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Abstract—A major challenge for real-time streaming overlays

is to distribute high bit-rate streams with uninterrupted play-

back. Hosts usually have sufficient inbound bandwidth to support

streaming, but due to the prevalence of asymmetric links in

broadband networks, the bottleneck is the aggregate, overlay-

wide outbound bandwidth. If this bandwidth is less than what is

required to forward the stream to the overlay members, then a

large number of users potentially experience poor playback. We

argue that for successful streaming in bandwidth constrained

situations overlays need to be able to adapt to the aggregate

available bandwidth. We present four bandwidth adaptation

policies for tree-based streaming overlays and evaluate their

efficiency using a large-scale emulation testbed with realistic

broadband link characteristics.

I. INTRODUCTION

It is becoming increasingly popular to use host-based over-

lays for real-time media streaming. A major challenge for

these streaming overlays is to manage the available bandwidth

resources in the overlay. With significant numbers of hosts

behind asymmetric links, it is often the case that the aggregate

outbound bandwidth available is an order of magnitude smaller

than the aggregate inbound bandwidth. If there is insufficient

outbound bandwidth then the overlay cannot successfully

forward the stream to all members of the overlay, resulting

in poor playback performance for many hosts. Therefore, the

bottleneck for streaming overlays is the aggregate outbound

bandwidth, which has been observed in deployed systems [10],

[18]. This problem is further compounded as content providers

want to increase streaming bit rates to enable distribution of

high definition video, given that most users have sufficient

inbound bandwidth to view it.

The majority of deployed streaming overlays, such as

PPLive [23], either assume that there is sufficient aggregate

outbound bandwidth available to the overlay, or rely on the

goodwill of university-based hosts or dedicated infrastructure

(such as PlanetLab or a CDN) to provide extra forwarding ca-

pacity to ensure continuous playback for all overlay members.

As commercial operators begin to use streaming overlays, the

gross exploitation of altruistic members (such as those running

at universities) is becoming increasingly unacceptable (at least

to those who pay for the bandwidth). For example, many

universities have already started blocking certain types of

traffic associated with overlay services, such as Skype relaying

and content distribution systems. We believe that streaming

overlays need to be able to dynamically adapt to the available

bandwidth.

In this paper, we present four specific overlay bandwidth

adaptation policies, for use in tree-based streaming overlays:

Node contribution adaptation enables each node to dynam-

ically adapt the amount of bandwidth it contributes to the

overlay, such that individual nodes can locally alter their

contribution to maintain a particular bandwidth contribution

skew across all nodes. For example, this can be used to

implement fairness policies, but can also be used to control

when and how much capacity a CDN should contribute.

Dynamic stream rate selection enables the source of a media

stream to select an encoding bit rate that is highest at which

all members of the overlay can be successfully supported.

Admission control allows each member of the overlay to

determine if there is sufficient capacity to support a joining

node. This policy is important during periods of high churn

in single trees and in general in multi-tree overlays, where a

node needs to be joined in all trees or rejected completely.

Per-organization bandwidth limitation enables adminis-

trators to limit the aggregate outbound bandwidth of their

organization used by the overlay. At the same time, this

policy enables locality-aware construction of the overlay tree

which prefers intra-organization connections and avoids inter-

organization traffic. This is a viable alternative to blocking

overlay traffic because it allows members to participate in the

overlay stream, without involuntarily turning their organization

into an altruistic bandwidth provider.

These policies make different resource usage tradeoffs,

e.g., they let the content provider decide whether it is more

important to provide highest-possible streaming rate, or to

accommodate all users. The policies can be also (sequentially)

combined in many different ways; for example, dynamic

stream rate selection can be used initially until a lower bound

on the stream rate is reached, and then admission control can

be used. We evaluate the effectiveness of the policies on a

tree-based overlay using experiments that run live code in

the ModelNet [27] network emulator that is configured with

realistic broadband link characteristics.

The rest of the paper is structured as follows. In Section II

we outline the information the overlay needs to expose in

order to implement the four adaptation policies. Section III

describes the four approaches in detail and Section IV presents

evaluation results that demonstrate the successful use of the

policies in bandwidth-constrained environment. We discuss

related work in Section V and conclude in Section VI.
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II. INFORMATION REQUIRED FOR ADAPTATION

There are many proposals for streaming overlay proto-

cols [5], [7], [11], [13], [16], [22] which can be broadly split

into three categories; unstructured overlays [17], [23], single

tree overlays [11], [13], [16] and multiple tree overlays [7],

[22], [30]. A recent study comparing resilient overlay multicast

approaches can be found in [4].

