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NEW BOUNDS FOR SPHERICAL TWO-DISTANCE SETS

ALEXANDER BARG∗ AND WEI-HSUAN YU†

ABSTRACT. A spherical two-distance set is a finite collection of unit vectors inRn such that the distances between any two
distinct vectors assume only two values. We use the semidefinite programming method to compute improved estimates of
the maximum size of spherical two-distance sets. Exact answers are found for dimensionsn = 23 and40 ≤ n ≤ 93 (n 6=
46, 78) where previous results gave divergent bounds.

1. INTRODUCTION

This paper is devoted to the application of the semidefinite programming method to estimates of the size of the
largest possible two-distance set on the sphereSn−1(R). A spherical two-distance set is a finite collectionC of unit
vectors inRn such that the set of distances between any two distinct vectors in C has cardinality two. Estimating the
maximum sizeg(n) of such a set is a classical problem in distance geometry thathas been studied for several decades.

We begin with an overview of known results. A lower bound ong(n) is obtained as follows. Lete1, . . . , en+1 be
the standard basis inRn+1. The pointsei+ej, i 6= j form a spherical two-distance set in the planex1+· · ·+xn+1 = 2
(after scaling), and therefore

(1) g(n) ≥ n(n+ 1)/2, n ≥ 2.

The first major result for upper bounds was obtained by Delsarte, Goethals, and Seidel [7]. They proved that,
irrespective of the actual values of the distances, the following “harmonic” bound holds true:

(2) g(n) ≤ n(n+ 3)/2.

They also showed that this bound is tight for dimensionsn = 2, 6, 22 where it is attained by sets of equiangular lines.
Moreover, the results of [7], Bannai et al. [4], and Nebe and Venkov [16] imply thatg(n) can attain the harmonic
bound only ifn = (2m+ 1)2 − 3,m ≥ 1 with the exception of an infinite sequence of values ofm that begins with
m = 3, 4, 6, 10, 12, 22, 38, 30, 34, 42, 46. Therefore, unlessn is of the above form,g(n) ≤ n(n + 3)/2 − 1. These
results are proved using the link between 2-distance sets and tight spherical 4-designs established in [7].

Another advance in estimating the functiong(n) was made by Musin [15]. LetC = {z1, z2, . . . } and suppose that
zi · zj ∈ {a, b}, i 6= j, where2− 2a, 2− 2b are the values of the squared distances between the points. Musin proved
that

(3) |C| ≤ n(n+ 1)/2 if a+ b ≥ 0.

He then used Delsarte’s linear programming method to prove thatg(n) = n(n+ 1)/2 if 7 ≤ n ≤ 39, n 6= 22, 23.
Here we make another step for spherical two-distance sets, extending the range of dimensions in which the bound

(1) is tight. The state of the art forg(n) can be summarized as follows.

Theorem 1.1. We haveg(2) = 5, g(3) = 6, g(4) = 10, g(5) = 16, g(6) = 27, g(22) = 275,

n(n+ 1)/2 ≤g(n) ≤ n(n+ 3)/2− 1, n = 46, 78(4)

g(n) = n(n+ 1)/2, 7 ≤ n ≤ 93, n 6= 22, 46, 78,(5)

and4465 ≤ g(94) ≤ 4492. If n ≥ 95, theng(n) ≤ n(n + 3)/2 or n(n + 3)/2 − 1 as detailed in the remarks after
Eq. (2) above.
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The part of this theorem that is established in the present paper relates to dimensionsn = 23 and40 ≤ n ≤
94, n 6= 46, 78. Our results are computational in nature and are obtained using the semidefinite programming method.
The other parts of this theorem follow from the results in [7,4, 15, 16].

As far as actual constructions of spherical two-distance sets are concerned, rather little is known beyond the set of
midpoints of the edges of a regular simplex mentioned above.Another way of constructing such sets is to start with a
set of equiangular lines inRn [11]. If the angle between each pair of lines isα, then taking one point from each pair of
points onSn−1 defined by the line, we obtain a two-distance set witha = α, b = −α. The largest possible number of
equiangular lines inRn is n(n+ 1)/2 (this result is due to Gerzon, see [11]). This bound is attained forn = 3, 7, 23.
For instance, forn = 3 the set of 6 lines is obtained from 6 diagonals of the icosahedron, which gives many ways of
constructing inequivalent spherical two-distance sets ofcardinality 6. The only three instances in which the known
spherical two-distance sets are of cardinality greater than n(n+ 1)/2 occur in dimensionsn = 2, 6 and22.

