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Based on the traditional linear algebra theory, this paper propose the attack detection schemes for net-
worked control systems (NCSs) under single stochastic cyber-attack and multiple stochastic cyber-attacks
aiming at multiple communication channels of NCSs, respectively. The focus is on designing an anomaly
detector for NCSs under cyber-attacks. First, we construct a model of stochastic NCSs with stochas-
tic cyber-attacks which satisfy the Markovian stochastic process. And we also introduced the stochastic
attack models that NCSs are possibly exposed to. Next, based on the frequency-domain transformation
technique and linear algebra theory, we propose the algebraic detection schemes for possible stochastic
cyber-attacks. We transform the detector error dynamics into algebraic equations. By applying the pre-
sented approaches, residual information that is caused by different attacks is, respectively, obtained and
anomalies on the control system are detected. In addition, sufficient and necessary conditions guarantee-
ing the detectability of the stochastic cyber-attacks are obtained. The presented detection approaches in
this paper are simple, straightforward and easy to implement. The aim of this work is to use traditional
mathematics tools to solve new problems that arise from the complex NCSs. Finally, two simulation
examples are provided. The simulation results underline that the detection approaches are effective and
feasible in practical application.

Keywords: cyber-attack detection; multiple stochastic cyber-attacks; stochastic DoS attack; stochastic
data deception attack.

1. Introduction

With the popularization of the network, more and more industrial control systems are connected by using
different, and even open, public networks, which are increasing the risk that networked control systems
(NCSs) are exposed to cyber-attacks. Therefore, the security problem of NCSs is becoming critical. An
NCS is vulnerable to these threats and successful attacks on the NCS can cause serious consequences
which may lead to the loss of vital societal function, financial loss and even loss of life (Nimda worm,
2001; Moore et al., 2003; New ‘cyber attacks’ hit S Korea; Slay & Miller, 2007; Wolf & Daly, 2009;
Amin et al., 2013; Tang et al., 2014). Therefore, these attacks should be detected as early as possible
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in order to prevent serious consequences. In recent years, the problem of cyber-attacks on controlled
systems has been realized and it is currently attracting considerable attention (see, e.g. Hashim et al.,
2008; Liu et al., 2009; Anjali & Ramesh, 2010; Eliades & Polycarpou, 2010; Metke & Ekl, 2010; Mo
& Sinopoli, 2010; Andersson & Esfahani, 2011; Mohsenian-Rad & Garcia, 2011; Pasqualetti, 2012;
Sridhar et al., 2012; Teixeira et al., 2012; Weimer et al., 2012; Amin et al., 2013; Rosich et al., 2013;
Li et al., 2014b,a). For example, Andersson & Esfahani (2011) and Eliades & Polycarpou (2010) did
research on the cyber security of water systems. Metke & Ekl (2010), Sridhar et al. (2012), Mohsenian-
Rad & Garcia (2011) and Pasqualetti (2012) focused on cyber-attacks on smart grid systems. While
cyber-attacks in conventional information technology (IT) systems are only influencing information,
cyber-attacks on control systems are changing physical processes and hence the real world (Mohsenian-
Rad & Garcia, 2011). Previous methods and tools used to protect traditional IT against cyber-attacks
might finally not completely prevent successful intrusion of malware in the control system. Therefore,
new approaches are needed. Although NCSs are protected by IT security measures, attackers might
nevertheless find a way to get unauthorized access and compromise them by means of cyber-attacks.
This cyber-attacks should be detected as soon as possible with an acceptable false alarm rate and also
be identified and isolated. Therefore, there is an urgent need for an efficient cyber-attack detection
system as an integral part of the cyber infrastructure, which can accurately detect cyber-attacks in a
timely manner such that countering actions can be taken promptly to ensure the availability, integrity
and confidentiality of the systems. These new requirements increase the interest of researchers in the
development of cyber-attack detection and isolation techniques (Hashim et al., 2008; Liu et al., 2009;
Anjali & Ramesh, 2010; Weimer et al., 2012). Li et al. (2014b) proposed a model predictive approach
for cyber-attack detection. Teixeira et al. (2012) considered robust H∞ cyber-attacks estimation for
control systems. And Li et al. (2014a) proposed a stochastic cyber-attack detection scheme based on
frequency-domain transformation technique. Moreover, in practice, hackers might attempt to launch
multiple attacks aiming at multiple communication channels of a control system in order to create
attacks that are more stealthy and thus more likely to successful. When a hacker launches two or more
cyber-attacks against a control process, usually it is claimed that the control system suffers from multiple
cyber-attacks. However, existing literatures mentioned above never deal with the detection problem of
multiple cyber-attacks on a control process. Furthermore, the new problems that arise from the complex
control systems are challenging the traditional mathematics tools. All of these factors mentioned above
motivate our research in this area.

This paper proposes the algebraic detection schemes for NCSs under stochastic cyber-attacks and
disturbances. Further, it deals with the multiple stochastic cyber-attacks detection problem aiming at
multiple communication channels of an NCS. The basic idea is to use suitable observers to generate
residual information with regard to cyber-attacks, i.e. compromised sensor signals and controller out-
puts. An anomaly detector for NCSs under stochastic cyber-attacks is derived. The main contributions
in the paper are as follows. First, we construct a model of NCSs with stochastic cyber-attacks which
satisfy the Markovian stochastic process. And we also, respectively, introduced the stochastic attack
models that NCSs are possibly exposed to, which are aiming at whole NCSs or a specific controller
command input channel or sensor measurement output channel of NCSs. Next, based on the frequency-
domain transformation technique, linear algebra theory and auxiliary detector error systems, we propose
the algebraic attack detection schemes for NCSs subject to single stochastic cyber-attack and multiple
stochastic cyber-attacks, respectively. Hashim et al. (2008) also used a frequency-domain analysis in
the detection of denial-of-service (DoS) attacks, he proposed the detection algorithm by investigating
the frequency spectrum distribution of the network traffic. However, we transform the detector error
dynamics equations into algebraic equations, which make the discussion of the problem simpler and
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more straightforward. Here, we consider the possible cyber-attacks as non-zero solutions of the alge-
braic equations and the residuals as their constant vectors. By analysing the ranks of the stochastic sys-
tem matrix and the auxiliary stochastic system matrices, the residual information caused by attacks from
different communication channel is, respectively, obtained. Furthermore, based on the obtained residual
information, the detectability of these cyber-attacks can be determined. Some sufficient and necessary
conditions guaranteeing that these attacks are detectable or undetectable are obtained. In addition, by
using the linear matrix inequation (LMI) algorithm, we also propose an approach for determining the
detector gain matrix.