In a tree, there exists an implicit contract between a parent

and a child for a fixed amount of bandwidth to be continuously

delivered. In an unstructured overlay, blocks of data arrive

from multiple peers at different times which complicates

reasoning about available bandwidth. Thus, we examine the

adaptation policies in the context of tree-based streaming

overlays and leave dealing with unstructured overlays for

future work. In order to implement the policies, the overlay

needs to expose certain information to the nodes in the overlay.

In this section we briefly outline the information required and

how this can be collected in a tree-based overlay.

Participating nodes need to be able to estimate their cur-

rently available and used outbound bandwidth. As competing

flows dynamically change the available bandwidth, we require

the estimate to be dynamic. Therefore it is insufficient to

use a (often incorrect) bandwidth estimate of the user [10]

or to perform one-shot instantaneous measurements of the

link capacity at startup. However, dynamically monitoring the

available bandwidth can be done by a number of techniques,

for example monitoring data packet receive and loss rates

for children, and speculatively accepting children. Monitoring

data packet deliver and loss rates enables a node to deter-

mine whether its outbound link experiences congestion [26].

More elaborate techniques are available which do not require

tentatively accepting a child to discover that there is just not

enough outbound bandwidth available [15].

We assume that a mechanism exists to generate a summary

distribution function of the per-node bandwidth estimates,

for both the used outbound bandwidth and the available

bandwidth. Further we assume that these are available to all

members of the overlay. This can be implemented via compact

histograms that are first convergecasted up the tree [20], [22],

and then multicasted using the tree. We assume that this

information also includes an estimate of the number of nodes

in the overlay. Our evaluation shows that the overhead of

collecting and distributing this information is low (e.g., 5%

of the data stream). In addition, some of the overlays might

already be collecting this kind of information to aid in adapting

the tree topology to available bandwidth. In our initial design,

we assume the information is gathered per each content source.

Since users typically view only one stream, we believe this

choice is justified.

Finally, for the per-node organizational bandwidth policy

we assume that each node is assigned an ID based on the

organization to which it belongs, and also the organization’s

bandwidth limit. We envisage that for small office or home

users, this would probably be the ID associated with their ISP.

For larger entities, like universities or larger companies, this

would be assigned to the entity ID. Members could potentially

access the ID and current bandwidth limit using a directory

service such as DNS or it can be configured as part of an

administrative policy. Organization IDs have to be unique, but

it is not necessary to have a global authority assigning them;

instead they could be obtained by computing the SHA1 of the

IP prefix to assigned to the organization (an organization with

multiple IP prefixes can create the ID using just one of the

prefixes). This adaptation policy also requires a mechanism

for finding parents which satisfy some condition; for this a

system like SAAR [20] could be used.

III. OVERLAY ADAPTATION

Before considering the adaption policies in more detail, we

first present a simple model to aid in understanding bandwidth

usage for single and multi-tree streaming overlays. First, we

assume that the nodes in the overlay are cooperative. Second,

let us assume a streaming rate of r kbps, and that the stream

can be encoded as z stripes, with z ≥ 1, such that the bit-rate

per stripe is s = r/z. If there are N nodes in the overlay

(including the source), and each node, j, has an available

outbound bandwidth bj , then j can forward a stripe to ⌊bj/s⌋
children. Therefore, in order to have sufficient forwarding

capacity in the overlay, then:
∑N

j=1
⌊bj/s⌋ ≥ z(N − 1) must

hold.

More generally, we can define the total number of ad-

ditional stripes that the overlay can support, Ct, as Ct =
∑N

j=1
⌊bj/s⌋ − kz(N − 1) where, k ≥ 1 is a constant

that maintains a minimum amount of unused capacity in the

overlay. The value of k selected is dependent on the efficiency

of the overlay algorithm used. In general, when Ct > 0, the
overlay is considered to have spare capacity, but when Ct ≤ 0
then the overlay is considered capacity constrained. The exact

point when the overlay has no spare capacity is controlled by

k. When k = 1 and Ct < 0 then the overlay has no spare

forwarding capacity and will be unable to forward the stream

to all members. Increasing k results in more spare capacity

being maintained in the system, making parent discovery

easier and the overlay more able to handle churn better. In

general, the more efficient the tree building and maintenance

protocol is at finding parents when a node is orphaned or joins,

the smaller the value of k required.