2. POSITIVE DEFINITE MATRICES AND SDPBOUNDS

A semidefinite program is an optimization problem of the form

(6) max{〈X,C〉| X � 0, 〈X,Ai〉 = bi, i = 1, . . . ,m},

whereX is ann× n variable matrix,A1, . . . , Am andC are given Hermitian matrices,(b1, . . . , bm) is a given vector
and〈X,Y 〉 = trace(Y ∗X) is the inner product of two matrices. Semidefinite programming is an extension of linear
programming that has found a range of applications in combinatorial optimization, control theory, distance geometry,
and coding theory. General introduction to semidefinite programming is given, for instance, in [5].

The main problem addressed by the SDP method in distance geometry is related to deriving bounds on the cardi-
nality of point sets in a metric spaceX with a given set of properties such as a given minimum separation between
distinct points in the set. The SDP method has its roots in harmonic analysis of the isometry group of the metric space
in question. It is broadly applicable in both finite and compact infinite spaces. Examples of the former include the
Hamming and Johnson spaces, theirq-analogs, other metric spaces on the set ofn-strings over a finite alphabet, as well
as the finite projective space. The main example in the infinite case is given by real and complex spheres, although the
SDP method is also applicable in other compact homogeneous spaces. Working out the details in each example is a
nontrivial task that includes analysis of irreducible modules in the space of functionsf : X → C under the action of
the isometry groupG of X . The zonal matrices that arise in this analysis initially have large size that can be reduced
relying on symmetries arising from the group action. This gives rise to an SDP optimization problem that is solved
by computer for a given set of dimensions (the numerical partis also not straightforward and rather time-consuming).
Foundations and analysis of particular cases have been the subject of a considerable number of research and overview
publications in the last decade; see in particular recent surveys [2, 1] and references therein.

The origins of the SDP method and the discussed applicationscan be traced back to the work of Delsarte [6]
which introduced the machinery of association schemes in the analysis of point configurations (codes) in finite spaces.
Delsarte derived linear programming (LP) bounds on the cardinality of a set of points in the space under the condition
on the minimum separation of distinct points in the set. Delsarte’s results were linked to harmonic analysis and group
representations in the works of Delsarte, Goethals and Seidel [7] (for the caseSn−1) and Kabatyansky and Levenshtein
[9] (for general compact symmetric spaces).

From now on we focus on the caseX = Sn−1. Let G(n)
k (t), k = 0, 1, . . . denote the Gegenbauer polynomials of

degreek. They are defined recursively as follows:G
(n)
0 ≡ 1, G

(n)
1 (t) = t, and

G
(n)
k (t) =

(2k + n− 4)tG
(n)
k−1(t)− (k − 1)G

(n)
k−2(t)

k + n− 3
, k ≥ 2.

Delsarte et al. [7] showed that for any finite set of pointsC ⊂ Sn−1

(7)
∑

(x,y)∈C2

G
(n)
k (x · y) ≥ 0, k = 1, 2, . . . .

The proof of this inequality in [7] used the addition formulafor spherical harmonics. An earlier, geometric proof of
(7) had been given by Schoenberg [19], although his work was not known to researchers in the area discussed until at
least the 1990s.

Positivity conditions (7) give rise to the LP bound on the cardinality of spherical two-distance sets.
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Theorem 2.1. (Delsarte et al. [7])LetC ⊂ Sn−1 be a finite set and suppose thatx · y ∈ {a, b} for anyx, y ∈ C. Then

|C| ≤ max
{

1 + α1 + α2 : 1 + α1G
(n)
i (a) + α2G

(n)
i (b) ≥ 0, i = 0, 1, . . . , p;αj ≥ 0, j = 1, 2

}

.

In this theoremα1, α2 are the optimization variables that refer to the number of ordered pairs of points inC with
inner producta andb, respectively. For instance,α1 = |C|−1♯{(z1, z2) ∈ C2 : z1 · z2 = a}, This theorem is a
specialization of a more general LP bound on spherical codesof [7, 9].

