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NEW BOUNDS FOR SPHERICAL TWO-DISTANCE SETS

ALEXANDER BARG* AND WEI-HSUAN YUT

ABSTRACT. A spherical two-distance set is a finite collection of urdttors inR"™ such that the distances between any two
distinct vectors assume only two values. We use the semiigefirogramming method to compute improved estimates of
the maximum size of spherical two-distance sets. Exact erssare found for dimensions = 23 and40 < n < 93 (n #

46, 78) where previous results gave divergent bounds.

1. INTRODUCTION

This paper is devoted to the application of the semidefinitg@mmming method to estimates of the size of the
largest possible two-distance set on the spl#gre! (R). A spherical two-distance set is a finite collectiomf unit
vectors inR™ such that the set of distances between any two distinct keirt@ has cardinality two. Estimating the
maximum sizey(n) of such a set is a classical problem in distance geometrytisabeen studied for several decades.

We begin with an overview of known results. A lower boundggn) is obtained as follows. Lets, ..., e, 1 be
the standard basis " !. The points:; +e¢;,i # j form a spherical two-distance setin the plane-- - - +z,,+1 = 2
(after scaling), and therefore

Q) gn) >nn+1)/2, n>2.

The first major result for upper bounds was obtained by Dds&oethals, and Seidell[7]. They proved that,
irrespective of the actual values of the distances, thewatlg “harmonic” bound holds true:

(@) g(n) < n(n+3)/2.

They also showed that this bound is tight for dimensions 2, 6, 22 where it is attained by sets of equiangular lines.
Moreover, the results of [7], Bannai et &ll [4], and Nebe aerdRév [16] imply thatg(n) can attain the harmonic
bound only ifn = (2m + 1)? — 3, m > 1 with the exception of an infinite sequence of valuesothat begins with
m = 3,4,6,10,12,22, 38,30, 34,42, 46. Therefore, unless is of the above formg(n) < n(n + 3)/2 — 1. These
results are proved using the link between 2-distance seltfigint spherical 4-designs established in [7].

Another advance in estimating the functigfn) was made by Musin [15]. L&t = {z1, 22, ... } and suppose that
zi - z; € {a,b},i # j, where2 — 2a,2 — 2b are the values of the squared distances between the poinssn iroved
that

(3) IC] <n(n+1)/2 ifa+b>0.

He then used Delsarte’s linear programming method to pfog{n) = n(n+1)/2if 7 < n < 39,n # 22,23.
Here we make another step for spherical two-distance sdt)ding the range of dimensions in which the bound
(D) is tight. The state of the art fgin) can be summarized as follows.

Theorem 1.1. We havey(2) = 5, ¢(3) = 6, g(4) = 10, g(5) = 16, ¢(6) = 27, g(22) = 275,
4 n(n+1)/2 <g(n) <n(n+3)/2—-1, n=46,78
(5) gn)=n(n+1)/2, 7<n<93,n+#2246,78,

and4465 < ¢(94) < 4492. If n > 95, theng(n) < n(n + 3)/2 orn(n + 3)/2 — 1 as detailed in the remarks after
Eq. (2) above.
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The part of this theorem that is established in the presgpémeelates to dimensions = 23 and40 < n <
94, n # 46, 78. Our results are computational in nature and are obtained tise semidefinite programming method.
The other parts of this theorem follow from the results 4,715, 16].

As far as actual constructions of spherical two-distante@e concerned, rather little is known beyond the set of
midpoints of the edges of a regular simplex mentioned ab&mether way of constructing such sets is to start with a
set of equiangular lines iR™ [L1]. If the angle between each pair of linesisthen taking one point from each pair of
points onS™~! defined by the line, we obtain a two-distance set with ., b = —a. The largest possible number of
equiangular lines ifR™ is n(n + 1)/2 (this result is due to Gerzon, seée[11]). This bound is atfiorn = 3,7, 23.