When z = 1 and Ct ≥ 0 all nodes can receive the stream,

but the only topology able to achieve this may be a linear

chain topology, as each node may only be able to forward the

stream to a single other node. This introduces high latency and

low resilience to node churn. Therefore, in order to ensure that

a tree is built when z = 1, we define the number of additional

stripes that the overlay can support, C, as:

C =

N
∑

j=1

t(bj) − kz(N − 1) (1)

where,

t(b) =

{

⌊b/s⌋ if ⌊b/s⌋ ≥ f ,

0 otherwise.
(2)

2



The function t(b) returns, for a node’s bandwidth, b, the

number of children it can support at a stripe rate s, and f
captures the minimum bandwidth contribution, in terms of

stripes forwarded, that is required for a node to be considered

contributing, where f ≥ 1. For example, to ensure that trees

are built when z = 1, f should be 2.

Selecting values for k and f carefully is therefore important;

k captures the inefficiencies of the overlay protocol at building

and maintaining overlays and f captures the relationship

between interior nodes and leaf nodes, which results in the

formation of efficient distributed tree structures. For example,

in the single tree case, when z = 1 and f = 2, it may be

possible to use a value of k close to 1, as many nodes may

be able to support a single child, but are therefore excluded

from the value of C. In general, the available bandwidth not

included in C is defined as
∑N

j=1
⌊bj/s⌋ − z(N − 1) − C,

and this should always be ≥ 0. This implies that it should be

possible to dynamically control k and f across the overlay.

We now will describe each of our overlay adaptation poli-

cies in detail and explain their intended use and scope.

A. Node contribution adaptation

There are several scenarios where the bandwidth resources

of an overlay can be increased, but at a cost. One such case is

where the operator of an overlay has an arrangement with

a content distribution network (CDN) to allow the use of

the CDN’s bandwidth when there is insufficient bandwidth

in the overlay. This will (usually) incur a financial cost as the

overlay operator will pay the CDN for the bandwidth used.

Another example is where the overlay has access to hosts

that are currently not viewing the stream, but can be asked

to contribute (by requesting the stream and forwarding it to 2

or more nodes), because they are running an instance of the

overlay software. We refer to these hosts simply as idle hosts.

In this model, the risk is that users may uninstall the software

if they perceive it as using excessive bandwidth resources

when idle. Therefore, in both approaches it is better to have the

CDN or idle hosts only contribute when the overlay needs their

resources. It should be noted that both of these approaches

have been used in commercially deployed overlays.

In these cases the challenge is to control the contribution

of either the CDN or the idle hosts. In both cases these

nodes should contribute only when they observe that the there

is insufficient aggregate outbound bandwidth in the overlay.

Furthermore, we would like to ensure a similar contribution

level for each of the idle hosts. We refer to this as controlling

the contribution skew.

In an overlay without access to a CDN or idle nodes it is

also useful to control the contribution skew, to try to ensure

a small skew across nodes. This provides fairness, where

resources are contributed more evenly across members of

the overlay. This is also advantageous because it increases

the resilience of the overlay to churn; the more outbound

bandwidth a single host contributes, the greater the impact

on the overlay when the host fails. We now consider this case

in more detail.

To implement this conceptually there is a dynamic overlay-

wide maximum contribution level, which defines the maxi-

mum outbound bandwidth any host should to contribute to

the overlay. The value of the maximum contribution level is

set such that there is sufficient aggregate outbound bandwidth.

Therefore, hosts with the highest outbound bandwidths do not

contribute more than other hosts if there is sufficient aggregate

bandwidth. However, if the aggregate bandwidth is low, then

the maximum contribution level can be increased.

The information on the bandwidth distribution of the over-

lay allows every node to locally maintain an estimate of

the maximum contribution level. Each node constrains the

number of children and the available bandwidth it advertises

to ensure that it does not go above the current maximum

contribution level. Periodically, each node calculates C to

check whether C ≤ 0. If so, and the node has available

outbound bandwidth, it makes a biased, probabilistic decision

whether to increase its local maximum contribution level and

with it the amount of bandwidth it is willing to contribute. The

bias is proportional to the ratio between the host’s available

bandwidth not advertised (due to the contribution limit) and

the sum of available bandwidth not advertised in the complete

overlay. The former value is readily available to every host,

whereas the later value can be calculated using the distribution

functions of total and available bandwidth. Likewise, in case

there is enough bandwidth available in the overlay, i.e. C > 0,
the nodes perform a probabilistic decision to decrease their

contribution level.

