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TOWARDS PARAMETRIZING WORD EQUATIONS
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2
and G.S. Makanin

3

Abstract. Classically, in order to resolve an equation u ≈ v over a
free monoid X∗, we reduce it by a suitable family F of substitutions
to a family of equations uf ≈ vf , f ∈ F , each involving less variables
than u ≈ v, and then combine solutions of uf ≈ vf into solutions of
u ≈ v. The problem is to get F in a handy parametrized form. The
method we propose consists in parametrizing the path traces in the so
called graph of prime equations associated to u ≈ v. We carry out such
a parametrization in the case the prime equations in the graph involve
at most three variables.

Résumé. De façon classique, on résout une équation u ≈ v dans le
monöıde libre X∗ en la réduisant par une famille convenable F de
substitutions en une famille d’équations uf ≈ vf , f ∈ F , chacune en
moins de variables que u ≈ v, et ensuite en combinant des solutions
des uf ≈ vf pour obtenir des solutions de u ≈ v. Le problème qui se
pose alors est d’obtenir F sous une forme commode paramétrisée. La
méthode que nous proposons est basée sur la paramétrisation des traces
des chemins dans le graphe des équations premières associé à u ≈ v.
Nous effectuons une telle paramétrisation dans le cas où les équations
premières dans le graphe contiennent au plus trois variables.
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Introduction

We try to address the long standing and non solved problem in word equations
of getting a “good presentation” of all the solutions of an equation. The early at-
tempts in this direction aimed at how to systematically generate solutions. Lentin
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[3] and Plotkin [7] presented a simple semi-algorithm to get all most general uni-
fiers in case of solvable equations, Jaffar [1] did the same for the case of generalized
equations as defined by Makanin [5].

However, what we really dream about is to describe the solutions in a closed
form, by means of expressions involving variables, handy to work with.

Things would be nice indeed if the solutions of an arbitrary word equation
could be represented – as it happens sometimes – by a finite number of parametric
formulas, involving a finite number of constants, of word variables, and of natural
parameters ranging over the set of naturals N. As Hmelevskĭı [2] has pointed out,
however, this type of parametrization would not work beyond the classe of the
equations in at most three variables.

Still, the idea of parametrizing equations (i.e. the solutions thereof) can be
saved if we admit parameters ranging not only over N or over a finite cartesian
power of N, but over the free monoid (Nm)∗ of strings of m-tuples of naturals, or
over the free monoid of strings of strings of naturals (N∗)∗, and so on.

Typically, such parameters appear when we try to enumerate the elements of a
monoid M generated by a parametric family of elements of M . For example, if M
is generated by a sequence c1, . . . , cm of generators then it can very conveniently
be parametrized by the morphism Φ : (Nm)∗ → M such that Φ(n1, . . . , nm) =
cn1
1 · · · cnmm for all (n1, . . . , nm) ∈ Nm.

This is, roughly, the idea we are going to apply, along the lines of the research
programme proposed by Makanin [6], to families of elementary substitutions read
out from the so called graph of prime equations associated to the equation to
be solved. The graph in question will be treated piecewise, by dividing it into
easily parametrisable parts called realms, in order to obtain a parametric family
of substitutions taking the equation to equations involving less variables.

We demonstrate the practical usefulness of this method by applying it to the
class of the equations without constants whose graphe of prime equations involves
at most three variables. To confirm the method in general is a matter of further
research.

In order to make the paper practically self contained, we bring all the neces-
sary background in Sections 1 through 3. Section 4 describes the realms in the
graph of prime equations in three variables and Section 5 paves the way towards
parametrizing a family of substitutions efficiently reducing an equation with a
three-variable prime equation.

1. Equations and solutions

The free monoid of words over a set A of symbols will be denoted by A∗, its
empty word by 1, the length of w ∈ A∗ by |w|, the number of occurrences of a ∈ A
in w by |w|a, and the set of symbols occurring in w by alph(w).

