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Abstract

Motivation: Hemeproteins have many diverse functions that largely depend on the rate at which

they uptake or release small ligands, like oxygen. These proteins have been extensively studied

using either simulations or experiments, albeit only qualitatively and one or two proteins at a time.

Results: We present a physical–chemical model, which uses data obtained exclusively from com-

puter simulations, to describe the uptake and release of oxygen in a family of hemeproteins, called

truncated hemoglobins (trHbs). Through a rigorous statistical analysis we demonstrate that our

model successfully recaptures all the reported experimental oxygen association and dissociation

kinetic rate constants, thus allowing us to establish the key factors that determine the rates at which

these hemeproteins uptake and release oxygen. We found that internal tunnels as well as the distal

site water molecules control ligand uptake, whereas oxygen stabilization by distal site residues

controls ligand release. Because these rates largely determine the functions of these hemeproteins,

these approaches will also be important tools in characterizing the trHbs members with unknown

functions.

Contact: lboechi@ic.fcen.uba.ar

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The combination of computer simulations and biochemical experi-

ments has become a reliable strategy to describe the underlying mo-

lecular details of observed differences in the activity of proteins.

With an increasing amount of data on individual proteins, the con-

struction of mathematical models that permit a more generalized

understanding of these molecular details has become a challenge of

interest to many groups around the world (Oliveira et al., 2014;

Potapov et al., 2015; Pucci and Rooman, 2014; Silk et al., 2014).

The truncated hemoglobins (trHbs) are a family of hemeproteins

that share a conserved three-dimensional structure as well as the

structural positions of their active site residues (Wittenberg et al.,

2002). Their diverse functions are related to their ability to uptake

and release ligands with a wide range of entry and exit rates.

Because the ligands bind to the heme group, which is buried in the

protein, the ligand entry and exit rates depend to a great extent on

the ligands ability to migrate to and from the active site via three po-

tential tunnels in the protein matrix (Elber, 2010; Milani et al.,

2001; Perutz and Mathews, 1966), as shown in Figure 1A. Each pro-

tein may present one or two open tunnels, lined by particular resi-

dues defining its topology. Protein cavities have been identified

several decades ago through experiments in a Xe atmosphere, where
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protein sites with retained Xe atoms were identified. In the case of

myoglobin, for example, several studies had demonstrated the im-

portance of internal cavities as ligand hosts as well as part of migra-

tory tunnels (Brunori, 2000; Brunori et al., 2000; Scott et al., 2001).