Thus, while C < 0 holds, nodes will increase their contri-

bution until C ≥ 0, where nodes which contribute less than

average increase their contribution with higher probability than

nodes which contribute more than the average. This leads to

a fair and even distribution of contribution.

B. Dynamic stream rate selection

The goal of overlay adaptation is to satisfy C > 0 at

all times, and this can be achieved by controlling r. From
Equation 1 it can be seen that if the stream publisher can

encode the stream at various bit rates, it can change r, thereby
influencing the value of C. If C ≤ 0 then decreasing r will

increase C; likewise, if C > 0, the increasing r will reduce

C, but provide a higher quality stream. The challenge when

performing stream rate selection is to select the highest rate r
for which C ≥ 0 will still be satisfied. Using the distribution

of total outbound bandwidths in the overlay, the source can

periodically perform a binary or brute force search over the

set of values encoding rates it can support, to determine the

highest value of r such that C ≥ 0.

Since frequent switching of the stream rate might reduce the

perceived video quality, the source can employ some of the

standard techniques (e.g., hysteresis) to reduce oscillations.
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C. Admission control

The goal of admission control is to explicitly stop nodes

from joining the overlay when there is insufficient bandwidth

to support them. We assume that using its available bandwidth

estimate, a node does not accept more children than it can

support. Admission control deals with a similar problem on

an overlay-wide level: In many overlays, especially those

exploiting multiple trees, a node can join a subset of the

trees and consume resources in those trees, but be unable

to connect to all required trees. Explicitly telling nodes that

they cannot join ensures that joining nodes do not consume

resources unless they will be able to join the overlay.

Global admission control is performed as follows. When a

node Q wishes to join, it contacts an existing member of the

overlay, P , and it passes the initial estimate of its outbound

bandwidth. Node P verifies that C ≥ 0 and, if so, the overlay

parent discovery process is used. If not, then P checks to see

if Q can contribute the equivalent of w stripes, for example

w ≥ 2z, therefore increasing the likelihood that the joining

node contributes more outbound bandwidth than it consumes.

If so, the overlay parent discovery process is used, otherwise

the node’s join request is explicitly rejected. In contrast to

the dynamic stream rate selection, which is performed by the

source, the admission control check can be performed by any

node in the overlay.

D. Per-organization bandwidth limitation

This policy allows a network administrator to limit the

amount of bandwidth an overlay will consume at the level of

an organization. As organizations are often charged based on

the 95th percentile of their consumed bandwidth, this policy

can help manage network costs. The limit is enforced across

all nodes that belong to an organization, even if it is spanning

multiple ISPs, due to multi-homing, wide-area presence, etc.

The overlay needs to i) enforce this limit, and ii) perform

locality-aware overlay construction to maximize the number

of nodes that it can support.

For the description of this policy and its evaluation, without

loss of generality, we only consider the outbound bandwidth of

an organization. This policy can be used to limit the inbound

bandwidth consumption as well.

In the scope of this policy, we define bandwidth consump-

tion as the amount of data crossing the boundary between an

organization and the rest of the world. Specifically, communi-

cation between nodes which share a particular organization ID

will not contribute to the bandwidth consumption of the or-

ganization. If this property does not fit into the administrative

structure of an organization, for instance because multiple sites

of a company are connected via volume-billed VPN links, it

is necessary to assign different IDs to nodes at different sites.

We will now describe how a per-organization bandwidth

limit can be implemented. First, we describe the general

concept, which we refine subsequently.

Each node acting as a parent records the ID of each

child allowing each node to audit how much of its outbound
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Fig. 1: Distribution of broadband link capacities used in the

evaluation setup.

bandwidth is used inter- and intra-organization. Data sent to

children with a different ID to the parent contributes to the

inter-organization bandwidth usage, whereas children which

share their parent’s ID contribute to the intra-organization

bandwidth. To determine the current inter-organization band-

width usage of an organization it is necessary to aggregate the

information from every node in the organization. To this end,

we use a separate control tree for each organization in which

the information on bandwidth consumption gets aggregated up

and multicasted down.