The monoid A∗ is cancellable, sut = svt⇒ u = v, prefix ordered, u ≤ v ⇔ ∃w ∈
A∗ (v = uw), and equidivisible, u ≤ w and v ≤ w ⇒ u ≤ v or u = v or v ≤ u.
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A morphism f : A∗ → B∗ of the free monoid A∗ into another free monoid B∗

is completely determined by an assignment of word values in B∗ to the symbols of
A, written as (a 7→ af)a∈A.

In particular, any endomorphism f of A∗ which leaves all but finitely many
symbols fixed is called a substitution and is easily described by just giving the
arrows a 7→ af for a ∈ Dom(f) = {a ∈ A | af 6= a}.

The composite of a pair of morphisms f : A∗ → B∗ and g : B∗ → C∗ will be
written right-hand, as fg : A∗ → C∗.

A morphism g : A∗ → B∗ divides on the left a morphism f : A∗ → C∗ if f = gh
for some morphism h : B∗ → C∗.

In order to be able to formulate arbitrary word equations, we fix a countably
infinite set X of word variables and build up the free monoid X∗ of words called
terms.

Every term u, together with its alphabet ordered into a sequence, alph(u) =
{x1, . . . , xn}, defines a function ϕ : (X∗)n → X∗ such that ϕ(u1, . . . , un) =
f(u), where f ∈ End(X∗) is the substitution (xi 7→ ui)1≤i≤n. We have then
ϕ(x1, . . . , xn) = u, which is another way to write the term u.

An equation E is defined as a pair (u, v) of terms u, v ∈ X∗, often written
as a single word u ≈ v, with the special symbol ≈ as separator. The alphabet
of E = (u ≈ v) is then defined as alph(E) = alph(uv), and the length of E as
|E| = |uv| (the symbol ≈ does not count).

A pair of equations E1 = (u1 ≈ v1) and E2 = (u2 ≈ v2) can be multiplied into
E = E1E2 = (u1u2 ≈ v1v2). By abuse, we then call E1 a prefix equation and E2

a suffix equation of E.
An equation E = (u ≈ v) is called trivial if its terms are equal (some authors

say ‘graphically equal’ or ‘coinciding’), written u = v. Also, more generally, an
equation E = (u ≈ v) is called commutatively trivial (or balanced) if |u|x = |v|x
for every x ∈ X , and, semilattice trivial if alph(u) = alph(v).

Given an arbitrary free monoid A∗, a solution of E = (u ≈ v) in A∗ is an
arbitrary monoid morphism f : X∗ → A∗ taking the terms of E to equal words
uf = vf . In particular, an endomorphism f ∈ End(X∗) is a solution of E if the
image Ef = (uf ≈ vf) of E by f is a trivial equation. Obviously, transposing the
terms of E = (u ≈ v) we get of E′ = (v ≈ u) with exactly the same solutions.

The word variables only can take up words for values. This semantic restric-
tion is important, because special properties of free monoids, like cancellation or
equidivisibility, may enter into play. Without these strong properties only very
little could be said about word equations.

One immediate consequence of the cancellation property is that for any s, t, u, v ∈
X∗, the equations u ≈ v and sut ≈ svt have the same solutions. This enables us
to replace, as far as solutions are concerned, any equation E by its left cancelled
form lc(E) obtained from E by cancelling its maximal trivial prefix equation. An
equation E will be called left cancelled if E = lc(E).

Every nontrivial equation of the form x1 · · ·xm ≈ 1, where x1, · · · , xm ∈ X , has
for solutions in A∗ all morphisms f : X∗ → A∗ such that x1f = . . . = xmf = 1.
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This permits us to restrict our attention only to the left cancelled equations with
both of its terms non-void. Every such equation E is of the form xu ≈ yv, where
u, v ∈ X∗, x, y ∈ X , and x 6= y. The two distinct variables x and y are the so
called pivots of E, written pivot(E) = {x, y}.

If E = (u ≈ v) is cancelled but not semilattice trivial then we can always
multiply it on the right by a suitable term t, so as to get a left cancelled and
semilattice trivial equation F = (ut ≈ vt). By the cancellation property again, F
has the same solutions as E.

