
Towards Securing Data Delivery in Peer-to-Peer
Streaming

Jeff Seibert, Xin Sun, Cristina Nita-Rotaru, Sanjay Rao

Purdue University

jcseiber@cs.purdue.edu, sun19@ecn.purdue.edu, crisn@cs.purdue.edu, sanjay@ecn.purdue.edu

Abstract—The goal of enabling ubiquitous video broadcasting
on the Internet has been a long cherished vision in the networking
community. Prior efforts aimed at achieving this goal based on
the IP Multicast architecture have been unsuccessful. In recent
years, peer-to-peer (P2P) streaming has emerged as a promising
alternative technology, which has matured to the point that
there are several commercial offerings available to users. While
these developments are encouraging, P2P streaming systems
are susceptible to attacks by malicious participants, and their
viability depends on how effectively they can perform under such
attacks. In this paper, we explore this issue in the context of mesh-
based designs, which have emerged as the dominant architecture
for P2P streaming.

We provide a taxonomy of the implicit commitments made
by nodes when peering with others. We show that when these
commitments are not enforced explicitly, they can be exploited
by malicious nodes to conduct attacks that degrade the data
delivery service. We consider an important class of attacks
where malicious nodes deliberately become neighbors of a large
number of nodes and do not upload data to them. We focus
on these attacks given the limited attention paid to them, and
the significant impact they can have on overall data delivery.
We present mechanisms that can enhance the resilience of mesh-
based streaming against such attacks. A key part of the solution
is a novel reputation scheme that combines feedback from both
the control and data planes of the overlay. We evaluate our design
with real-world experiments on the PlanetLab testbed and show
that our design is effective. Even when there are 30% attackers,
nodes can receive 92% of the data with our schemes compared
to 10% of the data without our schemes. Overall these results
indicate the feasibility of enabling effective P2P streaming even
under the presence of malicious participants.

I. INTRODUCTION

The vision of enabling simultaneous video broadcast as a

common Internet utility in a manner that any publisher can

broadcast content to any set of receivers has been driving the

research agenda in the networking community for over two

decades. For much of the 1990’s, the research and industrial

community investigated support for such applications using

the IP Multicast architecture [1]. However, serious concerns

regarding its scaling, support for higher level functionality, and

deployment have dogged IP Multicast. The sparse deployment

of IP Multicast, and the high cost of bandwidth required for

server-based solutions or Content Delivery Networks (CDNs)

are two main factors that have limited broadcast to only a

subset of Internet content publishers. While many network

service providers have enabled IPTV services that deliver

quality video to their own subscribers using packet switching,

there remains a need for cost-effective, ubiquitous support for

Internet-wide video broadcast.

Over the last decade, there has been significant interest in

the use of peer-to-peer (P2P) technologies for Internet video

broadcast [2]–[7]. There are two key drivers making the

approach attractive. First, such technology does not require

support from Internet routers and network infrastructure, and

consequently is extremely cost-effective and easy to deploy.

Second, in such a technology, a participant that tunes into

a broadcast is not only downloading a video stream, but

also uploading it to other participants watching the program.

Consequently, such an approach has the potential to scale with

group size, as greater demand also generates more resources.

The extensive research in the design of P2P streaming

systems [2], [3], [8]–[12] has matured to the extent that we

are today seeing several efforts aimed at commercializing the

technology [4], [5], [13], [14]. High user demand for these

systems has been shown by their increasingly large user base

[6], [7]. Not surprisingly, recent studies indicate that over 60%

of Internet traffic is generated by P2P systems [15], with video

accounting for more than one-third of all Internet traffic today

[16].

P2P streaming can be divided into two main approaches,

tree-based [8], [10] and mesh-based [9], [11] architectures.

(see [17] for a survey). Tree-based overlays construct a tree,

rooted at the source, which broadcasts the stream. Mesh-based

overlays disseminate data in a less structured manner, where

nodes exchange data with a subset of the nodes in the network

without using any predefined route. Mesh-based approaches

have received a lot of attention in recent times because they

are more resilient to churn and node failures, and have been

shown to perform better than tree-based approaches [18], [19].

While mesh-based approaches have several attractive prop-

erties, the performance of these systems in the presence of

malicious participants has received little attention. The only

known work to date [20] shows the vulnerability of such

systems to attacks where malicious nodes upload polluted data

to other nodes in the overlay. Work has been done on the

problem of peers which download data from other nodes but

do not in turn upload data [21], however these works focus

on selfish rather than malicious node behavior.

In this paper, we systematically analyze the vulnerabilities

of the components of mesh-based streaming overlays, and

provide a taxonomy of the implicit commitments made by

nodes when peering with others. We show that when these

commitments are not enforced explicitly, they can be exploited

978-1-4244-5489-1/10/ $26.00 c©2010 IEEE

by malicious nodes to conduct attacks that degrade the data

delivery service. To our knowledge, this is the first effort at

taxonomizing attacks on mesh-based streaming protocols.

We focus on an important and broad class of attacks where

malicious nodes deliberately become neighbors of a very large

number of nodes in the system and do not upload data to them.

We focus on these attacks given they have received limited

attention, the significant disruption they can have on data

delivery, and their applicability to many mesh-based systems.

For instance, our evaluation with a state-of-the-art mesh-based

streaming system shows that when the attacks are conducted

with just 10% of nodes in the system being malicious, the

average data rate received across all nodes is only 45% of the

source rate.

We wish to emphasize that our focus in this paper is

on mesh-based approaches for live video streaming, rather

than file-download systems like BitTorrent [22]. While some

of the attacks we consider may also be relevant to file-

download systems, the impact on application performance is

far more serious for streaming applications given that they are

associated with stringent real-time deadlines. Consequently,

the solutions must also be tailored to the unique demands of

streaming applications.

We present solutions to enhance the resilience of mesh-

based overlays to the attacks we consider. Our solution is

centered around a novel reputation scheme that combines

feedback from the data plane (based on data received from

the nodes) and the control plane (based on who a node has as

neighbors). Through detailed security analysis, we show that

our scheme is resistant to of attacks commonly associated with

reputation schemes such as self-promotion and slandering [23].

In particular, we show that our scheme ensures that a malicious

node must contribute a minimum amount of data to acquire a

certain reputation, and a benign node that contributes data is

assured a certain minimum reputation and cannot be slandered.