The literatures (Teixeira et al., 2010; Sundaram & Hadjicostis, 2011; Pasqualetti et al., 2012) used a
similar idea of analysing the error residual, however, they generally focused on using consensus dynam-
ics in networked multi-agent systems including malicious agents. Differentiating from the literatures
(Teixeira et al., 2010; Sundaram & Hadjicostis, 2011; Pasqualetti et al., 2012), we stress that the using
of the traditional linear algebra theory in the detection of cyber-attacks, since it is the aim to use tradi-
tional mathematics tools to solve new problems that arise from NCSs. Finally, two simulation examples
are provided to illustrate the effectiveness of the obtained results. In Example 6.1, we detect the cyber-
attack on an NCS that is subjected to a stochastic data deception attack and disturbance. In Example 6.2,
we consider a large-scale distributed networked water system that comprise of n identical subsystems
and each subsystem is used the model of quadruple-tank process (QTP) in Johansson (2000). We also
detect possible cyber-attacks which are aiming at two different controller command input channels on
the actuator of the subsystem 1. Simulation results underline that the proposed attack detection approach
is feasible and effective.

2. Preliminaries

In this section, we give precise definitions of some elementary concepts involving the rank of matrix
and consistent of linear equation, which will help to understand our work well and some of them will
be used in the sequel of our study.

Definition 2.1 (Rank) The number of non-zero rows in the row echelon form of an m × n matrix A
produced by elementary operations on A is called the rank of A.

Definition 2.2 (Full row rank) We say that an m × n matrix A has full row rank if rank(A) = m.

Definition 2.3 (Full column rank) We say that an m × n matrix A has full column rank if rank(A) = n.

Let R[s] denote the polynomial ring with real coefficients. A matrix is called a polynomial matrix if
every element of the matrix is in R[s].

Definition 2.4 (Normal rank Zhou et al., 1996) Let Q(s) ∈ R[s] be a (p × m) polynomial matrix. Then
the normal rank of Q(s), denoted by normal rank(Q(s)), is the rank in R[s] or, equivalently, is the
maximum dimension of a square submatrix of Q(s) with non-zero determinant in R[s].

In short, sometimes we say that a polynomial matrix Q(s) has rank(Q(s)) in R[s] when we refer to
the normal rank of Q(s). To show the difference between the normal rank of a polynomial matrix and
the rank of the polynomial matrix evaluated at certain point, consider

Q(s) =
[

s 1
s2 1

]
.

Then Q(s) has normal rank 2 since det Q(s) = s −s2 |= 0. However, Q(0) has rank 1.
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(a)

(b)

Fig. 1. (a) Consistent and inconsistent system of equations flow chart and (b) the relationships among consistent, rank and solution
of equations.

Definition 2.5 A system of equations AX = B is consistent if there is a solution, and it is inconsistent
if there is no solution.

However, a consistent system of equations does not mean a unique solution, that is, a consistent
system of equations may have a unique solution or infinite solutions. This can be formulation according
to the chart given in Fig. 1(a). However, how can one distinguish between a consistent and inconsis-
tent system of equations? Moreover , if a solution exists, how do we know whether it is unique? The
following lemmas give us a description in detail.

Lemma 2.1

(1) A system of equations AX = B is consistent if the rank of A is equal to the rank of the augmented
matrix [A B].

(2) A system of equations AX = B is inconsistent if the rank of A is less than the rank of the aug-
mented matrix [A B].

Lemma 2.2 In a system of equations AX = B that is consistent, the rank of the coefficient matrix A is
the same as the augmented matrix [A B].

(1) If in addition, the rank of the coefficient matrix A is same as the number of unknowns, then the
solution is unique.

(2) If the rank of the coefficient matrix A is less than the number of unknowns, then infinite solutions
exist.

Figure 1(b) illustrates their relationships among consistent, rank and solution of equations AX = B.
A linear system of equations must have either no solution, one solution or infinitely many solutions.
Further, using the following lemmas, we can determine the solutions of the linear nonhomogeneous
equations AX = B and homogeneous equations AX = 0, where A is an m × n matrix.

Lemma 2.3

(1) If the rank of A = r = n < m, the linear non-homogeneous equations AX = B has no solution or
exactly one solution. In other words, if the matrix A is of full column rank and has less columns
than rows, the system will be inconsistent, or will have exactly one solution.
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(2) If the rank of A = r = m < n, the linear non-homogeneous equations AX = B will always have a
solution and there will be an infinite number of solutions. In other words, if the matrix A is of
full row rank and has more columns than rows, the system will always have an infinite number
of solutions.

(3) If the rank of A = r = m = n, the linear non-homogeneous equations AX = B will exactly one
solution. In other words, if the matrix A is square and has full rank, the system will have a unique
solution.

(4) If the rank of A = r, where r < m and r < n, the linear non-homogeneous equations AX = B will
either have no solutions or there will be an infinite number of solutions. In other words, if the
matrix A has neither full row nor full column rank, the system will be inconsistent or will have
an infinite number of solutions.