When a node joins the overlay, it first finds a prospective

parent, and passes it’s ID to that node. If the ID differs from

the parent’s, then aggregated bandwidth statistics are checked,

and if accepting the child will exceed the organization’s

bandwidth limit the child is told to find another parent. If

this is the case, the child is taken on.

In this scenario a preferred parent is therefore one that has

the same ID as the joining node. It is therefore preferential to

use an organization-aware join, where a node tries to locate

a possible parent node in the same organization, for example

by using the organization control tree.

IV. EVALUATION

All of the experiments use the ModelNet [27] network em-

ulator that lets us run live code. ModelNet routes packets from

the end systems through an emulator responsible for accurately

emulating the hop-by-hop delay, bandwidth, and congestion

of a given network topology; a 3.4-Ghz Pentium-4 running

FreeBSD 4.9 served as the emulator for these experiments.

We multiplex 350 logical end peers running our application

across 13 dual-processor 3.4-Ghz Pentium-4 machines running

Linux 2.6.17. All machines are interconnected by a full-rate

1-Gbps Ethernet switch.

We use a 5,000-node INET [8] topology that we further

annotate with bandwidth capacities for each link. We keep

the latencies generated by the topology generator; the average

network RTT is 120ms. We randomly assign our participant

peers to act as clients connected to one-degree stub nodes in

the topology. We set all links except the client-stub (access)

links to be 150 Mbps.
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number of nodes that attempt to join over time.

We used ModelNet, rather than PlanetLab, in order to

use representative measurements of residential broadband

networks [12] to set access link capacities (see Figure 1).

Specifically, we chose 350 broadband hosts uniformly at

random from the entire dataset. For each chosen broadband

host, we then configured one participant in our topology with

the corresponding broadband host’s inbound and outbound

capacities. We randomly select one of these participants to

act as the media source and set its outbound bandwidth to

5 Mbps. In all the experiments we use a stream rate of 176

Kbps, which is 40 packets per second of 550 bytes.

To evaluate our policies, we subject the streaming overlay to

a flash crowd scenario (Figure 2). Each node is characterized

as being a contributing or a freeriding node. The contributing

nodes are configured to make their outbound bandwidth avail-

able to the overlay, while the freeriding nodes are configured

to send only control traffic and to not contribute bandwidth

to stream data packets. The first flash crowd starts at time 0

seconds and it consists of 100 contributing nodes that attempt

to join the overlay at a rate of 5 per second. Fifty seconds

into the experiment, we start the second flash crowd of 150

freeriders, again joining at a rate of 5 nodes per second. At 80

seconds into the experiment all 250 nodes have attempted to

join the overlay, 100 from the first flash crowd and 150 in the

second. Finally, at 150 seconds, the third flash crowd occurs.

Another 50 contributing and 50 freeriding nodes join, at a rate

of 5 per second.

We evaluate our policies using a single tree overlay, as we

intend to demonstrate the effectiveness of the policies, rather

than that of any tree maintenance algorithm. Since most of the

policies have conflicting approaches to adapting to available

bandwidth, we do not attempt to evaluate them one against

the other.

As is typical with streaming overlays, the primary perfor-

mance metric is the rate of packets delivered to the application.

Modern codecs can typically deal with small loss (2 to 3

percent [6]) by leveraging the built-in redundancy. Thus, we

deem the performance of the overlay satisfactory if up to 97%
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of packets are delivered to application every second at the

default rate (up to 1 packet lost per second).

Individual policies have additional metrics. For example,

node contribution adaptation might seek to increase the num-

ber of nodes that are contributing, while reducing the variance

of individual contributions.

A. Node contribution adaptation

In this experiment, we evaluate the effectiveness of allowing

nodes to dynamically scale their contribution to the overlay.

To evaluate this policy we modified the underlying network

topology such that 14% of the nodes, selected at random,

have a symmetric capacity of 5 Mbps inbound/outbound, with

all other node capacities unchanged. We ran an experiment

using the flash crowd scenario with a single tree overlay,

with k = 1.1 and f = 2. We statically configured all

nodes to have an initial maximum contribution-level of two

children, independent of their outbound capacity. As described

in Section III-A, when a node observes that the spare capacity,

C, has fallen below zero, and it has unadvertised capacity it

probabilistically increases its maximum contribution-level by

one, making it available to the overlay. In order to compare

the impact of running with and without the node contribution

adaptation we also ran the experiment with contribution adap-

tation disabled, so all contributor nodes will make their full

outbound bandwidth available to the overlay.