While the reputation scheme is a core part of our attack

prevention mechanisms, to further augment the system, a

more comprehensive approach is required that also addresses

potential vulnerabilities in the bootstrap mechanism, and with

the source of the broadcast. We present a set of simple

mechanisms to achieve this goal. In particular, we present a

source protection scheme that disallows malicious nodes to be

overly connected to it, and a scheme that prevents malicious

nodes from influencing the membership bootstrap service.

We evaluate our design using experiments on the PlanetLab

testbed. Our results show that our schemes are extremely

effective in ensuring good performance under attacks. With

the local-reputation scheme, with 10% of the nodes being ma-

licious, the average data-rate received across nodes increases

from 45% of the source-rate to 65%. However, when the

scheme is augmented with source and bootstrap mechanisms,

nodes receive 95% of the source-rate on average. Our scheme

also works well in extreme regimes, in fact even with 30%

of the nodes being malicious, more than 85% of the peers

receive over 90% of the data. Overall, our results show the

feasibility of augmenting mesh-based P2P streaming schemes

5

10

2

6

1

9

3

8

7

4
B

Overlay
Node
Bootstrap
Node
Source
Data

Legend

Fig. 1. Example of a unidirectional mesh-based streaming overlay in which
the source sends two different data chunks as denoted by the gray triangle and
orange square. Each node has an in-neighbor set and an out-neighbor set. For
example, for node 6, the in-neighbor set consists of node 7 and the source,
while the out-neighbor set consists of nodes 1 and 9.

to be resistant to attacks that target data delivery.

II. MESH-BASED PEER-TO-PEER STREAMING

We consider a unidirectional mesh-based P2P overlay con-

sisting of a bootstrap node, a source node and peer nodes. As

seen in Figure 1, the mesh allows peers to download a stream

generated by the source, while the bootstrap maintains a list

of alive peers used to assist peers to join the network. We

consider a unidirectional mesh since it is more general than

a bidirectional mesh. Also, unidirectional meshes have been

shown to perform better than bidirectional meshes [24].

Every peer node maintains two sets of nodes, in-neighbors

and out-neighbors. The in-neighbors represent the nodes that

the peer node is receiving data from. The size of the in-

neighbors is a system parameter. The out-neighbors represent

the nodes that the peer node is sending data to. Each node

decides independently the number of out-neighbors to support

which will be proportional to its bandwidth. The source has no

in-neighbors, only an out-neighbors set, whose size is usually

larger than the size of an out-neighbor set of a peer node.

At join time, a peer node j first contacts the bootstrap node

to receive a set of candidate nodes to serve as its neighbors

in the overlay. Node j then contacts each candidate node and

requests to become one of its out-neighbors. If a candidate

node c accepts the request, then in turn, j will add c to its

in-neighbor set. Each node pro-actively looks for several out-

neighbors to connect to as well.

After it joins the overlay, a node discovers other peers by

occasionally contacting its neighbors to learn about their own

neighbors. This gossip protocol allows a node to update its

in-neighbor set when neighbors leave or crash. A node also

registers with the bootstrap node occasionally to allow the

bootstrap node to have an up-to-date list of alive nodes. We

will refer to these protocols as the control plane of the overlay.

The source node splits the stream into data chunks of a

fixed size, each uniquely identified by a sequence number. To

2

receive a chunk a node will send a request to an in-neighbor

with that chunk’s sequence number. If the requested node does

not respond before a deadline then the requesting peer will

consider that request lost. Each peer node maintains a buffer

that it is trying to fill with data chunks. The buffer corresponds

to a playback deadline, such that if a block of the stream is

not received before that deadline, the data is considered lost

and thus the quality of the playback stream is diminished. We

will refer to this protocol as the data plane of the overlay.

This model is general enough to capture the characteristics

of several mesh-based previously deployed systems [4], [13].

III. ATTACKS AGAINST DATA DELIVERY

We state the assumptions we make about the attacker

and provide a taxonomy of attacks against mesh-based P2P

streaming systems.

A. Attack Model

We assume that a fraction f of peers are compromised

and can behave arbitrarily. Their main goal is preventing the

overlay from delivering data to each peer in a timely fashion.

An attacker can disrupt the data delivery directly by attacking

the data plane, or indirectly by attacking first the control plane

to gain control over the data delivery path and then disrupting

the data delivery.

We assume a defense against Sybil attacks [25] is in

place, such as binding IP addresses to certificates or one

that leverages social networks [26]. We also assume that data

integrity is ensured and data is protected from pollution [6],

[20]. We assume that the source and the bootstrap node are

trusted and always behave correctly.

B. Attacks on the Data Plane

When two nodes A and B accept each other as out-neighbor,

and in-neighbor, respectively, they assume several implicit

commitments from each other:

• Data delivery commitment: A commits to B that it is going

to deliver a certain amount of data to B.

• Data download commitment: B commits to A that it is

going to download a certain amount of data from A.

• Data upload commitment: B is going to upload to the

overlay what it downloaded from A.

• Source upload commitment: B will upload the data

downloaded from the source to others in the overlay. This

is similar to the data upload commitment, however we list it

separately given that the source is a special entity where all

the data originates.

• Data integrity commitment: A commits to B that it is not

going to upload to B meaningless data.

However, in many mesh systems, not all of these com-

mitments are explicitly enforced by the system. As a result,

malicious nodes can exploit them to attack the data plane. We

identify the following attacks:

• Data dropping attacks: If the data delivery commitment

is not met, a malicious node can accept benign nodes as its

out-neighbors, but not deliver data to them. The attacks are

effective because each data chunk has a strict deadline. A node

only has time to make a few downloading attempts for a chunk,

and will miss it once the deadline is passed.

• Neighbor exhaustion attacks: If the data download com-

mitment is not met, a malicious node can become out-

neighbors of benign nodes, but not download data from them.

As many meshes limit the number of out-neighbors to ensure

that nodes can honor the bandwidth requirements, by being

included in the out-neighbors a malicious node exhausts the

slots in that set thus denying access to other benign nodes.

• Source attack: If the source upload commitment is not met,

malicious nodes do not forward data given to it by the source.

Thus if a particular chunk is only received by malicious nodes

it will not be available to any benign nodes.

• Free-riding attacks: If the data upload commitment is not

met, malicious nodes could also download data but not upload

them to other peers, and basically obtain free service without

contributing to the system.