Applications of semidefinite programming in coding theory and distance geometry gained momentum after the
pioneering work of Schrijver [20] that derived SDP bounds oncodes in the Hamming and Johnson spaces. Schijver’s
approach was based on the so-called Terwilliger algebra of the association scheme and formed a far-reaching general-
ization of the work of Delsarte [6]. Elements of the groundwork for SDP bounds in the Hamming space were laid by
Dunkl [8], although this connection was also made somewhat later [21]. We refer to [13] for a detailed general survey
of the approach via association schemes and further references.

SDP bounds for the real sphere were derived by Bachoc and Vallentin [3] in the context of the kissing number
problem. The kissing numberk(n) is the maximum number of unit spheres that can touch a unit sphere without
overlapping, i.e. the maximum number of points on the spheresuch that the angular separation between any pair of
them is at leastπ/3. Following [3], define a(p− k + 1)× (p− k + 1) matrixY n

k (u, v, t), k ≥ 0 by setting

(Y n
k (u, v, t))ij = uivj((1− u2)(1 − v2))k/2G

(n−1)
k

( t− uv
√

(1 − u2)(1− v2)

)

wherep is a positive integer, and a matrixSn
k (u, v, t) by setting

(8) Sn
k (u, v, t) =

1

6

∑

σ

Y n
k (σ(u, v, t)),

where the sum is over all permutations on 3 elements. Note that (Sn
k (1, 1, 1))ij = 0 for all i, j and allk ≥ 1. One of

the main results of [3] is that for any finite set of pointsC ⊂ Sn−1

(9)
∑

(x,y,z)∈C3

Sn
k (x · y, x · z, y · z) � 0

The matricesSn
k play the role of the constraintsAi in the general SDP problem (6). Positivity constraints (8) give rise

to a general SDP bound on the cardinality of point sets obtained in [3], where it was used to improve upper bounds on
k(n) in small dimensions. In the next section we state a specialization of this bound for the case of 2-distance sets.

As a final remark, we note that constraints (7) arise from the unrestricted action ofG on Sn−1. Constraints (8)
are obtained by considering only actions that fix an arbitrary given point on the sphere. Further SDP bounds can be
obtained by considering zonal matrices that arise from actions that fix any given number of points; however even for
two points, actual evaluation of the bounds requires significant computational effort [14].

3. THE BOUNDS

The general SDP bound on spherical codes of [3] specializes to our case as follows.

Theorem 3.1. Let C be a spherical two-distance set with inner productsa and b. Let p be a positive integer. The
cardinality |C| is bounded above by the solution of the following semidefinite programming problem:

(10) 1 + 1/3max(x1 + x2)

subject to

(11)

(

1 0
0 0

)

+
1

3

(

0 1
1 1

)

(x1 + x2) +

(

0 0
0 1

)

(x3 + x4 + x5 + x6) � 0

(12) 3 +G
(n)
i (a)x1 +G

(n)
i (b)x2 ≥ 0, i = 1, 2, . . . , p

Sn
i (1, 1, 1) + Sn

i (a, a, 1)x1+Sn
i (b, b, 1)x2 + Sn

i (a, a, a)x3(13)

+ Sn
i (a, a, b)x4 + Sn

i (a, b, b)x5 + Sn
i (b, b, b)x6 � 0, i = 0, 1, . . . , p

xj ≥ 0, j = 1, . . . , 6,

whereSi(·, ·, ·) are (p− i+ 1)× (p− i+ 1) matrices defined in(8).
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In this theorem the variablesx1, x2 refer to the number of ordered pairs of vectors inC with inner producta and
b respectively; namely we havexi = 3αi, i = 1, 2. We note that the SDP problem seeks to optimize the same linear
form as the LP problem, but adds more constraints on the configuration. Because of this, Theorem 3.1 usually gives
tighter bounds than Theorem 2.1. This fact is evident from the table below and is also known from the calculation of
kissing numbers in [3].