The control and probing overhead is low. Across all nodes,

probing traffic is 3% of the stream data traffic. The overlay

control traffic, consisting primarily of bandwidth histograms

being aggregated and disseminated, is only 5% the stream data

traffic.

Figure 3 shows the CDF of nodes acting as parents versus

the number of children that each parent has for both with

and without contribution adaptation. Contribution adaptation

is aimed at reducing the skew in contribution across nodes.

Without dynamic contribution, just one hundred of nodes act

as parents, and 10% of them have more than 6 children. The

nodes with 5 Mbps link capacities can support a maximum of
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Fig. 5: Packet reception rate with node contribution adaptation.

25 children. In contrast, with dynamic contribution enabled,

approximately 25% more nodes capable of supporting children

act as parents. Furthermore, only 5 nodes have more than 5

children and the maximum any node has is 9 children. This

shows that contribution adaptation is effective.

Figure 4 shows that node contribution adaptation, in addi-

tion to smoothing the contribution skew, can also successfully

allow all the nodes to join, as would be expected. Each time the

overlay has too little spare capacity nodes in the overlay make

more capacity available to the overlay. This is demonstrated

in Figure 6, which shows how the capacity observed at the

histogram at the root varies over time, in terms of number

of children that the overlay can support, or spare slots. We

see that this policy creates approximately 14% spare capacity

(at 240 seconds there are 49 spare slots in an overlay of 350

participants), which is slightly more than the target specified

by setting k = 1.1, which is 10%. These experiments show

that the overlay is able to dynamically control the per-node

contribution effectively.

B. Admission control

This experiment demonstrates that the overlay can effec-

tively control its membership even when capacity is decreasing
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under TCP cross-traffic. Clients that cannot be accommodated

are rejected.

due to flash crowds and competing TCP traffic. To achieve

this in the experiment, we induce TCP cross-traffic with the

flash crowd scenario. At 90 seconds, ten randomly chosen

contributor nodes from the first flash crowd initiate TCP

uploads to other nodes. We configured admission control to

reject joining nodes when there was 5% capacity left in the

overlay, i.e. k = 1.05, and f = 2 in Equation 1.

The experiment also demonstrates that the overlay can

effectively control its membership. In the experiment there

is insufficient aggregate bandwidth to allow all 350 nodes to

join the overlay. Figure 7 shows the number of nodes admitted

and rejected against time. A node is deemed to have joined

the overlay when it has been accepted as a child. Nodes that

are explicitly rejected do not attempt to rejoin the overlay.

Figure 7 shows that the initial 100 contributing nodes from

the first flash crowd are able to join the overlay. The second

flash crowd is entirely composed of freerider nodes, and the

overlay is unable to support them all, with 50 of them being

explicitly rejected.
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Figure 7 also shows that at approximately 95 seconds, the

overlay membership drops, coinciding with the TCP-flows

being initiated. The nodes concurrently serving a TCP flow

detect reduced performance among their children and they

react by orphaning some of them. Orphaned children try and

discover a new parent using the node join process. As the

overlay is operating with low spare capacity, the freeriders are

unable to rejoin the overlay and are explicitly rejected. This is

reflected in Figure 7 which shows an increase in the number

of rejected nodes at the same time. Finally, in Figure 7, the

third flash crowd introduces new contributing nodes and all

but 43 freeriders nodes are accepted.

Figure 8 shows that the number of spare slots increases

during the first flash crowd, to about 100. During the flash

crowds we are trying to maintain 5% of the slots free, and

it can be seen that at approximately 90 seconds the number

of free slots dips below this, as some of the spare slots are

removed because of the TCP flows. When the final flash crowd

occurs, the number of free slots increases to approximately 5%

of the total number of slots in the overlay.

Figure 9 shows the mean, 5th and 95th-percentile of the

number of packets received by the codec against time. The
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Fig. 10: Overlay membership with the stream rate selection

policy. All nodes join.
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Fig. 11: Packet reception rate with the stream rate selection

policy. The source changes the streaming rate to accommodate

all nodes.

results show that once a node has joined the overlay it

receives a high fraction of the packets, achieving uninterrupted

playback. At 90 seconds, the synchronized starting of the TCP

flows means that the contributors that that are able to rejoin

the overlay experience a short interruption until they locate a

new parent.