Crystallographic studies of trHbs from Mycobacterium tuberculosis,

Chlamydomonas eugametos and Paramecium caudatum also high-

light the importance of these cavities in the trHb protein family

(Milani et al., 2004; Mishra and Meuwly, 2009). Several studies

have shown that in addition to the presence and nature of these mi-

gratory tunnels, certain active site residues can also modulate ligand

entry and exit, in particular, delaying ligand entry by stabilizing

water molecules that block accessibility to the heme (Fig. 1B),

(Bustamante et al., 2014; Goldbeck et al., 2006; Olson and Phillips,

1997; Ouellet et al., 2008; Scott et al., 2001) or by delaying ligand

exit by stabilizing the ligand itself (Fig. 1C) (Capece et al., 2013; Lu

et al., 2007; Ouellet et al., 2003, 2007a). Experimentally, it is pos-

sible to characterize ligand entry and exit by measuring the ligand

association (kon) and dissociation (koff) kinetic rate constants, re-

spectively. Specifically, kon determines the rate at which the ligand

reaches the protein heme iron from outside the protein, and koff

determines the rate at which the ligand is released once it is bound

to the iron. Both kon and koff have been reported for a number of

members of the trHb family (Bonamore et al., 2005; Bustamante

et al., 2014; Couture et al., 1999, 2000; Das et al., 2000; Giordano

et al., 2011; Goldbeck et al., 2006; Lu et al., 2007; Olson and

Phillips, 1997; Ouellet et al., 2003, 2006, 2007b, 2008; Watts et al.,

2001). Though the trHb family (with �1100 members) has only re-

cently been identified, a subset of �10 members and several mutants

have been characterized extensively by both biochemical experi-

ments and computer simulations (Chodera et al., 2011; Dinner

et al., 2000; Elber, 2010; Perilla et al., 2015; Sotomayor and

Schulten, 2007). In this study, we utilize data from single-molecule

computer simulations of these hemeproteins to build a theoretical

model that is in statistical agreement with all the oxygen kon and koff

values reported in the literature. Namely, all variables involved in

the model are relevant (corresponding coefficients are statistically

significant), model assumptions for quantifications are not violated

and the model achieves a high predictive ability. Considering the ac-

curacy of this model we are able to confirm the main factors that

control both ligand entry and exit for all the members studied and,

further, propose two quantitative approaches for predicting the oxy-

gen association and dissociation rate constants for the rest of the

family members. Because these rates largely determine the functions

of these hemeproteins, these approaches will be important tools in

characterizing trHb members with unknown functions. Based on

our model, we propose strategies for predicting both the oxygen as-

sociation and dissociation rate constants for the rest of the family

members, which allows the development of whole family evolution-

ary and functional studies, as shown in Bustamante et al. (2016).

2 Methods

2.1 Set up of the systems and classical simulation

parameters
The protein structures for all herein studied cases correspond to the

following PDBids: 1IDR (Milani et al., 2001) (Mt-trHbN, from M.

tuberculosis), 1NGK (Milani et al., 2003) (Mt-trHbO), 2BMM

(Bonamore et al., 2005) (Tf-trHbO, from Thermobifida fusca),

4UUR (Giordano et al., 2015) (Ph-trHbO, from Pseudoalteromonas

haloplanktis), 2XYK (Pesce et al., 2011) (At-trHbO, from

Agrobacterium tumefaciens), 1UX8 (Giangiacomo et al., 2005)

(Bs-trHbO, from Bacillus subtilis), 1DLY (Pesce et al., 2000) (Ce-

trHbN, from C. eugametos), 1DLW (Pesce et al., 2000) (Pc-trHbN,

from P. caudatum), 2BKM (Ilari et al., 2007) (Gs-trHbO from

Geobacillus stearothermophilus), 1RTX (Hoy et al., 2004) (Syn-

trHbN from Synechocystis), 2IG3 (Nardini et al., 2006) (Cj-trHbP

from Campylobacter jejuni) and 1VXG (Yang and Phillips Jr.,

1996) (sperm whale myoglobin). In all cases, the systems were built

and simulated according to the protocol of Giordano et al. (2015).

An unconstrained 50 ns molecular dynamics (MD) simulation at

constant temperature (300 K) was performed for each simulated sys-

tem. In silico mutant proteins, i.e. single and double mutants of

some wild type (wt) forms, were built starting from the same crystal

Fig. 1. Representation of a typical trHb, their possible tunnels and active site. (A) Schematic representation of the potential three tunnels (red, blue and green)

that connect the solvent with the active site in trHbs. Cartoon representations of the active site in the trHbN of M. tuberculosis, the heme group (grey), with key

amino acids, water (B), and oxygen (C) stabilized by HBs (dotted lines) shown as ball-and-sticks (Color version of this figure is available at Bioinformatics online.)
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structure as described above and mutated then using the tLEaP mod-

ule of the AMBER12 package (Pearlman et al., 1995). These mutant

structures were equilibrated and simulated using the same protocol

as that used for the wt form. All structures were found to be stable

during the timescale of simulations, as evidenced by the Root Mean

Square Deviation analyses (data not shown).

2.2 Oxygen migration free energy profiles
Free energy profiles for the O2 migration process along the protein

tunnel/cavity system were computed using the Implicit Ligand

Sampling (ILS) approach (Cohen et al., 2006, 2008), which has

been widely used to study these process and was shown previously

by our group to yield accurate results (Boron et al., 2015;

Bustamante et al., 2014; Forti et al., 2011; Marcelli et al., 2012).

In Supplementary Figure S1, a comparison of O2 migration over

the same trHbs, sampled with both classical MD with a free expli-

cit oxygen molecule as well as with an implicit O2 molecule under

the ILS method is shown. We found that smaller barriers calcu-

lated by ILS method correspond to higher entry and exit rates by

using classical MD with explicit oxygen. In addition, our calcula-

tions agree with previous calculations of trHbs such as Mt-trHbN

and Mt-trHbO already reported using different methods (Bidon-

Chanal et al., 2006; Boechi et al., 2008; Cazade and Meuwly,

2012; Guallar et al., 2009; Mishra and Meuwly, 2009). ILS calcu-

lations were performed in a rectangular grid (0.5 Å resolution)

that includes the whole simulation box (i.e. protein and the solv-

ent), the used probe was an O2 molecule. Calculations were per-

formed on 5000 frames taken from the 50 ns of the production

simulations. The values for grid size, resolution and frame num-

bers were thoroughly tested in our previous work (Forti et al.,

2011). Analysis of the ILS data was performed using an ad hoc

TCL program available under request, determining in each case

the magnitude of the corresponding wells and barriers scaled, so

that the free energy of the ligand in the bulk solvent is set to 0. In

order to present evidence of the ILS convergence, a plot of the

maximum free energy values along 250 ns for trHbs N and O

from M. tuberculosis as representative examples is shown

(Supplementary Fig. S2).