For instance, for, = 3 the set of 6 lines is obtained from 6 diagonals of the icosairedvhich gives many ways of
constructing inequivalent spherical two-distance setsaoflinality 6. The only three instances in which the known
spherical two-distance sets are of cardinality greater th{@a + 1)/2 occur in dimensions = 2, 6 and22.

2. POSITIVE DEFINITE MATRICES AND SDPBOUNDS
A semidefinite program is an optimization problem of the form
(6) max{(X,C)| X =0, (X, A;) =b,i=1,...,m},

whereX is ann x n variable matrix,44, ..., A,, andC are given Hermitian matrice§),, ..., b,,) is a given vector
and(X,Y) = trace(Y*X) is the inner product of two matrices. Semidefinite prograngms an extension of linear
programming that has found a range of applications in coatbiml optimization, control theory, distance geometry,
and coding theory. General introduction to semidefinitegpaioming is given, for instance, inl[5].

The main problem addressed by the SDP method in distanceaigois related to deriving bounds on the cardi-
nality of point sets in a metric space with a given set of properties such as a given minimum sejparaetween
distinct points in the set. The SDP method has its roots imbaic analysis of the isometry group of the metric space
in question. It is broadly applicable in both finite and cowtgafinite spaces. Examples of the former include the
Hamming and Johnson spaces, tlgegmalogs, other metric spaces on the set-afrings over a finite alphabet, as well
as the finite projective space. The main example in the ieftdse is given by real and complex spheres, although the
SDP method is also applicable in other compact homogengaaees. Working out the details in each example is a
nontrivial task that includes analysis of irreducible migdlin the space of functions: X — C under the action of
the isometry grougs of X. The zonal matrices that arise in this analysis initiallyégnkarge size that can be reduced
relying on symmetries arising from the group action. Thigegirise to an SDP optimization problem that is solved
by computer for a given set of dimensions (the numericalipaiso not straightforward and rather time-consuming).
Foundations and analysis of particular cases have beenlbfecs of a considerable number of research and overview
publications in the last decade; see in particular recewess [2) 1] and references therein.

The origins of the SDP method and the discussed applicatansbe traced back to the work of Delsaité [6]
which introduced the machinery of association schemesiatialysis of point configurations (codes) in finite spaces.
Delsarte derived linear programming (LP) bounds on theinalitly of a set of points in the space under the condition
on the minimum separation of distinct points in the set. Br¢ss results were linked to harmonic analysis and group
representations in the works of Delsarte, Goethals andeS&{for the cases™ ') and Kabatyansky and Levenshtein
[9] (for general compact symmetric spaces).

From now on we focus on the cage= S~ L. Let G,(C") (t),k =0,1,... denote the Gegenbauer polynomials of

degreé:. They are defined recursively as follow;%f)") =1, G&")(t) =t,and

(2k +n — DG (1) — (k — DG, (1)
k4+n-—3

G\ (1) = k> 2.

Delsarte et al.[]7] showed that for any finite set of poiits S ~!
) S Gy 20, k=12,....
(z,y)eC?

The proof of this inequality in[7] used the addition formtitat spherical harmonics. An earlier, geometric proof of
(@) had been given by Schoenbergl[19], although his work veagmown to researchers in the area discussed until at
least the 1990s.

Positivity conditions[{I7) give rise to the LP bound on thediaality of spherical two-distance sets.
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Theorem 2.1. (Delsarte et al[[7]LetC c S™~! be a finite set and suppose thaty € {a, b} for anyz,y € C. Then
IC| < Inax{l +ar+ay: 1 +o¢1Gl(-n)(a) +o¢2G§n)(b) >0,i=0,1,...,p;0; 20,5 = 1,2}.

In this theoremu;, a2 are the optimization variables that refer to the number déoed pairs of points i with
inner producte andb, respectively. For instance; = [C|'#{(z1,22) € C? : 21 - 22 = a}, This theorem is a
specialization of a more general LP bound on spherical cotlgs(9].