3-A. Calculation of the bound. Several remarks are in order. First, implementation of SDP for two-distance sets
differs from earlier computations in [3, 14] in that in our case there are no limits on the minimum separation of the
points. Next, we restrict our calculations to the casep ≤ 5 as no improvement is observed for larger values. Finally,
by a result Larman et al. [10], if|C| ≥ 2n+3 then the inner productsa, b are related byb = bk(a) = (ka−1)/(k−1)

wherek ∈ {2, . . . , ⌊(1 +
√
2n)/2⌋} is an integer. Thus we obtain a family of SDP bounds parametrized bya. Since

bk(a) ≥ −1, a+ bk(a) < 0, we get thata ∈ Ik := [0, 1
2k−1 ). Moreover, if−1 ≤ b < a ≤ 0, then|C| cannot be large

by the Rankin bounds [18], and ifa+ b ≥ 0 then|C| is bounded by (3). We conclude as follows.

Theorem 3.2. Let SDP(a) be the solution of the SDP problem(10)-(13), whereb = bk(a). Let C be a spherical
two-distance set with inner productsa, b, then

|C| ≤











n(n+ 1)/2, a+ b ≥ 0

SDP(a), a ∈ Ik

n+ 1, −1 ≤ b < a < 0.

For instance, forn = 23, k = 3 we obtain thatIk = [0, 0.2). PartitioningIk into a number of small segments, we
plot the value SDP(a) as a function ofa evaluated at the nodes of the partition. The result is shown in Fig. 1(a). A
part of the segment around the maximum appears in Fig. 1(b). This computation gives an indication of the answer, but
in principle the value SDP(a) could oscillate between the nodes of the partition. Ruling this out requires perturbation
analysis of the SDP problem which is not immediate.

3-A.1. Dual problem.The dual problem of (10)-(13) has the following form.

(14) 1 + min
{

p
∑

i=1

αi + β11 + 〈F0, S
n
0 (1, 1, 1)〉

}

subject to
(

β11 β22

β12 β22

)

� 0

(15) 2β12 + β22 +

p
∑

i=1

(αiG
(n)
i (a) + 3〈Fi, S

n
i (a, a, 1)〉) ≤ −1

(16) 2β12 + β22 +

p
∑

i=1

(αiG
(n)
i (b) + 3〈Fi, S

n
i (b, b, 1)〉) ≤ −1

β22 +

p
∑

i=0

〈Fi, S
n
i (y1, y2, y3)〉 ≤ 0(17)

where(y1, y2, y3) ∈ {(a, a, a), (a, a, b), (a, b, b), (b, b, b)}
αi ≥ 0, Fi � 0, i = 1, . . . , p.

We need to estimate from above the maximum value of this problem overa ∈ Ik = [a1, a2]. Accounting for a
continuous value set of the parameter in SDP problems is a challenging task. We approach it by employing the sum-
of-squares method. Constraints (15)-(17) impose positivity conditions on some univariate polynomials ofa for a ∈ Ik.
The following sequence of steps transforms the constraintsto semidefinite conditions. Observe that a polynomialf(a)
of degree at mostm satisfiesf(a) ≥ 0 for a ∈ Ik if and only if the polynomial of degree at most2m

f+(a) = (1 + a2)mf
(a1 + a2a

2

1 + a2

)

≥ 0
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for all a ∈ R. Next, a polynomial nonnegative on the entire real axis can bewritten as a sum of squares,f(x) =
∑

i r
2
i (x), where theri are polynomials. Further, by a result of Nesterov [17], a polynomialf(x) of degree2m is

a sum of squares if and only if there exists a positive semidefinite matrixQ such thatf = XQXt, whereX =
(1, x, x2, . . . , xm). Thus, constraints (15)-(17) can be transformed to semidefinite conditions.

As a result, we obtain an SDP problem that can be solved by computer. We solved the resulting problem for
7 ≤ n ≤ 96 using the Matlab toolbox SOSTOOLS [22] in the YALMIP environment [12]. An advantage in using
SOSTOOLS is that it acceptsa as an SDP variable, thereby accounting for all the values ofa in the segment. Thus, we
obtain the valuemaxSDP(a), a ∈ Ik. However, this may impose excessive constraints on the valueof the SDP problem
because all the conditions for different values ofa are involved at the same time. To work around this accumulation,
we use a sub-partitioning of the segmentIk into smaller segments. For each of them, SOSTOOLS outputs the largest
value of the minimum of the SDP problem over alla in the segment. It turns out that, in many cases, the maximum
of these solutions is smaller thanmaxSDP(a), a ∈ Ik computed directly by the package. The estimates of the answer
computed from the primal problem serve as a guidance of the needed step length of the partition. The solution of
the sum-of-squares SDP optimization problem provides a rigorous proof for the estimates obtained by discretizing
the primal problem (10)-(13). For instance, forn = 23 we partitionI3 into 20 subsegments, finding 276.5 as the
maximum value of the dual SDP problem fora ∈ I3, etc.