C. Dynamic stream rate selection

The goal of the this set of experiments is to evaluate the

effectiveness of dynamically adjusting the streaming rate. We

ran the experiment on an unmodified topology, with k = 1.2
and f = 2, so the source is trying to maintain at least 20%

spare capacity. To achieve this, the source varies the packet

rate (the packet size stays constant). We assume that the codec

that we are using can generate a packet rate of between 10

and 45 packets per second, in 5 packet intervals. Because the

source is changing the streaming rate all nodes are able to join

the overlay (Figure 10).

Figure 11 shows the mean and 5th and 95th-percentile of

the number of packets received. The first observation is that

between 60 and 90 seconds the packet rate drops from 40

packets per second to 15 packets per second. Maintaining 20%
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Fig. 12: Overlay capacity (number of spare slots) with the

stream rate selection policy.

spare capacity means that new nodes can join rapidly, and

the source is able to rapidly adapt the streaming rate. Indeed,

95% of nodes join in 10 seconds or less. When the final flash

crowd arrives at 170 seconds, the new contributors increase the

aggregate bandwidth available. This is sufficient to allow the

source to increase the stream rate. After the rate increase, some

nodes are no longer capable of supporting all their current

children at the new rate. This causes some children to be

orphaned, and have to seek a new parent. This is reflected

in a slight dip in the 5th percentile packet receive rate.

Finally, Figure 12 shows the spare slots, again using the

histogram generated at the root. It should be noted that the

spare slots are a function of the packet rate. The overlay

capacity is increasing between 90 and 150 seconds because the

available per-node bandwidth that was not enough to support

a child at a higher rate is enough to create spare slots at a

lower rate. At 170 seconds, an additional increase in slots can

be clearly seen due to the presence of contributors in final

flash crowd joining. The number of slots changes abruptly,

as the source changes the stream rate from 15 to 20 packets

per second, representing an increase of 25%. The fall in spare

slots does not exactly correspond to 25% as some nodes will

be unable to contribute as much bandwidth as they were. For

example, a node may be able to support 45 packets per second,

and have three children when the streaming rate is 15 packets

per second. When the streaming rate increases to 20 packets

per second, it will only be able to support two children, and

hence it will be unable to contribute the remaining 5 packets

per second.

D. Per-organization bandwidth limitation

To evaluate per-organization bandwidth limits, we assign

every node to one of five existing organizations, thus each

organization contains 70 nodes. We establish a baseline case

by running a basic admission control scenario and recording

the amount of bandwidth used by every organization. Fig-

ure 13 shows that in this case every organization accepted

about 35 nodes from other organizations while, as expected,

the acceptance rate was similar to the one shown for pure
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Fig. 13: Per-organization bandwidth consumption (baseline,

no limits).
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Fig. 14: Per-organization bandwidth consumption with the

limits enabled, locality-aware joins disabled.

admission control. Figure 15 shows that the packet reception

rate was acceptable throughout the experiment.

We then set 15 as the limit for the number of accepted out-

of-organization nodes. To demonstrate that we can effectively

limit the bandwidth consumption, we first disable the locality-

aware joins. As Figure 14 shows, every organization was at

or slightly under the proposed limit in this case, the penalty

being the 28 percent lower acceptance rate (Figure 16).

However, when a client first tries to accommodate itself

within its own organization (which is the intended behavior

of this policy), the number of accepted nodes matches the

baseline case. In addition, Figure 17, shows that all organiza-

tions are well below the bandwidth limit. This demonstrates

that per-organization bandwidth limitation with locality-aware

joins is efficient in in avoiding inter-organization traffic.

V. RELATED WORK

Wu et al. [28] characterize the throughput of TCP flows in

a large-scale peer-to-peer streaming system, and conclude that

most often the throughput constraining factor is the capacity

of the last-mile (uplink). Despite the large body of work on

overlays, the problem of dealing with available bandwidth

scarcity has not received considerable attention.
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Fig. 15: Packet reception rate with the limits enabled, locality-

aware joins disabled.
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Fig. 16: Overlay membership with per-organization bandwidth

limits enabled, locality-aware joins disabled. More nodes are

rejected than in the baseline case.

Sripanidkulchai et al. [25] produced an analysis of the

streaming video traffic distributed using Akamai to determine

if it was feasible to distribute the streams using an overlay.