2.3 Oxygen binding energy (DEO2
)

QM-MM calculations were performed by geometry optimization of

a selected representative snapshot extracted from the MD simula-

tions. To select this representative snapshot we analyzed the hydro-

gen bond (HB) network that stabilizes the O2 molecule. In cases

where this network presented more than one stable conformation,

both conformations were considered as representative snapshots

and the overall DEO2
value was calculated as an average of the two

computed DEO2
values. The quantum part consisted of the heme

moiety without the carboxylic side chains, plus the proximal histi-

dine and the oxygen molecule. We have set the spin states of the

iron according to the experimental ones, singlet and quintuplet

states for the oxy and deoxy species, respectively. Even if O2 binding

to heme is a complex phenomenon and thus, an adequate quantita-

tive description requires high level ab initio multi-configurational

schemes (Kepp, 2013), DFT calculations yield reasonable compara-

tive results and have proven to achieve reliable results in a variety of

heme proteins in previous works from our group (Capece et al.,

2013).

O2 binding energies (DEO2
, kcal/mol) were calculated as:

DEProt�O2
� ðEO2

þ EProtÞ; (1)

where EProt�O2
is the energy of the oxygenated protein, EProt is the

energy of the deoxygenated protein and EO2
is the energy of the iso-

lated oxygen molecule. The oxygenated proteins were simulated in

the singlet spin state, the deoxygenated proteins in the quintet spin

state and the free oxygen in the triplet state, which are the known

ground states for each case. All simulations were performed at the

unrestricted spin approximation. This method strategy has been

widely and successfully used in our group to study oxygen (as well

as other ligands) affinity in previous works (Capece et al., 2013). It

is well known that computed oxygen dissociation energies from the

heme are significantly overestimated due to the fact that a low (sing-

let) to high spin (quintet) transition is involved and DFT overesti-

mates the energy of the spin gap, favoring low spin configurations

(Scherlis et al., 2007). On the other hand, DEO2
values are computed

for the optimized, i.e. best possible conformation at 0 K, and kinetic

values are computed at room temperature. Due to intrinsic errors of

the DFT-based QM/MM methods, the computed energies are

strongly dependent on the exchange-correlation functional and basis

set. All these issues can be partially corrected standardizing the oxy-

gen binding energy. To do so, we define DDEO2
, that corresponds to

the DEO2
(oxygen binding energy computed as described above in

Equation 1) and the difference between DEheme, the calculated oxy-

gen binding energy of an isolated imidazol bound heme in vacuum

(which is 22 kcal/mol at this level of theory) and free heme koff value

(104 s�1) (Marti et al., 2006; Scott et al., 2001).

3 Results

3.1 Modeling the ligand association rate constant (kon)
The Eyring equation is widely used to model bimolecular reactions

in the context of transition state theory:

k ¼ kBT

h
� e�

DG‡

RT ; (2)

where DG‡ is the Gibbs energy of activation, T is the temperature,

kB, h and R are the Boltzmann, Planck and the universal gas con-

stants, respectively.

In our case, we constructed an Eyring model that includes the

free energy barrier to ligand entry through migratory tunnels, as

well as the free energy penalty for removing a water molecule from

the active site.

In our model, each tunnel or gate was considered independently

for each trHb, taking into account that in every case one tunnel was

significantly more accessible than the others. In this sense, the high-

est barrier of the most accessible tunnel was considered as the free

energy barrier for oxygen entry, denoted DG‡
in. This allows us to use

a pure simple statistical analysis, starting from a parsimonious

model. Because water molecules in the active site are stabilized

through HB interactions, the free energy of removing a water mol-

ecule was approximated as the product between the number of HB

interactions (nHB) between the water molecule and the surrounding

active site residues and the free energy of an HB interaction (DGHB).