All told, we need only consider the following more restricted set of equations.

Definition 1. The symbol E wil designate throughout the set of all left cancelled
semilattice trivial equations over X∗.

Note that E is a monoid under the product of equations, with 1 ≈ 1 the identity.
Here comes one of our key notions.

Definition 2. An equation E ∈ E is a prime equation if no non-trivial proper
prefix of E is in E. Put otherwise, if E = E1E2 for E1 ∈ E and E1 6= (1 ≈ 1) then
E2 = (1 ≈ 1).

Clearly, every non-trivial equation E ∈ E has a unique prime prefix equation.

To conclude with, call F similar to E = (u ≈ v), written E ∼= F , if F = (uh ≈
vh) for some automorphism h of X∗. The solutions f of F then correspond, in an
obvious way, bijectively to the solutions hf of E.

2. Universality

Any solution f : X∗ → A∗ of a given equation E generates a host of new
solutions of E of the form fg, with g : A∗ → B∗ an arbitrary morphism of free
monoids. In this way, a relatively small family of solutions of E may determine
all the rest of them.

Definition 3. A family F of endomorphisms of the free monoid X∗ is called
universal for an equation E if every solution of E is divided on the left by a
member of F . If, moreover, every f ∈ F is a solution of E then F is called a
universal family of solutions of E and the equation E is said to be universally
solved by F .

Remark. A universal family of solutions of E is called a general solution of E if
it is minimal, in the sense that no proper subfamily of F is universal. However,
we are not concerned here with this property.

Here are some examples of universal solutions.

Proposition 1. Every equation x ≈ w such that x ∈ X \ alph(w) is universally
solved by the substitution x 7→ w.

Proposition 2. Every nontrivial equation xm ≈ xn, with x ∈ V and m 6= n, is
universally solved by the substitution x 7→ 1.
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Proposition 3. The equation E = (xz ≈ zy) is universally solved by the union
of

{(x 7→ zx, y 7→ xz, z 7→ (zx)mz) | m ≥ 0}
and

{(x 7→ xr, y 7→ xr, z 7→ xs) | r, s ≥ 0}·
Proposition 4 (Hmelevskĭı). The equation E = (yxz ≈ zyx) is universally solved
by

{(x 7→ (xy)ix, y 7→ (yx)jy, z 7→ (yx)k) | i, j, k ≥ 0}
together with

{(x 7→ 1, y 7→ 1, z 7→ xk) | k ≥ 0}·
Let us now examine the notion of universal family of endomorphisms. If well
chosen, a universal family F may take E to a family of equations EF = {Ef |
f ∈ F} which are easier to solve (e.g. involving less variables or in some other
way simpler). Moreover, this kind of reduction can be iterated, according to the
following mechanism of cascade composition.

Proposition 5. Let F ⊆ End(X∗) be a universal family of endomorphisms for
E, and, for every f ∈ F , let Gf be a universal family of endomorphisms for Ef .
Then the family

G =
⋃
{fGf | f ∈ F}

is a universal family of endomorphisms for E. If, moreover, every Gf is a universal
family of solutions of Ef then G is a universal family of solutions of E.

Thus, finding a suitable universal family of endomorphisms for E may be seen
as a simpler problem than resolution, a step towards a universal family of solutions
of E.

The following well known result (cf. [4]), though of limited practical use, nicely
illustrates the idea of reduction via universal family.

Theorem 2.1 (Defect theorem). Let E = (u, v) be a non trivial equation with
alph(E) = {x1, . . . , xn}. Then the family F of all substitutions f such that
Dom(f) = alph(E) and alph(xf) ⊆ {x1, . . . , xn−1} for x ∈ alph(E) is univer-
sal for E.