Lemma 2.4

(1) If the rank of A = r = n < m, the linear homogeneous equations AX = 0 has one solution and
only zero solution. In other words, if the matrix A is of full column rank and has less columns
than rows, the system will have exactly zero solution.

(2) If the rank of A = r < n, the linear homogeneous equations AX = 0 will have a non-zero solution
and there will be an infinite number of solutions.

3. Problem formulation

Consider the following NCS:

ẋ(t) = Ax(t) + B(u(t) + α(t)aa
k(t)) + E1w(t),

x(0) = x0,

y(t) = C(x(t) + β(t)as
k(t)) + E2ν(t),

(3.1)

where x(t) ∈ Rr is the state vector. x0 is the initial state, y(t) ∈ Rp is the measurement output, u(t) ∈ Rm is
the known input vector. aa

k(t) ∈ Rm denotes the actuator cyber-attack and as
k(t) ∈ Rr denotes the sensor

cyber-attack. w(t) and ν(t) are systems noise and process noise, respectively. A, B, E1 and C, E2 are
known constant matrices with appropriate dimensions. α(t) and β(t) are Markovian stochastic processes
taking the values 0 and 1 and satisfy the following probability:

E{α(t)} = Prob{α(t) = 1} = ρ,

E{β(t)} = Prob{β(t) = 1} = σ .
(3.2)

Herein, event α(t) = 1 (or β(t) = 1) shows the actuator (or the sensor) of the system is subjected to a
cyber-attack, so an actuator cyber-attack aa

k(t) (or a sensor cyber-attack as
k(t)) occurs; event α(t) = 0 (or

β(t) = 0) means no a cyber-attack on the actuator (or on the sensor). ρ ∈ [0, 1] (or σ ∈ [0, 1]) reflects the
occurrence probability of the event that the actuator (or the sensor) of the system is subjected to a cyber-
attack. While α(t) and β(t) are independent from stochastic variables, they are also independent from
measurement noises w(t), ν(t) and the initial state x0. Generally, cyber-attacks targeting NCSs mainly
include DoS attacks and deception attacks. In the sequel of the paper, we introduce these attack models
that can be modelled by the stochastic system model (3.1).
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3.1 Modelling stochastic cyber-attacks

In a stochastic data DoS attack, the objective of hackers is to prevent the actuator from receiving con-
trol commands or the controller from receiving sensor measurements. Therefore, by compromising
devices and preventing them from sending data, attacking the routing protocols, jamming the communi-
cation channels, flooding the communication network with random data and so on, hackers can launch
a stochastic data DoS attack that satisfies Markovian stochastic processes. In a stochastic data deception
attack, hackers attempt to prevent the actuator or the sensor from receiving an integrity data, therefore,
they send false information ũ(t) |= u(t) or ỹ(t) |= y(t) from controllers or sensors. The false informa-
tion can include: inject a bias data that cannot be detected in the system, or an incorrect time when a
measurement was observed; a wrong sender identity, an incorrect control input or an incorrect sensor
measurement. The hacker can launch these attacks by compromising some controllers or sensors or by
obtaining the secret keys.

(1) A stochastic data DoS attack that hackers might launch on the actuator and on the sensors of
NCSs can be modelled as follows:

{
α(t) ∈ {0, 1}, t � t0,

aa
k(t) = −u(t)

and

{
β(t) ∈ {0, 1}, t � t0,

as
k(t) = −x(t).

(3.3)

(2) A stochastic data deception attack on the actuator and on the sensors of NCSs can be, respec-
tively, modelled as follows:

{
α(t) ∈ {0, 1}, t � t0,

aa
k(t) = −u(t) + da

k (t) or aa
k(t) = da

k (t)
and

{
β(t) ∈ {0, 1}, t � t0,

as
k(t) = −x(t) + ds

k(t) or as
k(t) = ds

k(t),
(3.4)

where da
k (t) and ds

k(t) are deceptive data that hackers attempt to launch on the actuator and the
sensor.

Now, let Tda
k y(s) = C(sI − A)−1B is the transfer function from the attack da

k (t) to output measure y(t).
When hackers launch a data deception attack aa

k(t) = da
k (t) on the actuator to make Tda

k y(s) = 0, a zero
dynamic attack occurs on the actuator. Obviously, a zero dynamic attack is undetectable. In addition, it
is not possible for a hacker to launch a zero dynamic attack on the sensor, since the transfer function
from the attack ds

k(t) to output y(t) is Tds
k y(s) = C |= 0.

4. Single stochastic cyber-attack detection scheme based on frequency-domain transformation

In this section, our objective is the anomaly detection. We assume that the following conditions are
satisfied: (1) the pair (A, B) is controllable; (2) (A, C) is observable. For convenience on discussion,
we ignore the influence of control inputs in the remainder of this paper because they do not affect the
residual when there are no modelling errors in the system transfer matrix. Therefore, the system (3.1)
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can be rewritten as follows:

ẋ(t) = Ax(t) + α(t)Baa
k(t) + E1w(t),

x(0) = x0,

y(t) = Cx(t) + β(t)Cas
k(t) + E2ν(t).

(4.1)

Set up the following anomaly detector:

˙̃x(t) = Ax̃(t) + B̃r(t),

x̃(0) = 0,

r(t) = y(t) − Cx̃(t),

(4.2)

where B̃ is the detector gain matrix and r(t) represents the output residual.
Let e(t) = x(t) − x̃(t), then we obtain the following error dynamics:

ė(t) = Āe(t) + B̄ak(t) + Ē1d(t),

r(t) = Ce(t) + D̄ak(t) + Ē2d(t),
(4.3)

Ā = (A − B̃C), B̄ = [Bα(t) − β(t)B̃C],

Ē1 = [E1 − B̃E2], D̄ = [0 Cβ(t)], Ē2 = [0 E2]
(4.4)

and the vectors

ak(t) =
[

aa
k(t)

as
k(t)

]
, d(t) =

[
w(t)
v(t)

]
, d1(t) =

[
ak(t)
d(t)

]
. (4.5)

First, we give the following definition.

