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Abstract

A control part – data path partition based sequential cir-
cuit verification scheme aimed at avoiding state explosion
comprises two major modules namely, a data path verifier
and a control part verifier. The functional specifications of
these modules have been identified. Of the two broad tasks
involved in data path verification, namely status condition
analysis and register transfer operation analysis, a method
for the second task along with its termination, soundness
and completeness have been treated rigorously. Its perfor-
mance on some data path architectures has been reported.

Keywords Sequential Circuit Verification, Control Part
- Data Path, Data Path Verification, RTL Behaviours.

1 Introduction

State explosion poses a serious problem in sequential cir-
cuit verification, irrespective of which method is followed
[1], [6]. The designer tackles this problem by resorting to a
control part - data path partitioning of the circuit in which
all the data storage registers and data transformation / sta-
tus detection circuits are put in the data path (DP) and the
sequential aspects of the behaviour are taken care of in the
control part (CP) (Figure 1).

A verifier designed to exploit this existing partition in the
circuit structure can avoid the state explosion problem. In
such a scheme, the verifier can be organized as comprising
two broad modules: (i) a DP Verifier and (ii) a CP Verifier.
The DP verifier, like a conventional one, would produce
a “yes/no” correctness answer depending upon whether or
not, the data path structure supports the register transfer op-
erations and the status checking operations contained in the
RTL behavioural description; in addition, if the answer is
“yes”, then it would extract a behavioural specification of
the control part involving the control output lines and the
status input lines of the control part. The CP verifier, in
turn, would take as one input this behaviour produced by
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Figure 1. CP-DP Partition in the Circuit Struc-
ture

the DP verifier and the structural interconnection descrip-
tion of the CP components, their behaviour and the initial
state as three other inputs and produce the final “yes/no”
correctness answer. Figure 2 gives the schematic of a CP-
DP partition based verifier. It may be noted that there is a
one-to-one correspondence between the RTL behaviour and
the control level behaviour; the control flow schema of the
descriptions remains the same; the only difference is that
the register status checking phrases are to be changed to bit
level status checking conditional expressions (ST Analysis
[8]) and the register assignment statements of the former
are to be changed to control signal assignment statements
(RT Analysis). Since the DP structure does not have any
temporal characteristic, the DP verification mechanism in-
volves analysis of only the spatial interconnection of the
components. The CP verification, on the other hand, con-
sists in temporal reasoning in a suitably chosen temporal
logic framework [2]. Figure 3 depicts the two modules, the
RT Analyzer and the ST Analyzer, of the DP Verifier. In
this paper the RT analysis task of DP verification has been
described.

There have been attempts to exploit during verifica-
tion the control part-data path partition in sequential cir-
cuits. Word Level Model Checking using Multi-Terminal
BDDs, BDD arrays, BMDs, etc. for data path representa-
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Figure 3. Two Submodules of the DP Verifier

tion have been proposed as solutions [10]. Theorem Proving
approaches with predicate based data path representations
have also been reported [4, 5, 7, 9, 10]. Various issues per-
taining to automation and completeness, however, have not
been elaborately described. In many cases, the inputs have
been so encoded as to keep the primitive inference steps
simpler. In the present work, the emphasis is precisely on
identifying the issues in reaching a complete analyzer.

Section 2 gives a logical basis of a CP-DP partition based
verifier. Section 3 describes the task of RT analysis in data
path verification. The termination, soundness and com-
pleteness issues are formally established. A complexity
analysis of the basic algorithm along with an extension for
concurrent RT operation analysis are also included. In sec-
tion 4, experimental results on verification of some typical

data paths against some single and concurrent RT opera-
tions have been reported. The paper concludes in section 5
by identifying some limitations of the method.

2 Logical Basis of CP-DP Partition Based
Verification

Let I be the implementation of the entire circuit, S be the
behavioural specification and I1 and I2 be the implementa-
tion of the data path and the control part, respectively.