The family F of this theorem becomes intractable as soon as E involves three
or more variables. However, if alph(E) = {x, y} then the family is

F = {fij = (x 7→ xi, y 7→ xj) | i, j ≥ 0}

and its members take E to

Efij = (xi|u|x+j|u|y ≈ xi|v|x+j|v|y ),

which is trivial if and only if

i(|u|x − |v|x) = j(|u|y − |v|y).
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Proposition 6. Every equation E = (u ≈ v) with alph(E) = {x, y} is universally
solved by the family of substitutions

{(x 7→ xi, y 7→ xj) | i(|u|x − |v|x) = j(|u|y − |v|y), i, j ≥ 0}·

For the equations involving more than two variables, however, more elaborate
methods are needed.

3. Pivotings and deletions, realms

A classical way to treat an equation E ∈ E is to transform it into lc(Ef) by
either a pivoting f = (x 7→ yx) or by a deletion f = (x 7→ 1), where x, y ∈ pivot(E).

The pivotings and deletions represented by labelled arrows E
f→ F from E to

F = lc(Ef) structure E into a graph that will be denoted by EPD. The subgraph
on E defined by the pivotings only will be denoted by EP .

In EPD, exactly four labelled arrows issue from every non-trivial equation E ∈ E
with pivot(E) = {x, y}. Their four labels

{(x 7→ yx), (y 7→ xy), (x 7→ 1), (y 7→ 1)}

may without danger be abbreviated to yx, xy, x, y, respectively.
The four substitutions labelling the arrows issued from E turn out to be a

universal family for E. Moreover, dividing out a solution g : X∗ → A∗ of E by a
member f of the family may take it to a solution of Ef reduced in terms of the
norm defined by

‖g‖E =
∑

x∈alph(E)

|xg|+ |alph(E)|.

Proposition 7. For every non-trivial equation E ∈ E and for every solution g :
X∗ → A∗ of E, there exists an arrow E

f→ F and a solution h : X∗ → A∗ of F
such that g = fh and ‖h‖F < ‖g‖E.

Proof. If E = (xu ≈ yv) then xg and yg are prefixes of (xu)g = (yv)g, thus by
equidivisibility, one is a prefix of the other one. Assume that xg = (yg)w, for
some w ∈ A∗. Now, if w 6= 1 6= yg then we have g = fh for f = (x 7→ yx) and
h : X∗ → A∗ such that xh = w and zh = zg for z 6= x; if w = 1 or yg = 1 then
g = fh for f = (y 7→ 1) and h = g.

In both cases, h is a solution of Ef , thus also of F = lc(Ef). Moreover, we have
‖h‖F < ‖g‖E, because in the first case |xh| = |xg| − |yg| and alph(F ) = alph(E),
and in the second alph(F ) = alph(E) \ {y}. 2

Every path

E0
f1→ E1

f2→ . . .
fk→ Ek

in EPD defines a composite substitution f1 · · · fk (the identity if k = 0), called the
trace of the path.
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Theorem 3.1. For any equation E ∈ E, the traces of the paths from E to the
trivial equation 1 ≈ 1 form a universal family of solutions of E.

Proof. Clearly, every trace of a path from E to 1 ≈ 1 is a solution of E. To prove
the universality of the family, we proceed by the induction on norm.

The assertion is true for 1 ≈ 1. Consider a non-trivial E ∈ E and a solution
g : X∗ → A∗ of E, assuming the assertion true for all F ∈ E admitting a solution
h : X∗ → A∗ such that ‖h‖F < ‖g‖E. The arrow E

f→ F and the solution h of
F of Proposition 7 is such. By the hypothesis, there is a path from F to 1 ≈ 1
whose trace f1 · · · fk divides h, say, h = f1 · · · fk ·h′. Now, we have g = fh, whence
g = f · f1 · · · fk · h′ and f · f1 · · · fk is a trace of a path from E to 1 ≈ 1. 2

We will explore the graph EPD with the aid of the following graph-theoretical
notion.

Definition 4. A subgraph R of a graph G is a realm in G if
1. R is a union of strongly connected components of G;
2. R contains a vertex from which all vertices of R are reachable in R;
3. and every path in G conecting two vertices of R is entirely contained in R.