We performed 50 ns of classical MD simulations with explicit

solvent molecules (that is �5000 water molecules around the pro-

tein), allowing water molecules to explore and thus occupy key ac-

tive site positions. The nHB value was calculated as the average

number of hydrogen bound during those simulations. The individual

contributions of DG‡
in and nHB were then combined in the following

physical–chemical model for the theoretical value of kon:

kon ¼
kBT

h
� e�

DG
‡
in

RT � e�
DGHB �nHB

RT ; (3)

Quantitative model for oxygen uptake and release 3
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where T ¼300 K. The value of DGHB is a constant in the model,

however, because different values for DGHB have been reported in

the literature (between 2 and 5 kcal/mol), depending on the immedi-

ate environment, it is not possible for us to provide at this point

value of DGHB in our model (Markovitch and Agmon, 2007).

We will consider the logarithm form of Equation (3), such that it

becomes a linear model. All logarithms involved in the study are in

base 10. If we further assume that each experimental value for each

protein differs from the theoretical kon by an additive random error

(�i), we arrive at the following statistical model:

logðkonÞi ¼log
kBT

h

� �
þ ð�1Þ

RT
� logðeÞ � DG‡

ini

þ ð�DGHBÞ
RT

� logðeÞ � nHBi
þ �i;

(4)

where the index i corresponds to the ith protein. We note that the

random error (�i) accounts for measurement errors, biological vari-

ability and possible misconceptions or incompleteness in the model.

The randomness of the error term �i in Equation (4) turns this equa-

tion into a first statistical model, in the sense that it combines our

knowledge of the chemistry of the problem with the uncertainty

enclosed by the error.

There are two aspects involved in the construction of model (4).

On the one hand, the model suggests that DG‡
in and nHB are the vari-

ables that allow to linearly describe the behavior (in logarithm form)

of kon. On the other hand, it establishes in which ways these vari-

ables should be combined, by determining the value of the coeffi-

cient that accompanies DG‡
in as well as the intercept, logðkBT=hÞ.

To statistically validate each of these two aspects, we postulate

that logðkonÞ can be expressed as a linear combination of both pre-

dictors (DG‡
in and nHB), up to a random error term. Now, in contrast

to Equation (4), no restrictions on the coefficients are imposed. This

gives rise to the following statistical model:

logðkonÞi ¼ b0 þ
b1

RT
� logðeÞ � DG‡

ini
þ b2

RT
� logðeÞ � nHBi

þ �i: (5)

In addition, the errors are assumed to be Gaussian distributed

with mean 0 and constant standard deviation (linear model assump-

tions). Model (5) does not specify values for the coefficients bj,

j ¼ 0, 1, 2. However, if we let b0 ¼ logðkBT=hÞ;b1 ¼ �1 and

b2 ¼ �DGHB in model (5), we would recover model (4).

Note that b1 is a scaling factor that determines if the calculated

value for DG‡
in is overestimated or underestimated, whereas b2 cor-

responds to the free energy of an HB interaction.

We adjust model (5) to obtain the best linear model for the re-

ported kon values for trHbs and Mb (n¼26). Table 1 summarizes

the results of the fit. There were no constraints imposed on the coef-

ficients b0, b1 and b2, such that they were free to take any value.

Finding the best fit to model (5) by least square regression we can

evaluate both the accuracy of the linear description of logðkonÞ with

the considered variables DG‡
in and nHB, as well as the proposed

values for the coefficients in model (4).

The linear model turned out to be accurate in describing the rela-

tion between the involved variables. The R2 was found to be 0.78,

meaning that 78% of the variability of logðkonÞ can be explained at

a linear level in terms of both explicative variables. The estimated

standard deviation of the error �i for model (5) was 0.56, which is

really small compared with the values observed for the response

variable (logðkonÞ), which range from �5 to 10.

All coefficients, b0, b1 and b2, were found to be statistically sig-

nificant (the corresponding P-values are <0.05), which means that

there is evidence in the data supporting that each coefficient is differ-

ent from 0 in the model that includes all other explicative variables.

This affirmation tells us that the two variables, DG‡
in and nHB, are

relevant to explain logðkonÞ at the linear level. Moreover, both ex-

plicative variables are poorly correlated (squared correlation be-

tween variables DG‡
in and nHB is 0.09), meaning that they convey

different information, reinforcing the importance of including both

variables in the model. In Section 3.3 we present the validation of

the assumptions required for the statistical values (P-values and con-

fidence intervals) listed in Table 1.

Another way to evaluate the importance of both variables in the

model consists in modeling logðkonÞ by separately using either DG‡
in

or nHB. A very poor correlation with the experimental data was

found when either DG‡
in (R2¼0.16) or nHB (R2¼0.40) were used

alone. The coefficients (b0 and b1 or b0 and b2, depending on the

reduced model), however, were found to be very similar to those in

the original model (data not shown). This evidence reinforces the

proposed multivariate linear model (5) that combines the two ex-

plicative variables.