Obviously, I = I1 ^ I2. ... (i)
Recall that the aim of the verifier is to prove I � S. ... (ii)
The DP verification consists in finding a specification S1 for
the control part such that I1 � (S1 � S). ... (iii)
The CP verification consists in proving that I2 � S1. ...(iv)
Therefore. once DP verification is accomplished, we have
I1 ^ I2 � (S1 � S) ... (v) [by introduction of assumption
to (iii)].
Once CP verification is accomplished, we have,
I1 ^ I2 � S1 ... (vi) [introduction of assumption I1 in (iv)].
Hence, (I1 ^ I2) � S or, I � S [modus ponens on (v) and
(vi)].

3 RT-Analysis

The analysis method described in this section uses the
following notation.



3.1 Notation

A: A control signal assertion pattern of the form f<
ci; vi >, 1 <= i <= ng, where vi is the value ‘0’,‘1’
or ‘X’ (unasserted) of signal ci.
�i(A): The i-th projection of A, that is, vi.
pb: The given RT operation from the RTL behaviour,
M : The set of all possible data path micro-operations.
pc: The current RT-expression obtained from the original
one (pb) through a series of rewrite steps. Initially, pc = pb.

3.2 Phases of RT Analysis

The DP structure and the DP component behaviours to-
gether produce a unary functionRs : M ! A. For RT anal-
ysis, Rs captures the DP structure, in its entirety. The RT
analysis problem consists of following two subproblems. (i)
All possible sequences of micro-operations which accom-
plish pb are to be selected from M , and (ii)Corresponding
to each sequence selected in (i), it is required to construct,
using the function Rs, the control signals that are to be
asserted. The second task is relatively simpler and is de-
scribed first; then the first one is presented.

3.2.1 Construction of the Control Signal Assertion List
for a Given Micro-operation Sequence

If, for an RT operation pb, the concurrent micro-operations
that are found to be necessary are �1, �2 and �3, then
the control signal assertion pattern A for pb is found from
Rs(�1), Rs(�2) and Rs(�3) by an associative binary op-
eration �, called superposition operation. The operation is
defined as follows.

Definition 1 Superposition of Assertion Patterns: Let A1

and A2 be two arbitrary control signal assertion patterns.
The assertion pattern A1�A2 obtained by superposition of
A1 and A2 satisfies the following conditions. For all i,
�i(A1 � A2)
= �i (A1), if �i(A2) = ‘X’
= �i (A2), if �i(A1) = ‘X’
= �i (A1), if �i(A1) = �i(A2) 6= ‘X’
= undefined, if �i(A1) 6= �i(A2) 6= `X 0

3.2.2 Finding all the Micro-operation Sequences that
accomplish pb

In this section the problem addressed is as follows. Given pb
and M , it is required to find from M all those sequences of
micro-operations which accomplish pb. We make the as-
sumption that there is only one ALU operation involved
in pb. The micro-operations needed for accomplishing pb
are identified depending upon whether they are capable of
rewriting some left hand side (lhs) signals in pc. As pc is

rewritten under certain restrictions the spatial sequence of
data flow gets detected simultaneously. Thus, both identi-
fying the micro-operations needed for pb and ordering them
get solved in a single stroke. If a micro-operation m be
chosen as the rewrite rule, then all the occurrences of its
lhs signal d in pc are rewritten using the rhs expression e

of m; also, only the lhs occurrences of signals in pc are re-
placed. The process terminates successfully when the lhs of
pc becomes syntactically identical to the rhs. The process
is first illustrated through the following example and then
formalized.

Example 1 Let pb be $dst ( $src1 + $src2. (‘$’ symbol
before a register name represents the register content.) Let
the relevant micro-operations in M be : f$dst( res, bus1
( $src1, bus2 ( $src2, res ( bus1 + bus2 g. That is,
the data path contains three buses, “res” (the result bus) and
“bus1”, “bus2” for the operand buses. Each of these micro-
operations is used as a rewrite rule to rewrite occurrences of
signals in pb. The sequence of transformations of pb is as
follows.
$dst( $src1 + $src2 [The original pb]
res( $src1 + $src2 [by the mciro-op: $dst( res]
bus1 + bus2( $src1 + $src2 [by the mciro-op: res( bus1
+ bus2 ]
$src1 + bus2 ( $src1 + $src2 [by the mciro-op: bus1 (
$src1 ]
$src1 + $src2 ( $src1 + $src2 [by the mciro-op: bus2 (
$src2 ]
The process terminates here and the sequence of micro-
operations needed to route the data from the source(s) to
the destination is available in reverse order in which they
have been used.