An escape arrow from R is an arrow from a vertex in R to a vertex outside R.
An escape path from R starts at a vertex in R and is terminated by an escape

arrow from R.

The following is a straightforward corollary of Theorem 3.1.

Proposition 8. Let R be a realm in EPD such that E ∈ R and T /∈ R. Then
the traces of the escape paths from R starting at E form a universal family of
substitutions for E.

Some realms in EPD can be defined in terms of pivotings only.

Proposition 9. Every realm R in EP is a realm in EPD.

Proof. If R is a realm in EP then, for some E ∈ R, all F ∈ R are accessible by
a path of pivotings from E, whence alph(F ) = alph(E). But then every path in
EP connecting two vertices of R consists of pivotings only, hence all its vertices
belong to R. 2

The equations of the graph of pivotings EP can be divided into the classes [E]
of equations having the same prime prefix equation as E. We will call [E] the cap
of E and write [E] = u2v when the prime prefix equation of E is u ≈ v. The
variables in alph(uv) then will be refered to as the cap variables.

Proposition 10. If F ∈ [E] then pivot(F ) = pivot(E) and [lc(Ff)] = [lc(Ef)]
for any pivoting f defined at E.

Put otherwise, we have a factorization E 7→ [E] of the graph of pivotings EP
onto the graph of cap pivotings [EP ], defined by the arrows [E]

f→ [F ] for E
f→ F

in EP .
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The use we are going to make of this factorization appears clearly in the fol-
lowing proposition:

Proposition 11. For any realm S in [EP ], its inverse image under the factoriza-
tion, R = {F ∈ EP | [F ] ∈ S}, is a realm in EPD. For E ∈ R, the traces of the
escape paths from R starting at E are exactly the traces of the escape paths from
S starting at [E] plus the traces of the paths from [E] to all [F ] ∈ S composed with
a deletion defined at F .

In this way, the search for universal families may essentially be carried out
within the quotient graph [EP ], with a particular attention to its strong components
as building blocs of realms and to the way they are related by the escape arrows.

The task is, however, for the whole graph [EP ], very technical and difficult. For
this reason we will have it carried out only for a relatively small portion of [EP ].
Those who envisage to build a cathedral are adwised first to try to construct a
cage for birds.

4. Caps in three variables

In this section we will apply the methods we have developed so far to the caps
involving at most three cap variables. Given such a cap, we can always rename
the three variables into x, y and z. Moreover, permuting the latter we can give
every cap a more restricted form.

Proposition 12. Every cap [E] in two variables is isomorphic to one of the fol-
lowing three forms:

xy2yx, xm+2y2yx, xm+2y2yn+2x.

Every cap [F ] in three variables is isomorphic to a cap of one of the following two
forms:

xϕ(x, y)z2yψ(y, z)x (y-cap),

xϕ(x, y)z2zχ(y, z)x (z-cap),
where ϕ and χ contain y and ψ contains z.

Proof. Renaming the variables, we can bring the left term of [F ] to the form
xϕ(x, y)z. The right term then has one of the three forms yψ(y, z)x, zχ(y, z)x,
or zτ(x, z)y. However, the cap xϕ(x, y)z2zτ(x, z)y can be taken to xτ(y, x)z2yϕ
(y, z)x by (x 7→ y 7→ z 7→ x). 2

Our next task will be to subdivide the caps of the form specified by the above
proposition into a well founded escape hierarchy of particular realms admitting a
straightforward path enumeration. Each one of the realm forms we will have to
introduce will be described as a function Rα(m,n, . . . , ϕ, ψ, . . . ) indexed by an
ordinal number α and possibly depending on some natural parameters m, n, . . .
ranging over the non-negative integers, and, on some word parameters ϕ, ψ, . . .
ranging over {x, y, z}∗. For every index α, the easy task of checking up the graph
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structure of the α-th realm will be left to the reader. The only difficulty one may
have – that of justifying the escape arrows – is resolved by noting that the alledged
escape arrows from Rα always go to realms of strictly less indices and that every
Rβ with β < α is disjoint from Rα. Here come the realms.