Applications of semidefinite programming in coding theondalistance geometry gained momentum after the
pioneering work of Schrijvel [20] that derived SDP boundsodes in the Hamming and Johnson spaces. Schijver’s
approach was based on the so-called Terwilliger algebitaechs$sociation scheme and formed a far-reaching general-
ization of the work of Delsarte [6]. Elements of the groundkfmr SDP bounds in the Hamming space were laid by
Dunkl [8], although this connection was also made somevdtat [21]. We refer td [13] for a detailed general survey
of the approach via association schemes and further refesen

SDP bounds for the real sphere were derived by Bachoc andriall[3] in the context of the kissing number
problem. The kissing numbeét(n) is the maximum number of unit spheres that can touch a unirsphithout
overlapping, i.e. the maximum number of points on the sphach that the angular separation between any pair of
them is at least /3. Following [3], define ap — k + 1) x (p — k + 1) matrixY;" (u, v, t), k > 0 by setting

(V3 (u, 0,))ig = u'o? (1 —u?)(1 — ”2>W2G’(“n_l)( (1 —tu_Q)u(i - v2))

wherep is a positive integer, and a matrb{ (u, v, t) by setting
(8) (u,v,t) ZYk o(u,v,t))

where the sum is over all permutations on 3 elements. Notg $§d1,1,1));; = 0 for all ¢, j and allk > 1. One of
the main results of 3] is that for any finite set of poidtg S™~*

9) Y Spaeyzzy-2) =0
(z,y,z)€C3
The matricesS} play the role of the constraint$; in the general SDP probleii](6). Positivity constraihis (8¢ gise
to a general SDP bound on the cardinality of point sets obthiim [3], where it was used to improve upper bounds on
k(n) in small dimensions. In the next section we state a speat#iz of this bound for the case of 2-distance sets.

As a final remark, we note that constrairts (7) arise from thestricted action oty on S™~. Constraints[(B)
are obtained by considering only actions that fix an arbjitgaven point on the sphere. Further SDP bounds can be
obtained by considering zonal matrices that arise fronoastthat fix any given number of points; however even for
two points, actual evaluation of the bounds requires sicanifi computational effort [1.4].

3. THE BOUNDS
The general SDP bound on spherical codeslof [3] specialivesrtcase as follows.

Theorem 3.1. LetC be a spherical two-distance set with inner produetand b. Letp be a positive integer. The
cardinality |C| is bounded above by the solution of the following semidefpritgramming problem:

(10) 1+ Y/3max(z1 + x2)
subject to
10 1/0 1 0 0
(11) (0 0) + g <1 1> (Il + IQ) + (0 1) (.CCg + T4 + x5 + Ig) t 0
(12) 3+ G (@) + G (), >0, i=1,2,....p

(13) Si(1,1,1) + Si'(a,a, 1)z +Si (b, b, 1)x2 + Si'(a,a,a)xs
+ S (a,a,b)xs + S} (a,b,b)xs + S;(b,b,b)xs =0, i=0,1,...,p

x;>0,j=1,...,6,

whereS;(-,-,-) are(p — i+ 1) x (p — i + 1) matrices defined ifg).
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In this theorem the variables , x5 refer to the number of ordered pairs of vector€iwith inner productz and
b respectively; namely we hawg = 3a;,i = 1, 2. We note that the SDP problem seeks to optimize the same linear
form as the LP problem, but adds more constraints on the agafign. Because of this, Theorém]3.1 usually gives
tighter bounds than Theordm R.1. This fact is evident froent#ble below and is also known from the calculation of
kissing numbers ir [3].

3-A. Calculation of the bound. Several remarks are in order. First, implementation of S&RwWo-distance sets
differs from earlier computations inl[8, 14] in that in ourseathere are no limits on the minimum separation of the
points. Next, we restrict our calculations to the cas€ 5 as no improvement is observed for larger values. Finally,
by a result Larman et al._[10], €| > 2n + 3 then the inner products b are related by = by (a) = (ka—1)/(k—1)
wherek € {2,..., (14 v/2n)/2]} is an integer. Thus we obtain a family of SDP bounds paramegtibya. Since
br(a) > —1,a+ bi(a) < 0, we getthat € I := [0, 57— ). Moreover, if—1 < b < a < 0, then|C| cannot be large
by the Rankin bound§[18], anddf+ b > 0 then|C| is bounded by[{3). We conclude as follows.