The former results allow us to validate the linear model and con-

clude that both variables are not only necessary to describe kon in

these proteins, but also that they essentially determine the ligand as-

sociation rate constant. Now it remains to corroborate the proposed

coefficients. The results shown in Table 1 support the proposed the-

oretical values of logðkBT=hÞ for b0 and �1 for b1, since both

logðkBT=hÞ and �1 are within their respective 95% confidence

intervals. The 95% confidence interval for b2 is ð�2:49;�1:48Þ and

also compatible with the range of values for DGHB in the literature

(Markovitch and Agmon, 2007). It is interesting to note that the fact

that b1 � �1 evidences that the ILS calculations are in the expected

range to predict kon values under the presented model.

All these facts indicate that the proposed Eyring model (3) it-

self together with the proposed theoretical coefficients (or its range)

is conceptually adequate in describing the ligand association pro-

cess, meaning that the energetic barrier imposed by the protein ma-

trix as well as the stabilization of water molecules in the active sites

are the main factors controlling this physical–chemical process.

3.2 Modeling the ligand dissociation rate constant (koff)
As in the case of the ligand association, there are two phenomena

regulating the ligand dissociation process: breaking the Fe–O2 bond

(DDEO2
) and further ligand migration from protein heme cavity to

Table 1. Estimated values for the coefficients with their respective 95% confidence intervals and P-values for model (5)

Equation Best fit coefficient Proposed coefficients Estimated value and

95% CI

P-values

(5) (R2 ¼ 0.78) b0 log(kB T/h) ¼ 12.769 11.81 6 1.15 <2 � 10�16

b1 DG‡
in coeff.¼�1 �1.25 6 0.40 1.65 � 10�6

b2 �DGHB 2 [�5, �2] �1.99 6 0.50 3.14 � 10�8

4 J.P.Bustamante et al.
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the bulk solvent through the protein matrix (DG‡
out). Considering

that the oxygen release process is a unimolecular reaction, we pro-

pose the following model that includes both variables:

koff ¼ e�
DDEO2

RT � e�
DG

‡
out

RT : (6)

This kind of approach has been used successfully by others

(Laverman and Ford, 2001; Laverman et al., 1997). As was previ-

ously done for the association constant, we consider a linear model

in logarithm form with the explicative variables DDEO2
and DG‡

out

given by:

logðkoffÞi ¼ c0 þ
c1

RT
� logðeÞ � DDEO2i

þ c2

RT
� logðeÞ � DG‡

out
i
þ �i:

(7)

Assuming that the two proposed variables are sufficient to de-

scribe logðkoffÞ, the theoretical values for the coefficients are c0 ¼ 0;

c1 ¼ �1 and c2 ¼ �1. By letting the coefficients to take any value,

we are able to adjust model (7) to obtain the best linear model for

the available data (n¼13). The fitted values are shown in Table 2.

Even though the R2 value was high (R2¼0.787), DG‡
out does

not contribute to describe logðkoffÞ when DDEO2
is included in the

model, since the confidence interval for c2 includes zero. This is in

accordance with the fact that the two variables, DG‡
out and DDEO2

,

were found to be highly correlated (squared correlation between

both variables is 0.55), suggesting that both explicative variables

may not be necessary. On the other hand, DDEO2
was found to be

relevant in describing logðkoffÞ because its coefficient, c1, is signifi-

cantly different from 0 (P-value <0.05). The data also support the

proposed theoretical value of 0 for c0 as suggested by model (6).

Hence, we now consider a linear model without the energetic barrier

DG‡
out given by:

logðkoffÞi ¼ c0 þ
c1

RT
� logðeÞ � DDEO2i

þ �i: (8)

The fitted values for the coefficients c0 and c1 are shown in

Table 2. The data, once again, support the assumed value of 0 for

c0. The sole inclusion of DDEO2
is appropriate to model logðkoffÞ be-

cause this fit attains an R2¼0.784, based on the available data. The

standard deviation of the errors �i in model (8) was estimated to be

0.98.

Therefore, we conclude that model (7) is redundant, since, given

the value of DDEO2
, DG‡

out is not relevant to describe the linear be-

havior of logðkoffÞ. Model (8), on the other hand, together with the

proposed coefficients are conceptually adequate in describing the

ligand dissociation process, meaning that only DDEO2
, and not

the oxygen escape through the migratory tunnels, is the dominant

factor controlling this process.