For each register transfer expression, there may be more
than one micro-operation applicable. At each step, the re-
sults of rewriting using these micro-operations have to be
collected for subsequent rewritings. Also, the set of sig-
nals replaced and the sequence of micro-operations are to
be enhanced. A tree appears to be the most obvious struc-
ture to depict the progress; it is referred to as rewrite-tree.
Each node of the tree (data type NODE) is associated with
(i) a current RT expression pc, (ii) a sequence of micro-
operations “so far”, (iii) a set of signals called “replaced”,
(iv) links to “left child”, and “right brother”. The following
recursive function “analyze rt” constructs the rewrite tree in
a DFS manner.

Algorithm 1 void analyze rt (NODE root)
begin
pc  root.pc; let pc be “el ( er”;
if (el syntactically identical to er) return;
else
begin



Ms  choose rewrite micro op (root,M );
if (Ms 6= floop detg orMs 6= fno moreg then
begin
8m 2Ms begin
n  create node(); n:pc  rewrite (root.pc;m); n.so far
 mk root.so far;
n.replaced lhs(m) [ root.replaced; add child (root, n);
analyze rt(n);
end /* 8m 2Ms */
end
else /*Ms = floop detg orMs = fno moreg */
root.so far mk root.so far, wherem 2Ms;
end /* else – el not syntactically identical to er */
end

The function “choose rewrite micro op” chooses a sub-
set Ms of M for rewriting the RT expression “root.pc” (=
“el ( er"), based on the following logic:

1. Select for replacement the leftmost signal s from el
which does not occur in er; if no such s, then Ms  
fno moreg. Thus, the lhs of the original RT operation
is rewritten from left to write.

2. if s 2 root.replaced, then Ms  floop detg – a signal
which has already been replaced reappears indicating
a loop in the data path.

3. if none of the above, then Ms  fm 2M such that

(a) lhs(m) = s, and

(b) the rhs(m) does not contain any register other
than the source registers (occurring in the rhs of
“root.pc”) – ensures that no source register is dis-
turbed for accomplishing pb.

(c) if rhs(m) contains an ALU-operation, then rhs
(root.pc) should also contain the same operation.
g

if Ms = � then Ms  fno moreg;

3.3 Correctness of the function analyze rt

Theorem 1 (Termination) The function always terminates.

Proof: The function always constructs a finite rewrite tree
because each node has a finite number of children, as many
as the drivers of the signal s being replaced, and each branch
has a maximum depth equal to the number of non-register
signals in the data path.

Theorem 2 Let L be the set of sequences associated with
the (“so far” fields of the) leaf nodes of the rewrite tree not
having “loop det” or “no more”. pb is accomplished by
each member of L (Soundness) and only by them (Com-
pleteness).

Proof: (Soundness) Consider any sequence � 2 L of the
form < m1;m2; � � � ;mk >. Each mi of the form si ( ri
captures a (transformed) data flow from the signals in ri to
si. Thus, through the application of � (in reverse order), if
el becomes same as er, then pb is accomplished by �.

(Completeness – by contradiction) Let pb be of the form
sl ( er. Let � = < m1;m2; � � � ;mk > be not in L but
its application accomplish pb. Since � applies on pb, mk

must be of the form sl ( rk. Thus, it will be put in Ms

by the function and pb will be rewritten as “rk ( er” = pk
say. Application of � entails application of its last but one
member mk�1 at the next step. Let mk�1 be sk�1 ( rk�1.
Let si 6= sk�1 be the leftmost signal of rk which does not
occur in er. Thus, the function chooses si and not sk�1 as
the next micro-operation for rewriting. Now, there must be
an mi in � for rewriting si in pk. Moreover, since there is
just one ALU operation involved in each RT-operation being
analyzed, the same signal does not appear in more than one
rewrite step. Thus, the subsequence < mi+1; � � � ;mk�1 >

of rewrites (in reverse order) will not create any new occur-
rences of si. Hence the order in which members of � are
used for rewriting is not of concern. By a simple inductive
extension of this piece of argument, therefore, it follows that
the function, because of “leftmost-only” replacement strat-
egy, applies a rewrite sequence which is only a permutation
�0 of the sequence �. Thus, if � is not in any leaf, then �0

is.
We have the following corrollary of the above theorem

whose proof is obvious.