Definition 4.1 For stochastic NCS (4.1) and detector (4.2). If a cyber-attack ak(t) on system (4.1)
leads to zero output residual, then the cyber-attack is undetectable.

If Tdr(s) = C(sI − Ā)−1Ē1 + Ē2 denotes the transfer function from stochastic disturbance d(t) to
output residual r(t), the robust stability conditions of error dynamics (4.3) are given in term of the
following lemma.

Lemma 4.1 (Li et al., 2014a) When all stochastic events α(t) = β(t) = 0, there are the following con-
clusions:

(1) the error dynamics (4.3) without disturbances is asymptotically stable, if there exists symmetric
positive-definite matrix P > 0 and matrix X such that the following LMI holds:

Ψ = A�P + PA − C�X � − XC + C�C < 0, (4.6)

(2) the error dynamics (4.3) with disturbances d(t) (0 |= d(t) ∈ L2
�

([0, ∞); Rn)) is robustly stable, if
‖Tdr(s)‖∞ < 1 and exists symmetric positive-definite matrix P > 0 and matrix X such that the
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following LMI holds: ⎡
⎣Ψ PE1 −XE2 + C�E2

∗ −I 0
∗ ∗ −I + E�

2 E2

⎤
⎦< 0. (4.7)

When the LMIs above are solvable, the detector gain matrix is given by B̃ = P−1X .

Next, using the frequency-domain description of the system, we transform the error dynamics (4.3)
into the following linear algebraic equations:

Q(s)X (s) = B(s), (4.8)

where

Q(s) =
[

Ā − sI B̄ Ē1

C̄ D̄ Ē2

]
, X (s) =

⎛
⎝ e(s)

ak(s)
d(s)

⎞
⎠ , B(s) =

(
0

r(s)

)
.

Remark 4.1 Here, since matrices B̄ and D̄ include the stochastic parameters α(t) and β(t), the system
matrix Q(s) correspondingly includes these stochastic parameters. In order to obtain effective results, we
introduce E(Q(s)) that is a mathematical expectation of the stochastic matrix Q(s), then the equations
(4.8) are described as

E(Q(s))X (s) = B(s) (4.9)

and

E(Q(s)) =
[
(A − B̃C) − sI ρB −σ B̃C E1 −B̃E2

C 0 σC 0 E2

]
.

Further, by discussing the rank of stochastic matrix E(Q(s)), we obtain some important results.

Theorem 4.1 For system (4.1), assume that the stochastic matrix E(Q(s)) has full column normal
rank. The cyber-attack ak(s) (0 |= ak(s) ∈ Ḡ) as s = z0 is undetectable, if and only if there exists z0 ∈ C,
such that

E(Q(z0))Y(z0) = 0. (4.10)

Herein,

E(Q(z0)) = E(Q(s))|s=z0 ,

Y T (z0) = (e(z0) aa
k(z0) as

k(z0) w(z0) v(z0))
�

Ḡ is a set of undetectable cyber-attacks.

Proof. (if) Assume that there exists z0 ∈ C such that condition (4.10) holds, it becomes obvious that
equation (4.9) as s = z0 is homogeneous, i.e B(s)|s=z0 = 0 ⇔ the output residual r(s)|s=z0 = 0. Therefore,
by Definition 4.1, we obtain that the cyber-attack ak(s) (0 |= ak(s) ∈ Ḡ) as s = z0 is undetectable.

(only if) Assume that the cyber-attack ak(s) (0 |= ak(s) ∈ Ḡ) as s = z0 is undetectable, then by
Definition 4.1, the output residual r(s)|s=z0 = 0. And since that the stochastic matrix E(Q(s)) has full
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column rank, there must exist z0 ∈ C such that

E(Q(s))Y(s)|s=z0 = 0.

That completes the proof of Theorem 4.1. �

Remark 4.2 Actually, the complex number z0 that satisfies Theorem 4.1 is called an invariant zero of
the error dynamic (4.3). Therefore, if error dynamics (4.3) has an invariant zero z0, then the cyber attack
ak(s) as s = z0 is undetectable. The definition of invariant zero can be found in Zhou et al. (1996).

Theorem 4.2 For system (4.1), assume that the stochastic matrix E(Q(s)) has full column normal
rank. The cyber-attack ak(s) (0 |= ak(s) ∈ Ḡ) as s = z0 is undetectable, if and only if there exists z0 ∈ C

such that

rank E(Q(z0)) < dim(Y(z0)). (4.11)

Proof. (if) Since the stochastic matrix E(Q(s)) has full column normal rank and there is a z0 ∈ C

such that

rank E(Q(z0)) < dim(Y(z0)).

It becomes obvious that z0 is an invariant zero (Zhou et al., 1996) of detector error dynamics (4.3),
therefore, the cyber-attack ak(s) as s = z0 is undetectable.

(only if) Assume that the cyber-attack ak(s) as s = z0 is undetectable, then there must exist a z0 ∈ C

such that the residual r(z0) = 0 and the following equation:

E(Q(z0))Y(z0) = B(z0) (4.12)

is a homogeneous equation, i.e.

E(Q(z0))Y(z0) = 0. (4.13)

If we assume

rank E(Q(z0)) = dim(Y(z0))

then according to Lemma 2.4, homogeneous equation (4.13) has a zero as its unique solution, i.e.
Y(z0) = 0. However, this contradicts with the condition that

Y |s=z0 |= 0

is a solution to (4.13). Therefore, the assumption is false, only condition (4.11) is true. This completes
the proof of Theorem 4.2. �

The following theorem shows the condition that the stochastic cyber-attacks are detectable.