Proposition 13. R0 = C(xy2yx) is formed by an x-loop and an y-loop, hence it
has no escape arrow.
R1(m) = C(xm+2y2yx) is an y-loop escaped by

xm+2y2yx
yx−→ xy2yx ∈ R0.

R2(m,n) = {xm+2y2yn+2x} is a singleton escaped by

xm+2y2yn+2x
yx−→ xy2yn+2x ∈ R1(x↔ y),

xm+2y2yn+2x
xy−→ xm+2y2yx ∈ R1.

Proposition 14. R3 = C(xyz2yzx) is formed by the two cycles

xyz2zyx
zx−→ xyz2yzx

yx−→ xyz2zyx,

xyz2zyx
xz−→ yxz2zyx

yz−→ xyz2zyx,

meeting at xyz2zyx, and by the two y-loops

xyz2yzx
xy−→ xyz2yzx, yxz2zyx

zy−→ yxz2zyx.

There are no escape arrows.

Proposition 15. R4 = C(xyyz2yzx) is formed by the infinite y-path

{xyxkyz2yzx | k ≥ 0},

connected by the infinitely many x-paths

{xyxkyz2yzx yx−→ xy(yx)kyz2zyx zx−→ xyyz2yzx | k ≥ 0}

to the infinitely many z-cycles

{σ(x, y)z2zyx | σ ∼ (xy)k+1y}, k ≥ 0.

The escape arrows start at the z-caps distinct from xy(yx)kyz2zyx, and are of the
form

yy · · ·2zyx zy−→ yz2zy ∈ R0(x↔ z),

xyx · · ·2zyx zx−→ xyz2yzx ∈ R3,

yxy · · ·2zyx zy−→ yxz2zyx ∈ R3.
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Proposition 16. R5 = C(xyz2yzzx) is formed by the two cycles

xyz2yzzx
yx−→ xyz2zzyx

zx−→ xyz2zyzx
zx−→ xyz2yzzx,

yxz2xzzy
xy−→ yxz2zzxy

zy−→ yxz2zxzy
zy−→ yxz2xzzy,

the two cross-arrows

xyz2zzyx
xz−→ yxz2zxzy, yxz2zzxy

yz−→ xyz2zyzx,

and the two loops

xyz2yzzx
xy−→ xyz2yzzx, xyz2yzzx

yx−→ xyz2yzzx.

It is escaped by
xyz2zyzx

xz−→ yxz2zyx ∈ R3,

yxz2zxzy
yz−→ xyz2zxy ∈ R3(x 7→ z 7→ y 7→ x).

Proposition 17. Let σ = σ(y, z) be a word not conjugate to (yz)k+2 and such that
|σ|y, |σ|z ≥ 2, but y3, z3 are not factors of σ2. Then R6(σ) = C(xyz2σ(y, z)x) is
an x-cycle escaped by the arrows of the form

xyz2zzy · · ·x xz−→ yxz2zxzy ∈ R5(x↔ y),

xyz2zyz · · ·x xz−→ yxz2zyx ∈ R3,

xyz2zyyz · · ·x xz−→ yxz2zyyx ∈ R4(x↔ z),

xyz2y2z · · ·x xy−→ xy2yx ∈ R0,

xyz2yzy · · ·x xy−→ xyz2yzx ∈ R3,

xyz2yzzy · · ·x xy−→ xyz2yzzx ∈ R5.

Note that in Proposition 17 the conditions stipulated for σ make R6(σ) disjoint
from R4(x↔ z).