Corollary 1 If the set of sequences of micro-operations re-
turned by “analyze rt” function be �, then the RT-operation
cannot be accomplished in the given data path.

3.3.1 Complexity of RT-analysis

For each rewrite step, that is, for each node in the rewrite
tree, there are three major tasks to be performed, namely,
(i) a suitable signal s has to be chosen for rewriting,
(ii) choosing the subset Ms of micro-operations with s on
the lhs and no register signal on the rhs other than the source
register(s) of pb , and
(iii) rewriting all the occurrences of signal s in pc.
The first step takes constant time because the assumption
that there can be only one ALU in each path from the



source(s) to a destination permits at most two signals on
the lhs of any RT-expression. For each of them it has to
be checked whether it is a non-register signal by accessing
the signal table. The table can be directly probed because
the RT-operations (expressions) and the micro-operations
are all encoded in terms of index values to the signal ta-
ble. The complexity of the second step is as follows. The
micro-operation table M is hashed in signal name. Each
signal will appear at the rhs of only certain number of
micro-operations maximum of which can always be spec-
ified. Therefore, finding Ms from a hashed M takes con-
stant time. When table M is not hashed but sorted on
the lhs-signal of the micro-operations, finding Ms takes
O(log2 kM k) time.
Thus, the complexity of each rewriting is O(1) or O(log2 k
M k) depending upon whether M is hashed or sorted in
signal names, respectively.

The number of nodes of the rewrite tree, each node of
which involves above complexity, depends upon the oper-
ation involved in the RT-operation pb. Obviously, it is the
maximum for binary (ALU) operation. In any case, it is al-
ways constant (for each ALU). For example, for a binary
operation, the root node has as many successors as there
are buses. Some of these are (ALU) input buses and the
remaining are the output buses. (There can be more than
one ALU in the data path.) Each node corresponding to
an output bus will have one successor corresponding to the
ALU operation resulting in an RT-expression involving the
input buses. The input buses do not expand any more be-
cause they can only be driven by registers and the heuristic
prevents such micro-operations from being used except for
one of the source registers. The two ALU input buses, there-
fore, can be rewritten by two source registers accounting for
two linear subtrees of depth two. Thus the rewrite tree for
an RT-operation with a binary ALU operation will have 8
nodes. For n ALU’s in the data path, there are 8n nodes
generated. The complexity figures for RT-analysis can be
summarized as follows.
For data path with n ALU’s and the micro-operation table
hashed, it is O(n).
For data path with n ALU’s and sorted micro-operation ta-
ble, it is O(n:log2 kM k).

3.3.2 Analysis of Concurrent RT-operations

Let P = fp1; p2; � � � ; png be the given set of concurrent
RT-operations to be analyzed to find all possible sequences
of micro-operations that accomplish them. One straightfor-
ward approach for analysis could be to invoke “analyze rt”
with each member pi of P . Let Si be the set of sequences
of micro-operations that can accomplish pi. Let �ij be the
j-th sequence in the set Si. Let T represent the n-ary Carte-
sian Product of the sets Si’s; that is, T = X1�i�nfSig.

The final set S of sequences of micro-operations needed to
accomplish P can be constructed using the following defi-
nition.
S = f� =< �1j1 ; �2j2 ; � � � ; �njn >2 T j for any data path
signal s,
(i) no member of � contains more than one micro-operation
having s as its lhs, and
(ii) if there are more than one micro-operation occurring in
different members of � having same lhs signal s, then they
are same micro-operationg.
The first condition ensures that in accomplishing pi, the
same signal is not assigned more than once. (This was the
termination condition for “analyze rt” and serves to termi-
nate the analysis of individual pi’s.) The second condition
states that a micro-operation can be shared by other con-
current RT-operations. Thus, first the sets Si’s can be ob-
tained by analyzing pi’s in isolation. The set S can then be
constructed by constructing ordered n-tuples of sequences
from Si’s ensuring that no two sequences contain micro-
operations which assign to the same signal differently.

