal to run VQE for larger systems on NISQ devices. An
alternative approach proposed in the literature utilizes the
idea of constructing circuits with particle-conserving unitary
gates based on Givens rotation matrices [5], [6]. This class of
circuits consists of single-, double- (and possibly higher-order)
excitation gates that perform unitary rotations confined to the
subspace of Hilbert space with a fixed number of particles. The
basic building block used in our Givens rotation-based ansatz
is a two-qubit hop gate that exchanges an electron between
two qubits on which it is applied (assuming one of the qubits
is excited). The circuit decomposition of the hop gate in terms
of Hadamard, Ry, and CNOT gates is shown in Fig. 3 and the
matrix representation of the gate operation is given in Eq. 9.

Fig. 3. Implementation of the two-qubit hop gate.

h(θ) =


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 −1

 (9)

The operation of the hop gate closely resembles that of the
Swap gate (see Eqn. 7) except for a global phase, and hence



conserves the electron number. If we consider CAS (2e,2o)
as the active space, then the HF state corresponds to the state
where the two electrons are occupied by the lowest energy
orbital (between the two orbitals). Now, to recover the full
electron correlation energy, we need to add the contributions
of one double and two single excitations to the HF state.
Referring to Fig. 4, our design of the Givens rotation-based
ansatz starts with applying a Pauli-X gate on the spin-up qubit
q0, representing the occupation of the lowest energy spin-
up orbital. To excite the electron from q0 to q1, we apply
a parameterized hop gate between them. A set of two CNOTs
following the hop gate entangles the spin-up qubits with the
corresponding spin-down ones, effectively creating a doubly
excited state. Finally, two hop gates with the same parameter
are applied on the pairs (q0,q1), (q2,q3) to create corresponding
single excitations.

Fig. 4. A 4-qubit Givens rotation circuit constructed using hop gates and
CNOTs to efficiently prepare the ground state wavefunction of NH3 molecule
in an active space CAS(2e, 2o).

III. RESULTS AND DISCUSSION

We employ the ansatzes described in Sec. II-B for com-
puting the SDMP representing the inversion process in NH3.
The software packages used and other computational details
are described as follows. The electron integrals hpq and hpqrs
defining the electronic Hamiltonian (Eq.1) are computed in
the STO-6G basis by running a restricted HF calculation with
the PySCF package [25]. Following this, a complete active
space CAS (2e,2o) was chosen as discussed in Sec. II-A and
mapped the resulting four-spin-orbital reduced Hamiltonian
onto qubit operators with the JW mapping, leading to a
four-qubit Hamiltonian. The mapping to qubit space and the
construction of ansatzes are done with the help of Qiskit
software [26]. The accuracy of VQE runs is calculated in terms
of absolute errors in energy relative to the CASCI classical
method for the chosen active space [27].

The ideal noiseless VQE simulations (statevector simulator
of Qiskit) utilized the L-BFGS-B optimizer from the SciPy
package [28]. For the VQE runs with RyRz ansatz, the penalty
parameter µ in Eq. 6 was chosen empirically to be 105. For
both UCCSD and Givens rotation circuits, all the parameters
were initialized to zero to start from the HF state. However, in
the case of the HE ansatzes, initializing to all zeros resulted
in an abrupt termination of the optimization without updating
the parameters, whereas starting from a set of random values
showed successful convergence. With RyRz ansatz, the VQE

algorithm converged to the exact ground state energy of
the chosen CAS only after three repetitions (r=3 in Fig. 5)
requiring 32 parameters. This implies, for repetitions less than
3, the RyRz heuristic ansatz is not parameterized sufficiently
to recover the correlation energy of ∼ 10 mHa.

On the other hand, convergence to the true ground state
was observed for the SwapRz ansatz with 2 repetitions and 14
parameters. The fewer parameters required by the SwapRz cir-
cuit compared to RyRz ansatz could be attributed to its particle
number-preserving nature as the search space is reduced. In
general, we find that if HE ansatzes are used along with larger
active spaces (which generally yield greater correlation ener-
gies), then a higher number of repetitions of the rotation and
entangling layers is required for estimating accurate ground-
state energies. These results suggest that the HE ansatzes
might become more resource-expensive (or less efficient) for
simulating molecules with strong electronic correlations on the
NISQ hardware.

Fig. 5. VQE optimization profile showing the convergence of ground state
energies with RyRz, SwapRz, UCCSD, and Givens circuits for one geometry
of NH3 and an active space CAS(2e, 2o). RyRz circuits with two and three
repetitions (r=1,2) and SwapRz ansatz with one repetition (r=1) gave an
absolute error of 10 mHa with respect to the exact (CASCI) energy shown as
the dashed black line.

As evident in Fig. 5, we observed a slower convergence
for the RyRz ansatz compared to the SwapRz, UCCSD, and
Givens circuits. We find that this slower convergence is due
to the presence of the penalty term in the cost function; when
the VQE simulations were repeated by setting the penalty term
to zero (µ = 0), we observed a successful termination with
fewer iterations as depicted in Fig. 6. The faster convergence
observed with UCCSD and Givens circuits could be due to
the fewer number of parameters in these circuits.

After obtaining accurate energy of the NH3 molecule at
its equilibrium geometry with all ansatzes, we proceeded to
simulate the SDMP associated with NH3’s umbrella inversion.
The SDMP shown in Fig. 7 illustrates the variation in potential



Fig. 6. Convergence of VQE optimization using the RyRz ansatz with the
penalty term (µ = 105), and in inset, without the penalty term (µ = 0).