Theorem 4.3 For system (4.1), assume that the stochastic matrix E(Q(s)) has full column normal rank.
The cyber-attack ak(s) (0 |= ak(s) ∈ G) is detectable, if and only if the following condition always holds
for any z0 ∈ C:

rank E(Q(z0)) = dim(Y(z0)). (4.14)

Herein, G is a set of detectable cyber-attacks.
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Proof. (if) Assume that condition (4.14) always holds for any z0 ∈ C, it is obvious that the matrix
E(Q(z0)) has full column rank. By Lemma 2.3, the equation

E(Q(z0))Y(z0) = B(z0) (4.15)

has no solution or only one solution. In the following, we proof by contradiction. Assume that
there exists a z0 ∈ C such that ak(s) as s = z0 is undetectable, the residual r|s=z0 = 0 according to
Definition 4.1, then equation (4.15) has one and only one zero solution, i.e.

Y |s=z0 = 0.

However, this violates the given condition 0 |= ak(z0) ∈ G, i.e.

Y |s=z0 |= 0.

Therefore, r(z0) |= 0, for any z0 ∈ C the cyber attack ak(s) is detectable.
(only if) Assume that there exists a z0 ∈ C and satisfies condition (4.11). Since the matrix E(Q(s))

has full column normal rank, according to Theorem 4.2, ak(z0) is undetectable. However, this is in
contradiction with the given condition that ak(s) for any z0 ∈ C is detectable. Therefore, the assumption
is false, only

rank E(Q(z0)) = dim(Y(z0))

is true, which completes the proof of Theorem 4.3. �

Remark 4.3 In the work, we regard stochastic attack events α(t) and β(t) as the Markovian processes
with the binary state (0 or 1) rather than Bernoulli processes, since they more accord with the properties
of Markovian process. The reasons are as follows: (1) although the future state of an attack process does
not depend on its past state like a Markovian processes and a Bernoulli process, but it depends on its
current state, which is in complete accord with a Markovian processes rather than a Bernoulli process.
(2) In an attack process, for all trials i of α(t) = 1 (or β(t) = 1), the attacked probabilities ρ (or σ ) for
all value i do not have to be the same value, which is different with a Bernoulli process.

For example, in practice, whether the next state of a control system will be attacked or not, it depends
on current state of the system. If the current state of the system is under attack, then the next state will
more likely be attacked. And the attacked probability ρ (or σ ) for stochastic events α(t) = 1 (or β(t) = 1)
can be either the same value or the different value for all trials i, which is complete random taken value
in set [0, 1] for each trial.

5. Multiple stochastic cyber-attacks detection scheme

In order to increase the chance of an attack and to intrude more stealthily, hackers may attempt to
launch stochastic cyber-attacks aiming at one or several special communication channels of an NCS. In
this section, we extend the method mentioned above to the case that an NCS is subjected to multiple
stochastic cyber-attacks aiming at its multiple communication channels.

Remark 5.1 In Li et al. (2015), we presented the detection problem of control systems under multiple
stochastic cyber-attacks in detail. However, since our aim in this work is to use traditional algebra
theory to deal with new problems that arise from the complex NCSs, in the section, we put forward the
algebraic detection approach for multiple stochastic cyber-attacks again in order to keep the integrity of
the presented detection approach in the whole work.
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AN APPLICATION OF LINEAR ALGEBRA THEORY 11 of 22

Consider the following NCS with multiple stochastic cyber-attacks aiming at specific controller
command input channels and sensor measurement output channels:

ẋ(t) = Ax(t) + B

(
u(t) +

n1∑
i=1

αi(t)fia
a
i (t)

)
+ E1w(t),

x(0) = x0,

y(t) = C

⎛
⎝x(t) +

n2∑
j=1

βj(t)hja
s
j (t)

⎞
⎠+ E2v(t),

(5.1)

where fi and hj are the attacked coefficients. aa
i (t) ∈ R, i = 1, . . . , n1 and as

j (t) ∈ R, j = 1, . . . , n2 denote
the actuator cyber-attack aiming at the ith controller command input channel and the sensor cyber-attack
aiming at the jth sensor measurement output channel. αi(t) and βi(t) are also Markovian stochastic
processes with the binary state (0 or 1), which satisfy the following probability:

E{αi(t)} = Prob{αi(t) = 1} = ρi, i = 1, . . . , n1 � m,

E{βj(t)} = Prob{βj(t) = 1} = σj, j = 1, . . . , n2 � r.
(5.2)

Herein, the event αi(t) = 1 (or βj(t) = 1) shows that the ith controller command input channel on the
actuator (or the jth sensor measurement output channel on the sensor) is subject to an actuator cyber-
attack aa

i (t) (or a sensor cyber-attack as
j (t)); αi(t) = 0 (or βj(t) = 0) means no attack on the ith (or the

jth) channel. ρi ∈ [0, 1] (or σj ∈ [0, 1]) reflects the occurrence probability of the event that the actuator
(or the sensor) of the system is subject to a cyber-attack aa

i (t) (or as
j (t)). Similarly, αi(t) and βj(t) are

also independent from each other.
The control input matrix B and the output state matrix C are expressed as the following column

vector groups, respectively:

B = [b1 · · · bi · · · bm], C = [c1 · · · cj · · · cr]. (5.3)

Herein, bi is the ith column vectors of matrix B and cj is the jth column vectors of matrix C. And the
control input u(t) and the system state x(t) are written as

u(t) =

⎡
⎢⎢⎢⎣

u1(t)
u2(t)

...
um(t)

⎤
⎥⎥⎥⎦ , x(t) =

⎡
⎢⎢⎢⎣

x1(t)
x2(t)

...
xr(t)

⎤
⎥⎥⎥⎦ . (5.4)

5.1 Modelling a stochastic cyber-attacks on a specified communication channel

Stochastic data DoS attacks and stochastic data deception attacks aiming at a specific controller com-
mand input channel or sensor measurement output channel of an NCS, which hackers might launch on
the NCS, can be, respectively, modelled as follows:

(1) A stochastic DoS attack preventing the actuators from receiving control command of the ith
control channel and the sensors from receiving sensor measure of the jth output channel can be
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modelled as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αi(t) ∈ {0, 1}, t � t0, i = 1, . . . , n1 � m,

fi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
...