3.3 Validation of the linear model assumptions
All the quantifications involved in the model fitting presented in

Tables 1 and 2 (confidence intervals, and P-values) require that the

errors �i satisfy the usual conditions of the classical regression

model, namely, the errors are supposed to be Gaussian distributed

with mean 0 and constant standard deviation (homoscedasticity).

Usually, these assumptions are termed as normality of the errors.

We checked that our data support these assumptions through gra-

phical tools and statistical tests. For a detailed description of them

see Kutner et al. (2005). We define the ith residual for model (5) as

the difference between the observed logðkonÞi and its corres-

ponding fitted value through model (5) i:e: logðkonÞi�
�

f11:81� 1:25
RT � logðeÞ � DG‡

ini
� 1:99

RT � logðeÞ � nHBi
gÞ, where the

estimated values are those presented in Table 1. We proceed in the

same way with koff , by using the estimated values for model (8) pre-

sented in Table 2.

Figure 2A shows the normal Q–Q plot of the residuals. A normal

Q–Q plot is a graphical method to assess the accuracy of the

Gaussian distribution for a given dataset (residuals in the present

setting) (Wilk and Gnanadesikan, 1968). Empirical quantiles

(y-coordinate) are plotted against the corresponding normal quan-

tiles (x-coordinate). The empirical quantiles are defined as the

ordered (ascending) observations. If the normal distribution assump-

tion is adequate, the points in the Q–Q plot will approximately lie

on a line. That is the case in both plots depicted in Figure 2A indicat-

ing that the normality distribution describes appropriately the re-

siduals from both models (5) and (8). Furthermore, a Shapiro–Wilks

goodness-of-fit test for testing normality applied to the residuals

Table 2. Estimated values for the coefficients with their respective 95% confidence intervals and p-values for the coefficients in Equations

(7) and (8)

Equation Bests fit coefficient Proposed coefficients Estimated value and 95% CI P-values

(7) (R2 ¼ 0.787) c0 Intercept ¼ 0 �0.48 6 2.78 0.71

c1 DDEO2
coeff.¼�1 �0.87 6 0.45 1.5 � 10�3

c2 DG‡
out coeff.¼�1 0.17 6 1.08 0.73

(8) (R2 ¼ 0.784) c0 Intercept ¼ 0 �0.04 6 0.64 0.89

c1 DDEO2
coeff.¼�1 �0.81 6 0.28 5.66 � 10�5

Fig. 2. Normal Q–Q plot of the residuals (A) and residuals versus fitted values

(B) for model (5) for logðkonÞ (left panel) and model (8) for logðkoffÞ (right

panel)

Quantitative model for oxygen uptake and release 5

 at U
niversity of C

alifornia, San D
iego on A

pril 4, 2016
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

Deleted Text: ,
Deleted Text: zero 
Deleted Text: smaller than 
Deleted Text: s
Deleted Text: zero 
Deleted Text: zero 
Deleted Text: zero 
Deleted Text: s
Deleted Text: Kutner <italic>et. al.</italic> (
Deleted Text: -
Deleted Text: (i.e. 
Deleted Text: )
Deleted Text: -
Deleted Text: -
Deleted Text:  
Deleted Text: -
Deleted Text: -
Deleted Text:  
Deleted Text:  
http://bioinformatics.oxfordjournals.org/


gives a P-value¼0.99 for kon and 0.73 for koff, supporting the nor-

mality assumption for the errors in models (5) and (8), respectively.

In Figure 2B, we plot the residuals versus the fitted values. The ab-

sence of structure in both graphs guarantees the correct assumption

of homoscedasticity for the errors of the models (5) and (8). All stat-

istical analyses were performed using freely distributed software R

(R Core Team, 2013).

3.4 Predicting ligand rate constants for kon and koff

Because the functions of the trHbs mainly depend on the rate at which

they uptake and release oxygen, and considering that those rates are

unknown for most of the members, it would be important to predict

both kon and koff for all the trHb family members. For some trHbs,

which can be used as leading cases, tentative but well-based functional

assignment is available considering their key structural and physico-

chemical characteristics. Taking Mt-trHbN as an example, this pro-

tein’s likely function is to detoxify NO through its oxidation to nitrate

by the oxy heme. To fulfill this task, a high oxygen stabilization is

required, and the presence of multiple tunnels with a high kon is likely

an important factor (Bidon-Chanal et al., 2006; Lama et al., 2009;

Mishra and Meuwly, 2010; Ouellet et al., 2008).