They concluded that there was sufficient bandwidth at the

hosts to support single tree based overlay distribution. How-

ever, concurrent work by Chu et al. [10], discussed lessons

learnt from deploying a real overlay and observes that in

some scenarios they required the use of waypoints, which are

infrastructure based nodes that provide extra bandwidth to the

overlay when the aggregate hosts’ outbound bandwidth was

insufficient. Our per-node dynamic contribution scaling policy

that we describe in Section III-A and evaluate in Section IV-A

accomplishes this task.

The most related work for managing bandwidth in overlays

is that of Sung et al. [26]. They describe a contribution-aware

overlay supporting live-streaming for environments with lim-

ited and asymmetric bandwidth, and significant heterogeneity

in outbound bandwidth. The basic idea is to force participants

to contribute more bandwidth than they consume via a fixed

taxation rate, thereby ensuring that there is always some extra

spare capacity in the system. Peers receive different levels of

performance based on their bandwidth contribution. We be-
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Fig. 17: Per-organization bandwidth consumption with the

limits enabled, locality-aware joins enabled.

lieve that contribution-awareness and bandwidth adaptation are

largely orthogonal topics. As such, we consider our work and

[26] as being supplementary to each other. For example, our

policies do not provide incentives for contribution, while their

taxation system is not powerful enough to enable bandwidth

adaptation strategies like CDN usage or dynamic stream rate

selection.

Several systems have proposed using multiple description

codecs (MDCs) or layered encodings (LM) [22], [26] com-

bined with some form of tit-for-tat mechanism [14], [17],

[26], which attempts to ensure that hosts contribute as much,

or more, bandwidth than they consume. Originally, layered

encoding was proposed for use with IP Multicast [19], and

was designed to handle heterogeneous inbound bandwidth

capacities. Today, many hosts have significantly more in-

bound than outbound bandwidth. The challenge for overlays

is therefore to manage the outbound rather than the inbound

bandwidth. If the tit-for-tat mechanism is strictly enforced,

then outbound bandwidth constrained hosts may not be able to

view the stream. Furthermore, a tit-for-tat mechanism implies

that the overlay needs to be constructed such that all hosts

can contribute. Due to the prevalence of firewalls and NATs

this is not always easy to do in reality. The use of tit-for-

tat mechanisms may be ideologically attractive, yet from a

commercial content provider’s perspective, it is undesirable to

deny service to a customer because they have little outbound

bandwidth if other hosts in the overlay have spare.

A related bandwidth allocation problem is limiting total

inbound or outbound bandwidth consumed by an overlay

service within an organization. There exist commercial so-

lutions which can limit bandwidth on a per-site basis [21],

but these cannot enforce a limit over a set of wide-area

network locations. Recently Raghavan et al. [24] described

methods for controlling the bandwidth consumption of an

ensemble of flows which do not have to pass through the

same infrastructure. Although these approaches can limit the

amount of bandwidth an organization devotes to an overlay

service, they are not appropriate for a streaming service as a

9



large fraction of nodes might experience interrupted playback

when rate limiting takes place.

Our work is orthogonal to the work on capacity-aware

overlay tree construction algorithms that take into account

the heterogeneous nature of access-link capacity [5], [20].

There has also been work showing algorithms that fail to take

heterogeneity into account perform badly for high-bandwidth

applications [3], [10].

Recently there have been numerous proposals to make

overlay systems locality-aware [1], [9]. P4P [29] allows coop-

eration between overlay applications and ISPs in containing

their traffic within the provider networks. PACE [2] lets

operators set prices for transit links to provide incentives for

nodes to prefer peers which are close. One of our policies goes

one step further, in that it provides the network administrator

of an organization the ability to specify a bandwidth limit

for the overlay traffic. In addition to ensuring good playback

quality under the limit, our policy works for organizations that

span multiple ISPs.

VI. CONCLUSION

In this paper we argue for the importance of enabling

streaming overlays to successfully adapt to system-wide band-

width availability. We have described and demonstrated four

policies that can each accomplish this task: node contribution

adaptation, dynamic stream rate selection, admission control,

and per-organization bandwidth limitation. Our live experi-

ments with realistic link capacities demonstrate that all the

policies are effective.

It is up to the content provider to choose which policy to

apply and when. For example, the provider might want to

accept as many paying customers as possible by decreasing

the streaming rate if the aggregate outbound bandwidth is at

the limit. Once the rate is at the lowest setting supportable

by the codec, it might be prudent to reject some incoming

users to preserve the viewing quality of existing participants.

Another option would be to request from the existing users to

contribute more using the node contribution adaptation policy.
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