1
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

m×1

,

aa
i (t) = −ui(t)

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βj(t) ∈ {0, 1}, t � t0, j = 1, . . . , n2 � r,

hj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
...

1
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

r×1

,

as
j (t) = −xj.

(5.5)

(2) A stochastic data deception attack preventing the actuator from a correct control input of the ith
control channel and the sensor from a correct sensor measurement of the jth output channel can
be modelled as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αi(t) ∈ {0, 1}, t � t0, i = 1, . . . , n1 � m,

fi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
...

1
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

m×1

,

aa
i (t) = −ui(t) + da

i (t) or aa
i (t) = da

i (t)

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βj(t) ∈ {0, 1}, t � t0, j = 1, . . . , n2 � r,

hj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
...

1
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

r×1

,

as
j (t) = −xj + ds

j (t) or as
j (t) = ds

j (t),

(5.6)
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where da
i (t) and ds

j (t) are deceptive data that hackers attempt to launch on the actuator and the
sensor.

Remark 5.2 In the attack models of multiple stochastic cyber-attacks mentioned above, the attacked
coefficients fi and hj are column vectors. Herein, only the element in the ith row is 1 and the rest elements
are 0 in fi, which implies that only the ith control channel of the NCS is attacked. Similarly, only the
element in the jth row is 1 and the rest elements are 0 in hj, which implies that only the jth output
channel of the NCS is attacked.

Remark 5.3 To attack a target, hackers may launch multiple attacks aiming at multiple communication
channels so that the aggression opportunities are increased and the attack target is compromised, more
stealthily and successfully. For example, in order to effectively disturb the formation control of multi-
vehicle systems, a hacker could launch multiple stochastic cyber-attacks, which are, respectively, aiming
at different communication links among these vehicles or aiming at multiple controller command input
channels of single vehicle. Obviously, the detection and isolation of multiple cyber-attacks are very
important in the formation control of multi-vehicle systems. Therefore, the research on multiple cyber-
attacks is significant, and requires further research.

5.2 Multiple stochastic cyber-attack detection

After ignored the influence of control inputs, the system (5.1) and the corresponding error dynamics can
be rewritten as follows:

ẋ(t) = Ax(t) +
n1∑

i=1

αi(t)Bfia
a
i (t) + E1w(t),

x(0) = x0,

y(t) = Cx(t) +
n2∑

j=1

βj(t)Chja
s
j (t) + E2v(t)

(5.7)

and

ė(t) = Āe(t) +
n∑

i=1

F̄iai(t) + Ē1d(t),

r(t) = Ce(t) +
n∑

i=1

H̄iai(t) + Ē2d(t)

(5.8)

with the matrices

Ā = (A − B̃C), H̄i = [0 βi(t)Chi],

F̄i = [αi(t)Bfi − βi(t)B̃Chi],

Ē1 = [E1 − B̃E2], Ē2 = [0 E2]

(5.9)

and the vectors

ai(t) =
[

aa
i (t)

as
i (t)

]
, d(t) =

[
w(t)
v(t)

]
,
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where cyber-attacks aa
i (t), as

i (t), i = 1, . . . , n and the vectors describing the attacked coefficients fi, hi,
i = 1, . . . , n satisfy the following conditions:

n � max{n1, n2},
aa

n1+1(t) = aa
n1+2(t) = · · · = aa

n(t) = 0 as n = n2 > n1,

as
n2+1(t) = as

n2+2(t) = · · · = as
n(t) = 0 as n = n1 > n2

and

fn1+1 = fn1+2 = · · · = fn = 0 as n = n2 > n1,

hn2+1 = hn2+2 = · · · = hn = 0 as n = n1 > n2.

Using the frequency-domain description of the system, error dynamics (5.8) can be transformed into
the following equation:

E(Q(s))X (s) = B(s), (5.10)

where

E(Q(s)) =
[

Ā − sI E(F̄1) · · · E(F̄n) Ē1

C E(H̄1) · · · E(H̄n) Ē2

]
, X (s) =

⎛
⎜⎜⎜⎜⎜⎝

e(s)
a1(s)

...
an(s)
d(s)

⎞
⎟⎟⎟⎟⎟⎠ , B(s) =

(
0

r(s)

)

and

E(F̄i) = [ρiBfi − σiB̃Chi], E(H̄i) = [0 σiChi], i = 1, . . . , n.

Then equation (5.10) can be rewritten as

E(Q(s))X =
n∑

i=1

E(Q̃i(s))Xi =
n∑

i=1

Bi(s),

where

E(Q̃i(s)) =

⎡
⎢⎢⎣

Ā − sI

n
E(F̄i)

Ē1

n
C̄

n
E(H̄i)

Ē2

n

⎤
⎥⎥⎦ , Xi =

⎛
⎝ e(s)

ai(s)
d(s)

⎞
⎠ , Bi(s) =

(
0

ri(s)

)
, r(s) =

n∑
i=1

ri(s).