3-A.2. Results.The results of the calculation are summarized in the table below. The part of the table for7 ≤ n ≤ 40,
except for the values of the SDP bound, is from [15]. The improvement provided by Theorem 3.1 over the LP bound
is quite substantial even for relatively small dimensions.The LP bound is aboven(n + 1)/2 for n ≥ 40 and is not
included starting withn = 41. The casesn = 46, 78 andn ≥ 94 are not resolved by SDP, although forn = 94 we still
obtain an improvement over the harmonic bound (2). The valueof k shown in the table accounts for the largest value
of the SDP problem among the possible choices ofk. This guarantees that the value SDP(a) is equal to or smaller
than the number in the table for all the possible values of theinner productsa, b in the point set.

Notice that forn = 46, 78 the SDP bound coincides with the bound (2). Forn = 23 the results of [15] leave two
possibilities,g(n) = 276 and 277. The SDP bound resolves this for the former, establishing the corresponding part
of the claim in (5). As is seen from Fig. 1(b), the largest value of SDP(a) is attained fora = 0.2 and is equal to 276.
This case corresponds to 276 equiangular lines inR23 with anglearccos 0.2, which can be constructed either using
strongly regular graphs or the Leech lattice (see [11] for details).

Acknowledgment:We are grateful to Chao-Wei Chen and Johan Löfberg for theirsignificant help with the Matlab
implementation.
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FIGURE 1. Evaluation of the SDP bound ong(23)
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Bounds on two-distance sets. The starred rows correspond todimensions for which
the value ofg(n) is not known exactly.

n LP bound SDP bound n(n+ 1)/2 k n SDP bound n(n+ 1)/2 k

7 28 28 28 2 52 1128 1378 4
8 31 28 36 2 53 1128 1431 4
9 34 29 45 2 54 1128 1485 4
10 37 29 55 2 55 1128 1540 4
11 40 29 66 2 56 1128 1596 4
12 44 28 78 2 57 1162 1653 2
13 47 29 91 3 58 1200 1711 2
14 52 35 105 2 59 1240 1770 2
15 56 41 120 3 60 1282 1830 2
16 61 50 136 3 61 1324 1891 2
17 66 60 153 3 62 1372 1953 2
18 76 75 171 3 63 1428 2016 2
19 96 95 190 3 64 1482 2080 2
20 126 124 210 3 65 1540 2145 2
21 176 174 231 3 66 1604 2211 2
22 275 275 253 3 67 1672 2278 2
23 277 276 276 3 68 1745 2346 2
24 280 276 300 3 69 1822 2415 2
25 284 276 325 3 70 1907 2485 2
26 288 276 351 3 71 1999 2556 2
27 294 276 378 3 72 2097 2628 2
28 299 276 406 3 73 2206 2701 2
29 305 276 435 3 74 2325 2775 2
30 312 276 465 3 75 2394 2850 2
31 319 276 496 3 76 2468 2926 2
32 327 276 528 3 77 2542 3003 2
33 334 276 561 3 78∗ 3159 3081 2
34 342 276 595 3 79 3160 3160 4
35 360 276 630 2 80 3160 3240 4
36 416 276 666 2 81 3160 3321 4
37 488 276 703 2 82 3160 3403 4
38 584 276 741 2 83 3160 3486 4
39 721 292 780 2 84 3185 3570 4
40 928 315 820 2 85 3294 3655 4
41 341 861 2 86 3408 3741 4
42 370 903 2 87 3522 3828 4
43 422 946 2 88 3645 3916 4
44 540 990 2 89 3749 4005 4
45 736 1035 2 90 3905 4095 4
46∗ 1127 1081 2 91 4038 4186 4
47 1128 1128 2 92 4171 4278 4
48 1128 1176 2 93 4335 4371 4
49 1128 1225 2 94∗ 4492 4465 4
50 1128 1275 4 95∗ 4668 4560 4
51 1128 1326 4 96∗ 4828 4656 4
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