• Data pollution attacks: If the data integrity commitment is

not met, malicious nodes can upload meaningless data, thus

polluting the information in the overlay.

C. Attacks on the Control Plane

The above data plane attacks are more effective when they

impact many nodes in the overlay. A malicious node can

increase the impact of its attack by first attacking the control

plane. The control plane provides nodes with two mechanisms

to discover peers. The first consists of the list of alive peers

provided by the bootstrap node when a node joins the overlay.

The second consists of exchanging membership information

between the node and known peers. The bootstrap list is up-

to-date if peers periodically register with the bootstrap node

to inform it that they are alive. Assuming the bootstrap node

is trusted, the control plane achieves its goals if the following

commitments are met:

• Registration with the bootstrap node commitment: A peer

commits that it will register occasionally with the bootstrap

node, at a rate specified by the protocol.

• Referral list commitment: A node commits to provide a

neighbors list that does not purposely contain malicious nodes

and is not biased towards some nodes.

We identify the following attacks that have an impact on

neighbor selection:

• Bootstrap list pollution attacks: If the registration with

the bootstrap node commitment is not met, malicious nodes

can register fast and often with the bootstrap node filling

the bootstrap node’s list of alive peers. Thus, although the

bootstrap node is trusted, the list that it will provide to the

joining peers will be polluted with malicious nodes. Note that

malicious nodes can also register infrequently or not at all, but

in this case they will not impact the list of the bootstrap node.

• Neighbor selection attacks: If the referral list commitment

is not met an attacker can collude with other malicious nodes

and when contacted about its own neighbors, refers only other

malicious nodes. This attack is epidemic in nature since soon

3

benign nodes will also be referring the malicious nodes they

know to other benign nodes.

D. Our Focus

We focus on the attacks that we believe can be the most

effective strategy for an attacker to disrupt the data delivery,

and allow him to inflict maximum damage on the system

with minimal resources. The most effective strategy for a

malicious node is to (i) become neighbors of as many nodes

as possible, and (ii) deliver as little data as possible. Hence

we focus on control plane attacks (i.e. bootstrap list pollution

and neighbor selection) that seek to increase the connectivity

of malicious nodes and also on several data plane attacks (i.e.

dropping, neighbor exhaustion and source) as they can create

considerable damage in the network.

We note that many of these attacks are specific to streaming,

as file-distribution systems do not have real-time deadlines of

data, nor need to download at a particular streaming rate, and

often have centralized membership protocols (e.g. BitTorrent).

We do not consider attacks such as free-riding or data

pollution as they relate to selfish behavior and data integrity

but not attacks on data delivery. Furthermore, several solutions

to free-riding have been proposed in previous work [21], [22].

Also, to prevent data pollution, Dhungel et al. [20] have shown

that a suitable means to accomplishing this is the source

digitally signing hashes of the chunks. We note that solutions

to these attacks can be used to complement our work.

IV. A DESIGN FOR SECURING DATA DELIVERY

In this section we describe our design for securing the data

delivery for a P2P mesh-based streaming overlay. We first

outline the design goals, then describe the details of our design.

A. Design Goals and Overview

Our focus is on ensuring that the P2P system achieves its

intended goal which is continuous data delivery, even when

under attack. However, achieving the same level of service in

the presence of insider attacks as in the benign case is not

always possible. As a result, our specific goals are:

(G1) Limit the impact of the attack: We seek to raise the

bar for the attacker and bound the amount of damage per

attacker. The damage created is directly proportional with the

number of attackers and the amount of data dropped by the

attacker nodes. Our goal is to allow nodes to quickly find other

trustworthy nodes to send and receive data from, thus limiting

the adverse affects malicious nodes can have on the system.

(G2) Limit the overhead of the defense mechanisms: As

malicious behavior is not a priori known, the components of

our design are proactive, thus they must be enabled regardless

of the presence of attacks. One specific concern is the over-

head of the defense mechanisms. Our goal is that when no

attack takes place, the system performance with the defense

mechanisms enabled is the same as if they were not used.

Peer protection: To limit the impact of attacks and the

overhead of the defense solution, we use decentralized mech-

anisms deployed at each individual peer that allow it to

make local decisions about accepting, rejecting or excluding

other peers from its set of neighbors. Each individual node

derives reputation scores for the other peers it is aware of

in the overlay. The use of reputation is a natural choice in

a distributed system with malicious participants. Since many

existing reputation systems require additional overlays or have

high computational or bandwidth overhead [27], we design

schemes that are tailored to streaming overlays. The novelty

of our scheme lies in combining feedback from the data plane

and control plane to build reputations for each peer.

Protecting Other Components: As the source is a producer

but not a consumer of data, the protection mechanisms used

for peers are not applicable to the protection of the source.

We use mechanisms that limit the impact of source attacks by

controlling the duration at which nodes can become neighbors

of the source. The bootstrap node plays a critical role in

the control plane. Attacks against the control plane can be

amplified if the bootstrap is not a reliable and unbiased source

of information on who is currently in the overlay. Our scheme

discourages nodes from registering at a fast rate and thus limits

the percentage of malicious nodes in the bootstrap list.

B. Protecting Peers through Local Reputation

We propose a mechanism that allows peers to select as

neighbors the nodes that provide the best performance while

being resilient to data dropping and neighbor selection attacks.

A node uses locally observed data and control plane informa-

tion to compute scores for each of its neighbors. The lower the

score, the higher the chance that a node is malicious. Nodes

that have a score lower than a threshold Td are evicted from the

in-neighbors set. The local reputations are also sent across one

hop to neighbors, so that they can avoid accepting malicious

nodes as in-neighbors. The score consists of two components:

• Data score: This score is a positive reputation (it rewards

good behavior) and it is calculated based on how much data a

node has received from a particular neighbor. The goal of the

data score is to capture regular performance degradation and

data dropping attacks. Nodes who do not deliver sufficient data

will have a lower data score. Nodes with a data score below

a threshold Ts are considered to be suspicious. This approach

forces malicious neighbors to deliver a certain amount of data.

Note that for a node to be evicted from the neighbors set, his

total score has to be smaller than Td (Td < Ts).