We propose two ways to predict these kinetic rate constants. The

first approach, which we call physical-chemically driven, uses the

Eyring equation with the theoretically proposed coefficients; the se-

cond approach, which we call statistically driven, does not account

for the theoretically proposed coefficients, rather it is just a linear

model in logarithmic scale of the data and uses the best-fit coeffi-

cients without restrictions. We point out that those best-fit coeffi-

cients are written in terms of RT to facilitate comparison with the

coefficients in the physical-chemically driven approach.

In the case of kon, specifically, the physical-chemically driven

equation takes the theoretically proposed values of b0 and b1

(b0 ¼ logðkBT=hÞ and b1 ¼ �1) and takes the value of b2 that gives

rise to the smallest residuals, once b0 and b1 are fixed. Namely, by

minimizing
Pn

i¼1ðlogðkonÞi � ½logðkBT=hÞ � ð1=RTÞ � logðeÞ � DG‡
ini
þ

ðb2=RTÞ � logðeÞ � nHBi
�Þ2, we find that b2 ¼ �2:95. Therefore, the

first approach to predict kon is:

konchem ¼ kBT

h
� e�

DG
‡
in

RT � e�
2:95�nHB

RT (9)

The second approach, as explained above, is purely data ori-

ented, and ignores prior knowledge of the relevant physical–chem-

ical constants, using only the best-fit coefficients (Table 1):

konstat ¼ 1011:81 � e�
1:25�DG

‡
in

RT � e�
1:99�nHB

RT : (10)

In both approaches, the proposed values for DGHB, 2.95 and 1.99,

are in the range of those previously published in the literature. Figure 3

depicts the accuracy of both predictive approaches, logðkonchemÞ and

logðkonstatÞ, showing their ability to correctly assign the order of the

experimental association rate constants. See Supplementary Table S1

to compare predicted with experimental values.

Both approaches result in comparatively similar predictions; we

note that predicted kinetic constants do not differ from the experi-

mentally reported values by more than an order of magnitude re-

gardless of the approach used. Similar to the case of kon, we propose

two approaches for predicting koff values. The physical–chemical ap-

proach, denoted koff chem:

koffchem ¼ e�
DDEO2

RT (11)

and the statistically driven approach, denoted koff stat:

koffstat ¼ 10�0:04 � e�
0:81�DDEO2

RT (12)

In Figure 4, we plot experimental koff values versus both koff-

chem and koffstat in a logarithmic scale. Both predictive models

were able to correctly assign the order of the predictive experimental

constants. See Supplementary Table S2 to compare predicted with

experimental values.

4 Discussion

The predictive capacity of our models, together with the statistical

evaluation of the individual components included in each model,

provides a quantitative context in which we can understand the

main factors controlling ligand uptake and release in the trHb fam-

ily. Whereas internal tunnels and water molecules in the active site

modulate ligand entry, the nature of the active site residues con-

trols the kinetics of oxygen release (Fig. 5). The coordination pro-

cess (kbond) accounts for the O2–FeII binding process once oxygen

is already in the active site with no surrounding water molecules.

Considering that we use the same ligand in any case and taking

into account that this process was shown to occur very fast, it was

not considered in our model (depicted in red in Fig. 5) (Franzen,

2002; Strickland and Harvey, 2007). In the same line, our statis-

tical analysis shows that O2 migration to the solvent after the O2–

FeII bond breaking (DG‡
out) is not relevant to explain koff (Fig. 5).

In this sense, the results along the variability of the active site show

a high correlation, where the more stabilized the O2, the lower the

koff measured. For example, in the case of the wt form of Mt-

Fig. 3. Plot of logðkonÞ experimental values versus logðkonchemÞ and

logðkonstatÞ, in red and black, respectively, with the identity line (Color ver-

sion of this figure is available at Bioinformatics online.)

Fig. 4. Plot of logðkoffÞ experimental values versus logðkoffchemÞ and

logðkoffstatÞ, in red and black, respectively, with the identity line (Color ver-

sion of this figure is available at Bioinformatics online.)
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trHbN, the key structural position at the active site labeled as B10,

occupied by a Tyr, is one of the major responsible residues for its

koff; when this amino acid is mutated to Ala, the koff increases sub-

stantially, because the coordinated oxygen is strongly destabilized.

The same trend can be observed for many cases of key amino acids,

including wt Mb versus its mutant form where the well-known

HisE7 is mutated to Gly, going from a koff value of 15–1600 s�1.