Consider the following stochastic matrix:

E(Qi(s)) =
[

Ā − sI E(F̄i) Ē1

C E(H̄i) Ē2

]
.
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Since rank E(Q̃i(s)) = rank E(Qi(s)), we introduce the following auxiliary error dynamics:

ė(t) = Āe(t) + F̄iai(t) + Ē1d(t),

r(t) = Ce(t) + H̄iai(t) + Ē2d(t), i = 1, . . . , n
(5.11)

and the auxiliary stochastic equations

E(Qi(s))Xi = Bi(s), i = 1, . . . , n. (5.12)

Remark 5.4 In this work, we introduce the auxiliary mathematical ‘tools’ (5.11) and (5.12). Auxiliary
error dynamics (5.11) represent the fact that the control system is only subjected to a stochastic cyber-
attack ai(t) on the ith communication channel. Applying auxiliary equations (5.12), we can obtain the
information of the residual ri(t) that is caused by the cyber-attack ai(t). In addition, the detector gain
matrix B̃ can be obtained according to Lemma 4.1.

Now, applying the rank of the stochastic matrix, we obtain the following theorems.

Theorem 5.1 For system (5.7), assume that all of these stochastic matrices E(Q(s)) and E(Qi(s)) (i =
1, . . . , n) have full column normal ranks. All of these cyber-attacks ai(s) (i = 1, . . . , n, (0 |= ai(s) ∈ Ḡ))

as s = z0 are undetectable, if and only if there exists z0 ∈ C, such that

rank E(Q(z0)) < dim(X (z0)) (5.13)

and

rank E(Qi(z0)) < dim(Xi(z0)), i = 1, . . . , n. (5.14)

Herein, Ḡ is a set of undetectable cyber-attacks.

Proof. The proof of Theorem 5.1 straightforwardly follows the lines of the proof of Theorem 4.2.
Therefore, the proof of Theorem 5.1 is omitted here. �

Theorem 5.2 For system (5.7), assume that all of stochastic matrices E(Q(s)) and E(Qi(s)) (i =
1, . . . , n) have full column normal ranks. All of these cyber-attacks ai(s) (i = 1, . . . , n, (0 |= ai(s) ∈ G))

are detectable, if and only if the following conditions always hold for any z0 ∈ C:

rank E(Q(z0)) = dim(X (z0)) (5.15)

and

rank E(Qi(z0)) = dim(Xi(z0)), i = 1, . . . , n. (5.16)

Herein, G is a set of detectable cyber-attacks.

Proof. The proof of Theorem 5.2 straightforwardly follows the lines of the proof of Theorem 4.3.
Therefore, the proof of Theorem 5.2 is omitted here. �

According to Theorems 5.1 and 5.2, the following corollary can be obtained.
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Corollary 5.1 For system (5.7), assume that all of stochastic matrices E(Q(s)) and E(Qi(s)) (i =
1, . . . n) have full column normal ranks. If there exists z0 ∈ C, such that

rank E(Q(z0)) < dim(X (z0)), (5.17)

then there are the following conclusions:

(1) the cyber-attack ai(z0) (0 |= ai(s) ∈ G) is detectable, if and only if

rank E(Qi(z0)) = dim(Xi(z0)); (5.18)

(2) the cyber-attack aj(z0) (0 |= aj(s) ∈ G) is undetectable, if and only if

rank E(Qj(z0)) < dim(Xj(z0)). (5.19)

6. Simulation results

In this section, we provide two simulation examples to illustrate the effectiveness of our results. In
Example ??, we consider an NCS under a stochastic cyber-attack and a stochastic noise. We detect
the possible attack, which are launched on the actuator by hackers. In Example ??, we consider a large-
scale distributed networked water system that comprises of n identical connected subsystems. Moreover,
each subsystem consists of four interconnected water tanks. We will also detect possible multiple cyber-
attacks on a single subsystem.

Example 6.1 Consider the following system that is subjected to a stochastic data deception attack on
the actuator:

ẋ(t) = Ax(t) + α(t)Baa
k(t) + E1w(t),

x(0) = x0,

y(t) = Cx(t).

(6.1)

and with the following parameters:

A =

⎡
⎢⎢⎢⎢⎣

−0.8 0 0.1 0 0
0 −0.2 0 −0.1 0
0 0 −0.4 0 0
0 0 0 −0.3 0

0.2 0 0.1 0 −0.5

⎤
⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎣

0.03 0.3
0 0
0 0.45

−0.21 0.1
0.09 0

⎤
⎥⎥⎥⎥⎦ ,

E1 =

⎡
⎢⎢⎢⎢⎣

0.09
−0.01
0.04

−0.07
0.06

⎤
⎥⎥⎥⎥⎦ , C =

⎡
⎣0.5 0 0 0 0

0 0.5 0 0 0
0 0 0.5 0 0

⎤
⎦ .
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Fig. 2. The time responses of residual and system states under w(t) |= 0 and α(t) = 0.

Applying Lemma 4.1, the corresponding detector gain matrix is obtained as follows:

B̃ =

⎡
⎢⎢⎢⎢⎣

0.6316 0 0.0826
0 3.5714 0

0.0961 0 1.2444
0 −0.7143 0

0.0251 0 0.0304

⎤
⎥⎥⎥⎥⎦ .

Set the initial conditions as x(0) = [0.8, −0.5, −1, 0.2]� and x̃(0) = [0, 0, 0, 0]�. When the stochastic
event α(t) = 0 occur, the system is not subject to a cyber-attack. Figure 2 displays the time responses
of the system states and the residual signal under the case of noise w(t) |= 0 and α(t) = 0, which shows
that system (6.1) is robustly stable under the influence of noise w(t) only. When the stochastic event
α(t) = 1 occur and the attacked probability ρ = 0.8, we can work out rank(E(Q(s))) = 6, and no z0

exists such that rank(E(Q(z0))) < 6, that is to say, for any z0, rank(E(Q(z0))) has always full column
rank. According to Theorem 4.3, the deception signal aa

k(t) is detectable. Figure 3(a) shows the decep-
tion signal aa

k(t) and stochastic noise signal, respectively. Figure 3(b) shows the time responses of the
residual and system (6.1) under the deception signal aa

k(t). Figure 3(b) also demonstrates the system
can not work normally under the cyber-attack. Simulation results underline that a cyber-attack can be
effectively detected if the condition in Theorem 4.3 is satisfied.