• Graph connectivity score: This score is a negative reputation

(it penalizes bad behavior) and is calculated based on how

connected a node is to other nodes. The goal of the graph

connectivity score is to target neighbor selection attacks. This

score is relevant only for suspicious nodes because if nodes

deliver enough data (i.e. have a data score > Ts) they do not

disturb the overlay. A high graph connectivity score indicates

that a node is potentially conducting a neighbor selection

attack. This score is used because if the data score is neither

high nor low, it may not be obvious if a node is malicious.

Below we provide details about the data and graph con-

nectivity score computation, about the way they are combined

4

into a reputation score, and about how the reputation score is

used to make decisions on what nodes to allow as neighbors.

Data score computation. Every node i calculates a data

score for every in-neighbor j as follows:

Lij(t) = min

(

1,
Gij(t)

E(t)

)

(1)

where Gij(t) is the number of chunks received by node

i from j before deadline Dr in a time period. Note that

when schemes to enforce data integrity are in place [6], [20],

only chunks that passed integrity checks and are not polluted

are included. Dr is the amount of time the requesting peer

will wait before considering that the request was dropped.

If a request for a chunk is honored after the Dr deadline

has passed, it is not included in Gij(t). We note that the

above equation can be augmented to give partial credit to the

sender for chunks that arrive after the Dr deadline. E(t) is the

expected number of chunks to be received by a node in a time

period. Typically, the expected value is the same for all nodes

and if it is received from all in-neighbors the full streaming

rate will be received. We take the minimum of
Gij(t)
E(t) and 1

so that if a node performs better than expected the end result

more data j delivers to i, the bigger the Lij(t). If Lij(t) is

less than a threshold Ts, then i marks j as suspicious.

A score for a node’s out-neighbors is calculated by replacing

Gij(t) with the number of requests fulfilled for that node in

a time period. Such a score allows nodes to mitigate neighbor

exhaustion attacks.

Graph connectivity score computation. Every node also

calculates a graph connectivity score for each of its neighbors

that were marked suspicious. This score relies on the observa-

tion that a malicious node conducting a neighbor selection

attack will be an in-neighbor for many honest nodes. In

particular, if the malicious node is an in-neighbor of a benign

node i, it is likely to be an in-neighbor of i’s neighbors as well.

We propose the following graph connectivity equation for each

node i to calculate the likehood of each of its in-neighbor j

being malicious:

Cij(t) =
Kij(t)

Ni(t)
(2)

where Ni(t) is the total number of non-suspicious neighbors

of i (i.e. neighbors whose data score L is greater than Ts), and

Kij(t) is the number of non-suspicious neighbors for whom

j is also an in-neighbor. Intuitively, the equation calculates a

score equal to the percentage of non-suspicious neighbors that

a neighbor j is currently an in-neighbor for. The score will be

high if a neighbor is in many neighbor sets, indicating that it

is malicious. We consider only non-suspicious nodes so that

in the case a malicious node wants to falsely advertise other

nodes in its in-neighbor set, it has to perform some work for

the system.

Reputation score computation. Every node combines the

data and graph connectivity score as follows:

R′

ij(t) =

{

Lij(t) − α ∗ Cij(t) if j is suspicious

Lij(t) otherwise
(3)

If a node had a low data score and was marked as suspicious,

then we subtract from the Lij data score the Cij graph

connectivity score weighted by a parameter α. This choice

was made based on the observation that if the nodes deliver

enough data, it does not matter how connected they are as they

do not disturb the honest nodes.

Incorporating history. Every node takes into account the

history of its neighbors by calculating for each neighbor the

following equation:

Rij(t) = λ ∗ R′

ij(t) + (1 − λ) ∗ Rij(t − 1) (4)

where λ is a value less than 1. We take into account history

to accommodate transient network conditions. All nodes start

with a reputation equal to Ts.

Reputation based neighbor selection. A node uses rep-

utation scores to decide when to drop or add neighbors. To

decide if he keeps a node j as a neighbor, node i compares

the reputation score Rij for node j with a threshold Td. If

j’s score becomes less than Td, then i will drop j from its

neighbor set and will not allow j to be in either its in-neighbor

or out-neighbor sets from then on.

A node also uses the reputation score to determine if a node

is non-malicious when deciding to add a neighbor. Consider

the case when a node s refers a neighbor k to node i, s will

also send the reputation score of k. To decide if he adds k

as a neighbor, i computes Ris ∗ Rsk. Node i will then add

node k as a neighbor if the resulting number is greater than

the suspicion threshold, Ts.

C. Source and Bootstrap Protection

The source is a critical component of the overlay. As

will be shown in Section VII attacks against the source can

significantly degrade the performance of the system. We note

that as time progresses and benign nodes churn in and out

of the system, malicious nodes can continue to stay and

eventually eclipse the source as its neighbors. To address

this problem we induce churn [28] on the source. We allow

a single node to stay as an out-neighbor for only a certain

amount of time and then disconnect it. To further stagger the

disconnection times of nodes, we only allow one node to be

disconnected in a time period. We refer to this scheme as Drop

Periodically. Assuming the bootstrap node is also protected

and the source only obtains referrals from it, we expect that

with this mechanism the percentage of malicious nodes in the

source’s out-neighbor set will be no greater than the percentage

of malicious nodes in the system.

Our bootstrap node solution relies on the observation that

nodes that register with it many times in a short period are

most likely malicious. Thus to penalize this behavior, if nodes

register too fast, they will not be put into the bootstrap list and

then will not be propagated by the bootstrap node. To only

do rate-limiting and nothing else might bring about scenarios

where there are very few honest nodes in the bootstrap list.

This could be due to few nodes joining the overlay for a period

of time. To ensure that the bootstrap list still can not be filled

5

with malicious nodes, we have each node register periodically.

We refer to this scheme as Rate-limiting Bootstrap.

V. SECURITY ANALYSIS

In this section, we analyze how robust the Local Reputation

scheme is in defending against common classes of attacks.

Recall that the final reputation score is derived by combining

the data score, which is a positive score, and the graph

connectivity score, which is a negative score. The node uses

the final reputation score to decide who should remain as

neighbors and who to admit as neighbors. Possible attacks

that can be conducted on these reputation calculations and

uses include [23]:
Self-promoting: Malicious nodes falsely inflate their own

reputation. This attack is only effective in positive feedback

based systems.
Slandering: Malicious nodes attack the reputation of other

nodes by reporting untrue information about them. This attack

is only effective in negative feedback based systems.
Orchestrated: Colluding nodes combine several strategies to

game the system.
Whitewashing: Malicious nodes take advantage of a system

vulnerability to restore a damaged reputation. One possible

way to do this is by assuming new identities.