4 Experiments

The DP-structures given in Figure 4 are analyzed for
both single RT-operations and concurrent RT-operations;
the performances of the analysis functions are given in Ta-
ble 1 and Table 2; ‘P/N’ indicates possible/not possible,
N1, N2 stand for the number of rewrite-tree nodes and that
of the concurrent tree nodes generated. Real-life circuits
such as, Bit-wise-shift-and-add multiplier, Booth’s Multi-
plier, Divider and Tamarack Processor [3] have also been
analyzed for all RT-operations in their RTL behavioural de-
scriptions. Some faulty/inadequate data paths vis-a-vis the
given RT-operations have been tested. It has been found
that in many cases, the analysis points to the faults such as,
“intermediary register(s) in the data path” (indicating non-
realizability of the RT operation in one time step), “loop
detected in the data path”, etc.

5 Conclusion

A CP-DP partition based verification scheme has been
proposed and validated. The DP verification problem has
been discussed in detail. The task comprises two major
subtasks namely, the status checking analysis (ST Analysis)
and the register transfer operation analysis (RT Analysis).
An RT-analysis algorithm has been presented and its termi-
nation, soundness and completeness have been treated rig-
orously. Complexity of the algorithm has been found to be
at worst O(n) or O(n:log2 k M k), where n is the number
of ALU’s and M is the set of micro-operations supported
by the data path. A simple extension for concurrent RT-
operations has been discussed. The method has been tested
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Figure 4. Example Data Paths for RT Analysis

Ckt name RT-op fed P / N1

for analysis N
ckt1 1bus r1 a1 + a2 P 2

r1 r1 + r2 N 3
ckt2 1bus res r1 + a1 P 2

r1 r1 + r2 N 3
ckt1 2bus r1 r2 + a1 P 3

r1 r1 + r2 N 8
ckt2 2bus r1 r1 + a1 P 3

r1 r1 + r2 N 4
ckt 3bus r1 r1 + r2 P 8

r1 r1 + r1 P 4

Table 1. Performance of “analyze rt"
Ckt name Concurrent RT-op P / N2

fed for analysis N
ckt1 1bus fa1 r1, a2 r1g P 4

fa1 r1, a2 r1, r1 r1 + r1g N 6
ckt2 1bus fres r1 + a1, r2 r1g P 4

fres res + a1, r1 resg P 4
fres res + a1, r2 r1g N 3

ckt1 2bus fr1 r1 + a1, a1 r1g P 5
fr1 r1 + a1, r2 r1g N 4
fr1 r1 + a1, r2 a1g N 4

ckt2 2bus fr1 r1 + a1, a1 r1g N 5
ckt 3bus fr1 r1 + r2, r3 r2, r4 r1g P 30

fr1 r1 + r2, r4 r1 + r2g P 16
fr1 r1 + r2, r4 r1 + r3g N 14

Table 2. Performance of “analyze concur rt"

on two 1-bus, two 2-bus and a 3-bus data path architectures
for both valid and non-valid RT-operations.

The method has also been successfully applied to arith-
metic circuits such as, bit-wise shift and add multiplier,
Booth’s multiplier, divider, etc. In fact, the data paths of
these problems, having no bus, have been found to be sim-
pler than those of Figure 4. Although the TAMARACK
CPU [3] has been verified using this method, for a full
fledged CPU, the instruction set specification involves RT
operations which may need more than one time step. More
sophisticated analysis is, therefore, needed for the purpose.
The present analyzer enhanced in this direction is also likely
to be useful for synthesis of behaviours higher than RTL.
Again, a CP-DP partition based approach is likely to face
hurdles for many circuits where the partition is not there or
not easily discernible. A pipelined architecture is a case in
point. It will be interesting to examine whether the method
can be enhanced for such cases .
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