Example 6.2 Consider the large-scale distributed networked water system that comprises of n identical
connected subsystems. Moreover, each subsystem consists of four interconnected water tanks, which is
depicted in Fig. 4.
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Fig. 3. The noise signal w(t), deception attack signal aa
k(t) and the time responses of residual and plant states under deception

signal aa
k(t).

Fig. 4. A large-scale distributed networked water system.
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Each subsystem in the large-scale distributed control system is used the model of the QTP in Johans-
son (2000). The dynamics of the QTP is the following non-linear model:

dh1

dt
= − a1

A1

√
2gh1 + a3

A1

√
2gh3 + γ1k1

A1
υ1,

dh2

dt
= − a2

A2

√
2gh2 + a4

A2

√
2gh4 + γ2k2

A2
υ2,

dh3

dt
= − a3

A3

√
2gh3 + (1 − γ2)k2

A3
υ2,

dh4

dt
= − a4

A4

√
2gh4 + (1 − γ1)k1

A4
υ1,

(6.2)

where Ai is the cross-sectional area of Tank i; ai is the cross-sectional area of the outlet hole of Tank
i; hi is the water level of Tank i; υi is the input voltage that is applied to Pump i; ki is the proportional
constant from the voltage υi to the corresponding flow. γi ∈ (0, 1) are related parameters that show if
the flow to Tank 1 is γ1k1v1, then the flow to Tank 4 is (1 − γ1)k1υ1. Tank 2 and Tank 3 are treated
in a similar way; g is the gravitational constant. The measured signals are kch1 and kch2. Applying
linear transformation xi := hi − h0

i and ui = υi − υ0
i , the non-linear model of (6.2) is transformed into

the following linear model:

ẋ = Ax + Bu,

y = Cx.
(6.3)

In this example, we will detect possible cyber-attacks on the subsystem 1 that has the following param-
eters:

A =

⎡
⎢⎢⎣

−0.0158 0 0.0256 0
0 −0.0109 0 0.0178
0 0 −0.0256 0
0 0 0 −0.0178

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0.0482 0
0 0.0350
0 0.0775

0.0559 0

⎤
⎥⎥⎦ ,

C =
[

0.5 0 0 0
0 0.5 0 0

]
.

Assume that the subsystem 1 is subjected to two stochastic data deception attacks on the actuator, i.e.⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α1(t) ∈ {0, 1}, t � t0,

f1 =
[

1

0

]
,

aa
1(t) = ba

1(t)

and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α2(t) ∈ {0, 1}, t � t0,

f2 =
[

0

1

]
,

aa
2(t) = ba

2(t)

(6.4)

the detector gain matrix can be obtained as follows:

B̃ =

⎡
⎢⎢⎣

0.7852 0
0 0.4766

2.7432 0
0 1.4367

⎤
⎥⎥⎦ .
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Fig. 5. (a) The time responses of residual and the system state without attacks and (b) the time responses of residual and the
system state under attacks aa

1(t) and aa
2(t).
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Fig. 6. The time responses of residual under the attack aa
1(t) and aa

2(t), respectively, and the attack signal aa
1(t) and aa

2(t).

We set the initial conditions to x̃(0) = [0, 0, 0, 0]� and x(0) = [0.1, −0.4, −0.1, 0.5]�. When the
stochastic events α1(t) = α2(t) = 0 occur, Fig. 5(a) displays that the system (6.3) is asymptotically sta-
ble. When the stochastic events α1(t) = α2(t) = 1 occur and the attacked probabilities are ρ1 = 0.8,
ρ2 = 0.5, we have the stochastic matrix rank(E(Q(s))) = 6, however, there exists a z0 = 0.0127 such
that rank E(Q(z0)) = 5 and rank(E(Qi(z0))) = 5 (i = 1, 2). Aiming at two different control channels, it
is possible for the hacker to launch two stochastic data deception attacks as follows:

ba
1(t) = −1.074e0.0127t, ba

2(t) = e0.0127t

such that the transfer function from attacks to residual is zero. Therefore, it is difficult to detect these
stealthy attacks. Figure 5(b) displays the time responses of the residual and the system state under the
two attacks aa

1(t) and aa
2(t), which shows that these attacks as s = z0 = 0.0127 originally could not be

detected. However, applying auxiliary tools (5.11), (5.12) and according to Corollary 5.1, these attacks
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now also can be detected. Figure 6(a) shows the response of the residual under attack aa
1(t) and the attack

signal aa
1(t). Figure 6(b) shows the responses of residual under attack aa

2(t) and the attack signal aa
2(t).

Obviously, applying Corollary 5.1, the two stochastic data deception attacks can be detected effectively.

7. Conclusion

This paper proposes algebraic detection schemes for NCSs under single stochastic cyber-attack and
multiple stochastic cyber-attacks, respectively. It is a relatively simple and straightforward detection
approach. Based on the frequency-domain transformation technique and traditional linear algebra the-
ory, an effective anomaly detectors is derived. The main work is focused on novel cyber-attack detection
schemes that allow the detection of single or multiple stochastic attacks in order to protect control sys-
tems against a wide range of possible attack models. The proposed schemes are applied to NCSs that are
subject to the stochastic cyber-attacks. Simulation results underline that the proposed attack detection
approaches are effective and feasible.
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