A. Attacks on Data Score Calculation

The reputation system is designed so that a node cannot get

a high data score and thus a high reputation without doing

useful work. Therefore, the data score cannot be influenced

by slandering or self-promoting attacks, as the only way to

change it is for a node to deliver more data. We present the

following lemma which quantifies the amount of useful work

done by a node given a particular data score, which can be

derived from Equation 1.
Lemma 1: For a node j to obtain a data score of Lij at a

neighboring node i, j must deliver data to i at a minimum rate

of E ∗ Lij , where E is the expected amount of data a node

should deliver to a neighbor in a time window (Section IV-B).
This lemma guarantees that benign nodes will receive good

performance even when surrounded by a significant number of

malicious neighbors, for example, when under an orchestrated

attack. This is because each malicious neighbor is forced to

deliver a minimum amount of data in order not to be dropped.

More specifically, if we assume a node with a fraction f of its

neighbors is malicious, and assume benign neighbors always

deliver the expected amount of data, then the node will receive

at least (1 − f) + Tdf = 1− f(1− Td) of the streaming rate

(Td is the drop threshold). For example, with Td = 0.5 and

f = 0.3, the node will receive at least 85% of the stream rate.
Furthermore, Lemma 1 imposes a high bandwidth cost on

malicious nodes who seek to be a neighbor of a large number

of nodes. To highlight this, consider a streaming system with

150K nodes [6], and that a malicious node desires to maintain

a reputation score of Td at every node. According to Lemma

1, with a streaming rate of 1Mbps, a neighbor-set size of 15,

and assuming a Td value of 0.5, the node must deliver data at

a minimum total rate of 5Gbps.

B. Attacks on Graph Connectivity Score Calculation

When a node calculates its neighbors’ graph connectivity

score, it takes into account neighbor set information provided

by all of its non-suspicious neighbors. This scheme is subject

to slandering attacks where a malicious neighbor can provide

fake neighbor set information. Slandering can be seen from

two different perspectives, the ability of a node to slander

others and the resistance a node has from slandering attempts.

We first present the following lemma that shows the limitations

a node has in its ability to slander others, which can be derived

from Equation 2.

Lemma 2: A node j can only influence the graph connectivity

scores of the neighbors of node i if j has a data score of Ts

with i.

Lemma 2 shows that malicious nodes must themselves do

a substantial amount of work to remain non-suspicious, which

means having a data score above Ts. According to Lemma 1,

this means they must deliver data to i at a minimum rate of

E ∗ Ts. Given that Ts > Td, this imposes an even greater

bandwidth constraint on attackers that want to slander others

over attackers that want to simply not be dropped.

We next present a lemma that demonstrates that a node can

resist slandering attacks from others. The key insight behind

the lemma is that if a node transmits data at a high enough

rate, its final reputation as computed by the neighbor depends

on the data score alone, and is not impacted by the graph

connectivity score.

Lemma 3: Any node that delivers data to a neighbor at a rate

greater than E ∗Ts is assured of a reputation greater than Ts

with the neighbor.

We expect that most benign nodes will be cooperative and

deliver data at rates close to the expected rate, which is well

above E ∗ Ts. Therefore benign nodes will not be subject to

slandering attacks as their graph connectivity score will not

even be considered.

C. Other Attacks

We discuss other attacks on the schemes, and why our

approach is resilient to them:

Whitewashing attacks: In these attacks, malicious nodes who

received a bad reputation may choose to rejoin the network

with a different identity. We believe this attack is not a concern

because of the following reasons. First, the reputation is

initialized to Ts, and all new nodes will be marked suspicious

initially. Therefore a new node cannot refer other nodes or

report connectivity information about other nodes until it has

done work and improved its reputation. Further, the newly

added node will be quickly dropped unless it transmits data at

a sufficient rate. Second, in our model, nodes are identified by

their IP address. To cause damage, a malicious node cannot

acquire a new identity by simply spoofing an IP address, but

must be able to receive packets targeted to the IP address. By

our attacker model in Section III-A, we assume a bound on the

total number of IP addresses that the malicious node controls.

Attacks on Reputation-Based Neighbor Selection: A node

adds new neighbors by taking referrals from existing non-

6

suspicious neighbors. This process is subject to attacks where

a malicious neighbor (m) could refer a node (i) to other mali-

cious nodes. However, to conduct this attack, the malicious

neighbor m must be considered non-suspicious, and hence

must deliver data at a minimum rate of Ts ∗ E, where Ts is

the suspicion threshold. Further, each newly inserted malicious

node referred by m must also do a substantial amount of work

to obtain a minimum data score of Td (the drop threshold), or

it will be dropped quickly by i.

VI. EXPERIMENTAL METHODOLOGY

In this section, we describe how we evaluate and compare

our protection schemes with several others. We implemented

the unidirectional mesh described in Section II in a mesh

streaming codebase [9]. We also implemented all of our

own protection schemes plus some alternatives which we will

describe next, which are summarized in Table I.

A. Schemes Considered

TABLE I
MECHANISMS FOR EACH PART OF SYSTEM

Peers Source Bootstrap

Least Performing Peer (LP) Pretrusted Peers (PP)

Local Reputation (LR) Drop Periodically (DP) Rate-limiting (RB)

No Protection (NP): This is our baseline scheme which has

no protection for any of the system components.

Local Reputation (LR), Drop Periodically (DP) and Rate-

limiting Bootstrap (RB): These are the schemes we proposed

in Section IV.

Least Performing Peer (LP): This is a peer level scheme,

similar to the one used in CoolStreaming [11], that drops the

in-neighbor that is currently contributing the least amount of

data. We chose this alternative to LR because of its simplicity

and to show that while simple schemes such as this prove to be

effective in a setting where all nodes are benign, more robust

methods are needed when malicious nodes are present.

Pretrusted Peers (PP): This is a source protection scheme that

assumes the existence of pretrusted peers in the system. The

source only accepts as neighbors those whom the pretrusted

peers validate as nodes that are willing to send data to them.