Fig. 7. The symmetric double minima potential (SDMP) representing um-
brella inversion in ammonia molecule simulated with different classical
methods and using VQE with different ansatzes. The δ coordinate denotes
the distance of the nitrogen atom from the plane of hydrogen atoms.

energy of NH3 as the nitrogen (N) atom moves along the
symmetry axis across the H3 plane. For each position of N rel-
ative to the H3 plane, denoted as δ, we performed constrained
optimization of the entire molecule at the B3LYP/cc-pVTZ
level of theory using the GeomTRIC package [29]. We ran
VQE calculations with each ansatz for all these geometries. As
expected, we observed two global minima structures for NH3
at δ = ±0.425Å. The transition state, with D3h symmetry,
occurs when the N atom becomes coplanar to the H atoms
(δ = 0). The geometrical parameters and energies of these
stationary points are reported in Table I. From our VQE
calculations, we find an energy barrier of 18.807 mHa between
the two C3v minima, which is consistent with the CCSD and
CASCI results obtained on a classical computer. We note that
this tiny barrier can facilitate the quantum tunneling of N atom
from one minimum to another [9].

Table I. Geometrical parameters and ground state energies of NH3 at the
minima and local maximum of SDMP computed with VQE in STO-6G basis.
Experimental values are given in the brackets.

Property NH3 (C3v) NH3 (D3h)
RNH/Å 1.0190 [1.0124] 0.9966

∠HNH/ deg 103.83 [106.67] 120.00
E (Ha) -55.9995999 -55.9807928

In Table II, we reported the quantum resource estimates
for each ansatz after transpiling them to the basis gate set
of 127-qubit ibm brisbane device. Clearly, the Givens ansatz
provides a significant reduction in circuit depth (∼ 62%)
and CNOT gate count (∼ 60%) compared to the UCCSD
circuit while retaining energies within the range of chemical
accuracy. To investigate whether this reduction in quantum
circuit size would benefit molecular simulations on current
quantum computers, we performed VQE simulations in the
presence of realistic quantum hardware noise with both cir-
cuits. We utilized the ibmq qasm simulator of Qiskit Runtime
and configured it with the noise model, coupling map (qubit
layout), and basis gate set of ibm brisbane device. For the
VQE simulations with noise, we utilized the COBYLA opti-
mizer, which follows a gradient-free approach and minimizes
the errors associated with evaluating numerical gradients of
noisy expectation values. For both ansatzes, we initialized
the parameters to zeros and used 256k shots to measure the
energy at each VQE iteration. We applied the Twirled Readout
Error Extinction (TREX) method [30] to mitigate the errors.
Although the absolute errors in the energy obtained with both
the ansatzes are on the order of hundreds of millihartrees, the
error associated with the Givens ansatz is roughly half of the
UCCSD ansatz (Table II and Fig. 8), where the improvement
is due to the reduced size of the Givens ansatz. Despite the low
error observed with the Givens ansatz, considering the large
errors (> 100 mHa), we find that the present-day quantum
computers are not in a position to simulate energy profiles of
any important molecular process with an energy barrier of a
few milli-Hartrees. As such, more advanced error mitigation
strategies need to be developed both at the hardware and
algorithmic levels to examine such molecular processes with
NISQ devices.

Table II. Quantum resource estimates of 4-qubit UCCSD, RyRz, SwapRz,
and Givens rotation circuits after transpiling them to a 127-qubit ibm brisbane
device.

Ansatz Parameters Depth CNOTs Abs. Error (mHa)
UCCSD 3 188 43 270.63

RyRz(r=3) 32 175 42 828.07
SwapRz(r=2) 24 323 61 454.12

Givens 2 71 17 124.24

IV. CONCLUSION AND FUTURE DIRECTIONS

In this work, we studied the performance of both hard-
ware efficient (HE) and chemically motivated ansatzes for
simulating the symmetric double-well potential, which is a
representative of the umbrella inversion process in ammonia
molecule. We find that the HE ansatzes require an increasing



Fig. 8. Energy profiles of an NH3 molecule computed using the VQE
algorithm with UCCSD and Givens rotation ansatzes in the presence of 127-
qubit ibm brisbane device noise. The energy errors shown are in millihartrees.

number of repetitions of the rotation and entangling layers
to reach the chemical accuracy, making them as deep as
the chemically inspired ansatzes like UCCSD. We presented
a novel circuit design with particle-conserving unitary gates
derived from the notion of Givens rotation. We showed that
this novel circuit design reduces the circuit depth and number
of two-qubit entangling gates by almost 60% while retaining
the ground state energies at chemical accuracy. Also, we find
lower error rates with this compact circuit compared to the
UCCSD ansatz in simulations with realistic device noise.

We plan to extend the design of quantum circuits using
Givens rotations to larger active spaces, where we are hoping
to obtain similar advantages in terms of quantum resources.
As reported recently for interacting spin Hamiltonians [31],
we believe that obtaining very accurate energies on near-term
quantum devices might be feasible with the use of sophis-
ticated and advanced error mitigation techniques even with
moderately deep circuits. On the other hand, there are methods
being developed to reduce the quantum circuit cost based
on problem decomposition approaches, such as entanglement
forging and circuit cutting [32]. The scalability of these
approaches to tackle larger systems in a tractable time needs
to be experimentally validated. Another encouraging direction
proposed in recent years is the Transcorrelated method that
transfers electron correlation from the wavefunction to the
Hamiltonian, which yielded accurate energies on the current
NISQ devices [33].
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