For a deeper analysis of the conservation and variability of the ac-

tive sites along the trHb family members, see Bustamante et al.

(2016).

Regarding the role of the internal tunnels, a clear example can be

observed comparing the wt and a single mutant form of Mt-trHbN,

where the mutation of a Val to a Phe at the structural position G8 pro-

motes a 10 times decrease in kon. It is important to note that these two

proteins have the same active site amino acids, except for the G8 pos-

ition that does not alter the water molecules, so the only difference ac-

counting for the kon is the internal tunnel contribution. In this case, the

O2 needs to overcome a higher barrier along the tunnel to reach the ac-

tive site, mainly due to the size increase of the G8 amino acid, which is

reflected in a higher DG‡
in and consecutively in a lower kon. For a com-

parison of all herein cases, see Supplementary Tables S1 and S2.

Overall, the varying capacity of main factors to modulate ligand

entry and escape translates to diverse biological functions for these

hemeproteins. For example, hemeproteins with fast oxygen uptake

(high kon) and fast release (high koff) are generally oxygen transporters

(e.g. Hb and Mb); whereas those with fast uptake (high kon) and slow

release (low koff) generally undergo multiple ligand reactivity, since

oxygen has to enter quickly and stays inside until the second ligand

enters to react (e.g. trHbN from M. tuberculosis). It is interesting to

note that both entry and exit processes depend on active site inter-

actions, amino acids with positive charge density regions in the active

site can both delay oxygen entry by retaining water molecules, and

also delay oxygen exit by stabilizing the coordinated oxygen.

Our models suggest therefore, that the only way a protein can

control ligand entry without modifying ligand exit is by modifying

heme accessibility through tunnels or gates. Note that our model for

kon does not account for internal hexacoordination phenomena,

which involves an active site amino acid occupying the sixth coord-

ination position of the iron center. Hence, our model describes the

kon of pentacoordinated trHbs or the kon of the pentacoordinated

state of a hexacoordinated trHb.

Notice that the error values, �i, in models (5), (7) and (8) include

the error inherent in the model as well as in the experimental meas-

urements. For both kon (model (5)) and koff (models (7) and (8)), the

error was of the same order of magnitude as the variance among the

experimental rate constants reported independently in the literature

by different groups and techniques. This result strongly supports the

absence of any significant theoretical misconceptions in the con-

struction of the models themselves.

A special consideration should be given to the R2 value, which,

although is a good indicator of the goodness of fit of the correspond-

ing model, it does not suffice to judge its accuracy. A clear example

Fig. 5. Step-by-step schematic of oxygen uptake and release in trHbs, highlighting the steps considered in our final models. Two steps not involved in the kinetic

rate constants are shown in red, either for our statistical analysis (DG‡
out) or for previous evidence (kbond) (Color version of this figure is available at

Bioinformatics online.)
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of this problem is found in our analysis of the dissociation rate con-

stants, koff. The R2 values for models (7) and (8) are both reasonably

high and nearly indistinguishable (0.787 and 0.784, respectively),

even though one of the variables used in model (7) does not make a

significant contribution to logðkoffÞ. Based on the R2 values alone,

both models could be interpreted as being equally accurate, however

by further analyzing the P-values and correlation of the variables

used in the models we could conclude that the reduced model (8) is

more accurate than model (7).

Making extrapolations to the rest of the trHb members (�1100) is

risky considering that we do not yet have evidence about the behavior

of the process among the rest of the family members. However, since

our analysis was made for mutant proteins that were mostly designed

to explore the widest range of kon and koff values, and considering

that the family of proteins does share a common fold and relevant

residues, it is possible to predict kon and koff for the other members of

the family as well. We proposed two approaches and discussed their

pros and cons. The theoretically driven approach uses prior physical–

chemical knowledge, therefore it is not strictly limited to a specific

subset of proteins; although its coefficients are not the best possible

for the available data. The statistically driven approach, which uses

the best fitting values of the available data, is strongly related to this

small subset of available proteins. In any case, both predictions seem

to be very similar for the available data to date, they do not differ by

more than one order of magnitude.

5 Conclusion

By performing a rigorous statistical analysis we establish the key fac-

tors that control ligand uptake and release in all the studied trHbs.

We found that internal tunnels as well as the distal site water mol-

ecules control ligand uptake, whereas oxygen stabilization by distal

site residues controls ligand release. We also proposed two quantita-

tive approaches to predict kon and koff, within an order of magni-

tude, for the rest of the (around 1100) trHb family members.
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