We selected this scheme as an alternative to DP, to demonstrate

that when no pretrusted nodes are available, DP provides

similar results while making less assumptions.

B. Experiment Configuration

TABLE II
NOTATION

Dr Deadline at which a peer considers a request for data dropped
Ts The suspicion threshold
Td The drop threshold
α When calculating R′

ij
(t) gives a weight to Cij(t)

λ When calculating Rij(t) gives a weight to the previous value
of Rij(t − 1) and the current value of R′

ij
(t)

The experiments were run on the PlanetLab overlay testbed.

The source was located on a host at our lab. We set Dr,

to be 1 second. We determined this value experimentally

as we observed that in a non-malicious scenario 96% of

nodes receive 99% of chunks within 1 second. Each node is

configured to obtain up to 15 in-neighbors and the maximum

number of out-neighbors is proportional to its bandwidth. The

source will obtain 30 out-neighbors.

Malicious nodes always conduct the data dropping, neighbor

selection and source attacks described in Section III. In addi-

tion, when we explicitly state, malicious nodes also conduct

a bootstrap list pollution attack. To facilitate these attacks

malicious nodes advertise the chunks of data that they have,

but do not fulfill any requests unless stated otherwise. They

also accept up to 100 out-neighbors.

We used overlay deployments of 300 nodes. Each experi-

ment lasted for 10 minutes. For each experiment we varied

the percentage of malicious nodes from 0 to 30% and fixed

the source’s streaming rate at 1 Mbps. Each experiment was

run for 10 times and the results were averaged. Standard

deviations are plotted where appropriate. The malicious nodes

joined at the beginning of the experiment and stayed for the

entire duration. Benign nodes both join at the beginning of

the experiment and also during the experiment. We modeled

the join times by using a Poisson process and the participation

time by a Pareto distribution. The mean of the Poisson process

was 3 and the Pareto distribution is used with an α of 1.42

giving a mean participation time of 300 seconds and we also

assume a minimum participation time of 90 seconds. The

parameters have been used previously by Bharambe et al. [29]

and were motivated by traces of real multicast systems [3] and

Mbone sessions [30].

Choosing Parameters: For Local Reputation we by reason

set its parameters to appropriate values and validated them

experimentally. We set Ts to be 0.7 to tolerate transient

network conditions. We note that Ts can be set by the user, to

the minimum quality threshold that he is willing to tolerate.

We set α to be 0.5 since we consider data plane feedback to

be more useful than control plane feedback. We also conduct

a sensitivity study of α in Section VII. For nodes to evict

malicious nodes that are both suspicious and highly connected,

the equation Td ≥ Ts − α must hold. Therefore we set Td to

be 0.2. We set λ to be 0.4 to give a greater weight to the

history of the reputation but also be able to change quickly if

nodes consistently behave badly. We set the time period for

the recalculation of the scores to be every 3 seconds.

VII. EXPERIMENTAL EVALUATION

In this section we experimentally show the schemes we pro-

posed in Section IV are able to effectively mitigate attackers.

We evaluate the effectiveness of the attacks and solutions with

the goodput ratio. The goodput ratio represents the percentage

of useful data a node received while in the overlay, averaged

across all nodes. We use it to measure the effects of churn on

the quality of the goodput. The higher the goodput ratio, the

higher the quality of the stream received. We exclude overhead

7

metrics as we have designed our schemes to have minimal

computational overhead and any added network traffic piggy-

backs on existing traffic.

A. Robust Neighbor Selection

To give motivation to our Local Reputation (LR), we first

compare it to Least Performing Peer (LP) and No Protection

(NP). As can be seen in Figure 2(a) both NP and LP perform

worse than LR. This difference becomes more pronounced as

the percentage of malicious nodes increases. NP is ineffective

simply because nodes never change who their neighbors are,

regardless of their poor performance.

LP is not as effective as LR since a node never drops

all of the malicious nodes from its neighbor set. Further

investigation shows that for a node running LP the number

of malicious nodes in its in-neighbor set decreases as some of

the malicious nodes will be dropped. However, there are still

malicious nodes present in the in-neighbor set because LP does

not prevent the node from reconnecting multiple times to the

same malicious nodes. When the node is running LR, it does

not reconnect anymore to malicious nodes since malicious

behavior is captured in the reputation score for those nodes.

Importance of considering graph connectivity: We exam-

ine the contribution of the graph connectivity score on LR and

identify regimes in which its use is beneficial. We compare

the case when the reputation score computation is based only

on the data feedback (i.e. α = 0) to the case when both data

and graph connectivity are considered (i.e. α = 1).

As we can see in Figure 2(b) when attackers drop 25% or

75% of the data they were expected to deliver, the performance

does not change no matter the value of α. For the case of 25%

dropping, recall that a node i will only calculate the graph

connectivity score for a neighbor j if it marks j as suspicious

(i.e. Lij < Ts). When j drops 25% of the data it will not be

marked as suspicious since we use a Ts value of 0.7, thus the

graph connectivity score will not be considered. In the case

of 75% dropping, enough data is dropped that the neighbor

will be perceived as malicious by its data score alone. Hence

graph connectivity is most useful in regimes where the amount

of data dropped by a malicious node is large enough to be

marked as suspicious, but not large enough to be interpreted

as malicious by their data scores alone. This is the case for

50% dropping. In Figure 2(b), when attackers drop 50% of

the data, LR combining the two scores performs better than

LR using only data score. The information from the control

plane about the existence of a neighbor selection attacks helps

effectively identify malicious nodes. We varied α even more

to find values that give better performance but we found that

a value of 1 is sufficient across all percentages of attackers.

B. Protecting Other Components

While LR performs much better than other schemes, the

goodput ratio achieved is still far from satisfactory. We believe

this is because LR does not protect the streaming source, as

we explained in Section IV. Further investigation into the

source’s performance confirms our hypothesis. While peers

using LR expel all malicious nodes from their in-neighbor

set, the source’s out-neighbor set is almost full of malicious

nodes. This illustrates the importance of having additional

mechanisms to protect the source.

We next evaluate mechanisms that can be used to protect

the source. When using Drop Periodically (DP) the source

will drop a node after it has been a neighbor for 1 minute.