Theorem 3.2. Let SDRa) be the solution of the SDP problef@0)-(13), whereb = bi(a). LetC be a spherical
two-distance set with inner produaisb, then

nn+1)/2, a+b>0
IC| < < SDP(a), a €l
n+1, -1<b<a<.

For instance, fon = 23, k = 3 we obtain thatl, = [0,0.2). Partitioning/;, into a number of small segments, we
plot the value SDR:) as a function of: evaluated at the nodes of the partition. The result is showig.[1(a). A
part of the segment around the maximum appears irf Fig. 1th§.cbmputation gives an indication of the answer, but
in principle the value SDR:) could oscillate between the nodes of the partition. Rulig 6ut requires perturbation
analysis of the SDP problem which is notimmediate.

3-A.1. Dual problem. The dual problem of{10)J-(13) has the following form.

p
(14) 1 min {37 ai+ B + (R, SE(1L1L1) }
=1
subject to
ﬂll ﬂ22
(512 522) =0
p
(15) 212 + Baz + D (G (a) + 3(F}, S (a,a,1))) < —1
1=1
p
(16) 2012+ Boa + D _ (G (b) + 3(F3, SP(b,b,1))) < —1
=1
p
(17) Bz + Z<E75?(ylay2ay3)> <0
=0

Where(y17 Y2, y3) S {(aa a, a)a (a7 a, b)7 (aa b7 b)a (b7 ba b)}
a; 20, F; =0, i=1,...,p.

We need to estimate from above the maximum value of this proldvera € I, = [a;, a2]. Accounting for a
continuous value set of the parameter in SDP problems islengang task. We approach it by employing the sum-
of-squares method. Constrairis](15)}(17) impose pasitdanditions on some univariate polynomialsidbr a € Ij.
The following sequence of steps transforms the constreorgsmidefinite conditions. Observe that a polynoryiial)
of degree at most satisfiesf (a) > 0 for a € I} if and only if the polynomial of degree at madxt.

FHa) = (14 0 (B2 5

1+ a2
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for all @ € R. Next, a polynomial nonnegative on the entire real axis cawligen as a sum of squareg(z) =
>, 72(z), where ther; are polynomials. Further, by a result of Nesteriovi [17], aypomial f(z) of degree2m is
a sum of squares if and only if there exists a positive senmidefiatrix Q such thatf = XQX?, whereX =
(1,z,22,...,2™). Thus, constraint§ (15)-(17) can be transformed to semitefionditions.

As a result, we obtain an SDP problem that can be solved by atanpWe solved the resulting problem for
7 < n < 96 using the Matlab toolbox SOSTOOLS [22] in the YALMIP enviroant [12]. An advantage in using
SOSTOOLS is that it accepisas an SDP variable, thereby accounting for all the valuesrothe segment. Thus, we
obtain the valuenax SDP(a) a € I;,. However, this may impose excessive constraints on the wéline SDP problem
because all the conditions for different valuesiadre involved at the same time. To work around this accunanati
we use a sub-partitioning of the segméninto smaller segments. For each of them, SOSTOOLS outpetatfest
value of the minimum of the SDP problem over alin the segment. It turns out that, in many cases, the maximum
of these solutions is smaller thamx SDP(a)a € I, computed directly by the package. The estimates of the answe
computed from the primal problem serve as a guidance of tedetestep length of the partition. The solution of
the sum-of-squares SDP optimization problem provides @oigs proof for the estimates obtained by discretizing
the primal problem[{0)-(13). For instance, for= 23 we partition 3 into 20 subsegments, finding 276.5 as the
maximum value of the dual SDP problem foE I3, etc.