For Pretrusted Peers (PP) we use 4 peers that the source

trusts. Figure 3(a) shows the results. The goodput ratio is

significantly raised for DP combined with LR (i.e. the curve

titled LR+DP). This is because DP effectively reduces the

percentage of malicious neighbors at the source to a value

that is very close to the percentage of malicious nodes in the

overlay at all times, for all settings.

PP when combined with LR (i.e. LR+PP) raised the goodput

ratio even higher, though the improvement over LR+DP seems

marginal. This is because PP reduced the percentage of

malicious neighbors at the source even further. However, this

scheme requires deployment of pretrusted peers, and preserv-

ing the anonymity of these peers, both of which are difficult

to guarantee. We conclude that DP is preferable because it

makes less assumptions while providing good performance.

Figure 3(a) also shows that DP alone is not sufficient. This

is not surprising, because DP protects only the source, not the

peers. This again highlights that solutions must be employed at

both the source and peers to achieve satisfactory performance.

We now consider attacks where malicious nodes also pollute

the bootstrap node by registering often. We evaluate the

effectiveness of Rate-limiting Bootstrap (RB) in mitigating

such attacks. We show the results in Figure 3(b). The attack

causes a goodput ratio drop of 15% in the scenario where there

are 30% malicious attackers. However, RB is able to mitigate

the attack and bring the goodput ratio up to 92%.

VIII. RELATED WORK

The security challenges in designing mesh-based streaming

protocols has received little attention. The only prior work we

are aware of focuses on attacks where malicious nodes pollute

data sent to other nodes [20]. In contrast, our focus is on data

availability and prevention of neighbor selection attacks.

Attacks on data availability have been considered in the

context of tree-based multicast [31]. The proposed solution

takes advantage of the tree structure, knowing that if a child

did not receive a message then an ancestor can be traced

back to that is at fault for dropping it. Meshes do not have

parent-child relationships but rather nodes get data from many

neighbors, so this approach cannot be applied to them. Attacks

against measurement-based neighbor selection were studied

in the context of tree-based streaming [32]. The proposed

solution uses outlier detection to identify malicious nodes that

report wrong measurement results. This approach only works

with systems that employ such measurement-based adaptation.

Dealing with selfish and Byzantine behavior using game

theoretic principles has been investigated in several previous

works [33], [34]. Most similar to our work is Flightpath [33],

a P2P streaming system that is designed to give selfish

8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

G
o

o
d

p
u

t
R

at
io

Percentage of Malicious Nodes

NP
LP
LR

(a) No Protection, Least Performing Peer and Local Rep-

utation schemes running at the peers with No Protection

at the source.

 0

 0.2

 0.4

 0.6

 0.8

 1

25 50 75

G
o

o
d

p
u

t
R

at
io

Percentage of Data Dropped by Malicious Nodes

α=0
α=1

(b) Goodput ratio when 10% of participants are malicious
and they drop varying amounts of the stream. Local

Reputation is protecting the peers and α is varied.

Fig. 2. Importance of the Local Reputation scheme.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

G
o

o
d

p
u

t
R

at
io

Percentage of Malicious Nodes

LR + DP
LR + PP

LR
DP

(a) Peers running the Local Reputation scheme with Drop

Periodically, Pretrusted Peers and No Protection at the
source. For comparison we also plot the Drop Periodically

only scheme.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

G
o

o
d

p
u

t
R

at
io

Percentage of Malicious Nodes

LR + DP + RB
LR + DP

RB

(b) Rate-limiting Bootstrap and No Protection are com-
bined with Local Reputation and Drop Periodically. Rate-

limiting Bootstrap with No Protection is also shown.

Fig. 3. Importance of Drop Periodically and Rate-limiting Bootstrap schemes.

peers incentive to obey protocols and can tolerate Byzantine

behavior. Unlike their work, we do not assume synchronized

clocks or synchronous communication channels.

Several schemes have been proposed to mitigate neighbor

selection attacks (referred to as eclipse attacks) in the context

of distributed hash tables (DHTs) [35], [36]. The solutions are

DHT-specific and do not apply to streaming protocols. A key

aspect that distinguishes streaming protocols is the potential

for feedback from the data-plane. In particular, it is possible to

infer malicious behavior based on lack of data received from

a neighbor. Our solutions leverage this observation resulting

in significantly simpler designs.

Reputation systems have been a subject of wide interest,

especially for P2P file-sharing systems. File-sharing reputa-

tion systems generally fall into two categories of purpose,

incentivizing users to share files [27], [37], or thwarting file

pollution [38]. Piatek et al. [37] show the feasability of using

one-hop reputations to incentivize interactions between users

in BitTorrent. They take advantage of the fact that there are

some users who are in many BitTorrent overlays and thus

can be used as intermediaries, keeping track of long-term

reputation values for others and facilitating data exchanges.

While our work also uses local reputations, we differ in

that our goal is mitigating malicious adversaries and not

creating incentives. Also, as users usually only watch one

video stream at a time, this precludes them from being in

many overlays at once, making it impossible for some users

to be intermediaries. Thus, streaming presents new challenges

for reputation systems and has unique features that create

opportunities, such as the continual downloading of data and

stringent data deadlines, that we take advantage of.

IX. CONCLUSION

In this paper, we present one of the first efforts aimed

at systematically analyzing and addressing the vulnerabilities

of mesh-based P2P streaming systems to malicious insider

attacks. We consider both direct attacks on the data plane, as

well as attacks on the control plane which could in turn lead

to further disruption of data delivery. We present a design

for securing data delivery, of which a key component is a

reputation scheme that helps nodes identify malicious peers

and build a robust neighbor set. Through detailed security

analysis, we show that our scheme is resistant to a variety

of attacks commonly associated with reputation schemes such

9

as self-promotion, slandering, and white-washing [23].

We present an extensive evaluation of our design through

experiments on PlanetLab. Our results show that (i) without

our solution, the data delivery can be seriously disrupted

by attacks exploiting the vulnerabilities we identified. For

example, 15% malicious nodes caused the average goodput

ratio to decrease to less than 30%. (ii) Our solution is effective

in mitigating the attacks; it achieves an average goodput

ratio of more than 90% even when there are 30% malicious

nodes. (iii) While each of the mechanisms we introduce can

individually benefit the system, the solution is most effective

when all the mechanisms are combined. Overall, these results

are promising, and indicate the feasibility of ensuring effective

P2P streaming even under the presence of malicious partici-

pants.