3-A.2. Results.The results of the calculation are summarized in the tadtab& he part of the table for < n < 40,
except for the values of the SDP bound, is from [15]. The inaproent provided by Theorelm 3.1 over the LP bound
is quite substantial even for relatively small dimensiofke LP bound is above(n + 1)/2 for n > 40 and is not
included starting with = 41. The cases = 46, 78 andn > 94 are not resolved by SDP, although for= 94 we still
obtain an improvement over the harmonic boddd (2). The valieshown in the table accounts for the largest value
of the SDP problem among the possible choice.oThis guarantees that the value SBPis equal to or smaller
than the number in the table for all the possible values oirther products:, b in the point set.

Notice that forn = 46, 78 the SDP bound coincides with the boufitl (2). ko 23 the results of[[15] leave two
possibilities,g(n) = 276 and 277. The SDP bound resolves this for the former, eskabtjgshe corresponding part
of the claim in[(3). As is seen from Fig. I[b), the largest eatti SDR«) is attained fom = 0.2 and is equal to 276.
This case corresponds to 276 equiangular lineB3h with anglearccos 0.2, which can be constructed either using
strongly regular graphs or the Leech lattice ($eé [11] foaithk).

Acknowledgmentie are grateful to Chao-Wei Chen and Johan Lofberg for gighificant help with the Matlab
implementation.
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FIGURE 1. Evaluation of the SDP bound @i23)
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Bounds on two-distance sets. The starred rows correspatichensions for which
the value ofg(n) is not known exactly.

n LP bound | SDP bound| n(n+1)/2 | k n SDP bound| n(n+1)/2 | k
7 28 28 28 2 52 1128 1378 4
8 31 28 36 2 53 1128 1431 4
9 34 29 45 2 54 1128 1485 4
10 37 29 55 2 55 1128 1540 4
11 40 29 66 2 56 1128 1596 4
12 44 28 78 2 57 1162 1653 2
13 47 29 91 3 58 1200 1711 2
14 52 35 105 2 59 1240 1770 2
15 56 41 120 3 60 1282 1830 2
16 61 50 136 3 61 1324 1891 2
17 66 60 153 3 62 1372 1953 2
18 76 75 171 3 63 1428 2016 2
19 96 95 190 3 64 1482 2080 2
20 126 124 210 3 65 1540 2145 2
21 176 174 231 3 66 1604 2211 2
22 275 275 253 3 67 1672 2278 2
23 277 276 276 3 68 1745 2346 2
24 280 276 300 3 69 1822 2415 2
25 284 276 325 3 70 1907 2485 2
26 288 276 351 3 71 1999 2556 2
27 294 276 378 3 72 2097 2628 2
28 299 276 406 3 73 2206 2701 2
29 305 276 435 3 74 2325 2775 2
30 312 276 465 3 75 2394 2850 2
31 319 276 496 3 76 2468 2926 2
32 327 276 528 3 7 2542 3003 2
33 334 276 561 3 78* 3159 3081 2
34 342 276 595 3 79 3160 3160 4
35 360 276 630 2 80 3160 3240 4
36 416 276 666 2 81 3160 3321 4
37 488 276 703 2 82 3160 3403 4
38 584 276 741 2 83 3160 3486 4
39 721 292 780 2 84 3185 3570 4
40 928 315 820 2 85 3294 3655 4
41 341 861 2 86 3408 3741 4
42 370 903 2 87 3522 3828 4
43 422 946 2 88 3645 3916 4
44 540 990 2 89 3749 4005 4
45 736 1035 2 90 3905 4095 4
46* 1127 1081 2 91 4038 4186 4
a7 1128 1128 2 92 4171 4278 4
48 1128 1176 2 93 4335 4371 4
49 1128 1225 2 94* 4492 4465 4
50 1128 1275 4 95* 4668 4560 4
51 1128 1326 4 96* 4828 4656 4
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