REFERENCES

[1] S. Deering and D. Cheriton, “Multicast routing in datagram internet-
works and extended lans,” ACM Transaction on Computer Systems,
vol. 8, pp. 85–110, 1990.

[2] Y. Chu, S. G. Rao, and H. Zhang, “A case for end system multicast,”
in ACM SIGMETRICS, 2000.

[3] Y.-H. Chu, A. Ganjam, T. S. E. Ng, S. Rao, K. Sripanidkulchai, J. Zhan,
and H. Zhang, “Early experience with an internet broadcast system based
on overlay multicast,” in USENIX, 2004.

[4] PPLive, http://www.pplive.com.

[5] PPStream, http://www.ppstream.com.
[6] Y. Huang, T. Z. Fu, D.-M. Chiu, J. C. Lui, and C. Huang, “Challenges,

design and analysis of a large-scale p2p-vod system,” in SIGCOMM,
2008.

[7] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross, “A measurement
study of a large-scale p2p iptv system,” IEEE Trans. on Multimedia,
vol. 9, pp. 1672 – 1687, 2007.

[8] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “Splitstream: High-bandwidth multicast in cooperative
environments,” in SOSP, 2003.

[9] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. Mohr,
“Chainsaw: Eliminating trees from overlay multicast,” in IPTPS, 2005.

[10] V. Venkataraman, K. Yoshida, and P. Francis, “Chunkyspread: Hetero-
geneous unstructured tree-based peer-to-peer multicast,” in ICNP, 2006.

[11] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “CoolStreaming/DONet: A
data-driven overlay network for peer-to-peer live media streaming,” in
IEEE INFOCOM, 2005.

[12] D. Kostic, A. Rodriguez, J. Albrecht, , and A. Vahdat, “Bullet: High
bandwidth data dissemination using an overlay mesh,” in SOSP, 2003.

[13] UUSee, http://www.uusee.com.

[14] SOPCast, http://www.sopcast.com/.
[15] K. Cho, K. Fukuda, H. Esaki, and A. Kato, “Observing slow crustal

movement in residential user traffic,” in CONEXT, 2008.
[16] M. Meeker and D. Joseph, “The state of the internet, part 3,” in Web

2.0, 2006.
[17] J. Liu, S. G. Rao, B. Li, and H. Zhang, “Opportunities and challenges

of peer-to-peer internet video broadcast,” in Proceedings of the IEEE,

Special Issue on Recent Advances in Distributed Multimedia Communi-

cations, 2007.

[18] N. Magharei and R. Rejaie, “PRIME: Peer-to-peer receiver driven mesh-
based streaming,” in IEEE INFOCOM, 2007.

[19] J. Seibert, D. Zage, S. Fahmy, and C. Nita-Rotaru, “Experimental com-
parison of peer-to-peer streaming overlays: An application perspective,”
in IEEE LCN, 2008.

[20] P. Dhungel, X. Hei, K. Ross, and N. Saxena, “The pollution attack in
p2p live video streaming: Measurement results and defenses,” in ACM

SIGCOMM P2P-TV Workshop, 2007.
[21] Z. Liu, Y. Shen, K. W. Ross, S. S. Panwar, and Y. Wang, “Substream

trading: Towards an open p2p live streaming system,” in ICNP, 2008.
[22] B. Cohen, “Incentives build robustness in BitTorrent,” in P2P Eco-

nomics, 2003.

[23] K. Hoffman, D. Zage, and C. Nita-Rotaru, “A survey of attack and
defense techniques for reputation systems,” ACM Computing Surveys,
2008.

[24] B. Biskupski, R. Cunningham, J. Dowling, and R. Meier, “High-
bandwidth mesh-based overlay multicast in heterogeneous environ-
ments,” in AAA-IDEA, 2006.

[25] J. Douceur, “The Sybil Attack,” in IPTPS, 2002.
[26] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao, “Sybillimit: A near-

optimal social network defense against sybil attacks,” in Symposium on

Security and Privacy, 2008.
[27] S. Kamvar, M. Schlosser, and H. Garcia-Molina, “The EigenTrust Al-

gorithm for Reputation Management in P2P Networks,” in Proceedings

of WWW2003. ACM, 2003.
[28] T. Condie, V. Kacholia, S. Sankararaman, J. M. Hellerstein, and P. Ma-

niatis, “Induced churn as shelter from routingtable poisoning,” in NDSS,
2006.

[29] A. Bharambe, S. Rao, V. Padmanabhan, S. Seshan, and H. Zhang, “The
impact of heterogeneous bandwidth constraints on DHT-based multicast
protocols,” in IPTPS, 2005.

[30] K. Almeroth and M. Ammar, “Characterization of mbone session dy-
namics: Developing and applying a measurement tool,” Georgia Institute
of Technology, Tech. Rep. GIT-CC-95-22, 1995.

[31] L. Xie and S. Zhu, “Message dropping attacks in overlay networks:
Attack detection and attacker identification,” ACM Trans. Inf. Syst.

Secur., vol. 11, no. 3, pp. 1–30, 2008.
[32] A. Walters, D. Zage, and C. Nita-Rotaru, “Mitigating attacks against

measurement-based adaptation mechanisms in unstructured multicast
overlay networks,” in ICNP, 2006.

[33] H. C. Li, A. Clement, M. Marchetti, M. Kapritsos, L. Robison, L. Alvisi,
and M. Dahlin, “Flightpath: Obedience vs choice in cooperative ser-
vices,” in OSDI, 2008.

[34] I. Keidar, R. Melamed, and A. Orda, “Equicast: Scalable multicast with
selfish users,” in PODC, 2006.

[35] M. Castro, P. Drushel, A. Ganesh, A. Rowstron, and D. Wallach, “Secure
routing for structured peer-to-peer overlay networks,” in OSDI, 2002.

[36] A. Singh, T.-W. J. Ngan, P. Druschel, and D. S. Wallach, “Eclipse attacks
on overlay networks: Threats and defenses,” in IEEE INFOCOM, 2006.

[37] M. Piatek, T. Isdal, A. Krishnamurthy, and T. Anderson, “One hop
reputations for peer to peer file sharing workloads,” in NSDI, 2008.

[38] K. Walsh and E. G. Sirer, “Experience with an object reputation system
for peer-to-peer filesharing,” in NSDI, 2006.

10