Proposition 18. R7 = C(xyyz2yzzx) is an infinite realm divided into two dis-
joint isomorphic parts, H and H(y ↔ z). The part H is formed by the x-arrow

xyyz2zyzx
zx−→ xyyz2yzzx,

by the infinite y-path
{xyxkyz2yzzx, k ≥ 0},

by the infinitely many x-paths

{xyxkyz2yzzx yx−→ xy(yx)kyz2zzyx zx−→ xyyz2zyzx, k ≥ 0},

and by the infinitely many z-arrows

{xy(yx)kyz2zzyx xz−→ y(yx)k+1z2zxzy, k ≥ 0}·
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The two parts of R7 are cross-connected by the infinitely many arrows

{y(yx)k+1z2zxzy
zy−→ yzyx2xzzy, k ≥ 0},

and by their (y ↔ z)-images

{yxyz2z(zx)k+1y
yz−→ xyyz2zyzx, k ≥ 0}·

R7 is escaped by the arrows

xyyz2zyzx
xz−→ yyxz2zyx ∈ R4,

yyxz2zxzy
yz−→ yxyz2zxy ∈ R5(x 7→ z 7→ y 7→ x),

y(yx)k+2z2zxzy
yz−→ (yx)k+2yz2zxy ∈ R6(x 7→ z 7→ y 7→ x),

for k ≥ 0, and by their (y ↔ z)-images.

Proposition 19. R8(n) = C(xyz2yzn+3x) is formed by a y-loop at xyz2yzn+3x
and by an x-cycle

{xyz2ziyzs−k+3x | 0 ≤ i ≤ n+ 3}·
It is escaped by

xyz2zi+3yzn−ix
xz−→ yxz2(zx)i+2zy ∈ R6(x↔ y), 0 ≤ i ≤ n,

xyz2z2yzn+1x
xz−→ yxz2zxzy ∈ R5(x↔ y),

xyz2zyzn+2x
xz−→ yxz2zyx ∈ R3.

Proposition 20. Let σ = σ(y, z) be a word such that |σ|y, |σ|z ≥ 2 and y3 or z3

is a factor of σ2. Then R9(σ) = C(xyz2σ(y, z)x) is an x-cycle escaped by the
arrows of the form

xyz2zr+3y · · ·x xz−→ yxz2z(xz)r+2y ∈ R6(x↔ y),

xyz2zzy · · ·x xz−→ yxz2zxzy ∈ R5(x↔ y),

xyz2zyz · · ·x xz−→ yxz2zyx ∈ R3,

xyz2zyyz · · ·x xz−→ yxz2zyyx ∈ R4(x↔ z),

xyz2zys+3z · · ·x xz−→ yxz2zys+3x ∈ R7,

xyz2ys+2z · · ·x xy−→ xy2yx ∈ R0,

xyz2yzy · · ·x xy−→ xyz2yzx ∈ R3,

xyz2yzzy · · ·x xy−→ xyz2yzzx ∈ R5,

xyz2yzr+3y · · ·x xy−→ xyz2yzr+3x ∈ R8.
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Proposition 21. Every cap of the form xm+1yϕ(x, y)z2yzx, where if m = 0 then
ϕ contains x but is not of the form xk+1y, defines the realm

R10(ϕ) = {xm+1ϕ(x, xky)z2yzx | k ≥ 0}

which is an infinite y-path if ϕ contains y and a y-loop otherwise, and is escaped
by

xm+1yϕ(x, xky)z2yzx
yx−→ (xy)m+1ϕ(yx, (yx)ky)z2zyx

to (R6 ∪R9)(x↔ z).

Note that in Proposition 21 the conditions stipulated for ϕ make R10(ϕ) disjoint
from R4.

Proposition 22. R11(r, s) = C(xyr+1z2zys+1x), where r ≤ s and r + s ≥ 2, is
a union of an x-cycle and of an z-cycle meeting at xyr+1z2zys+1x, escaped by

xyr+1z2yi+2zys−i−1x
xy−→ xy2yx ∈ R0, 0 ≤ i ≤ s− 1,

xyr+1z2yzysx
xy−→ (xy)r+3z2yzx ∈ R3 ∪R4 ∪R10,

and by the arrows obtained from these by transposing x and z as well as r and s.

Note that in Proposition 22 the conditions stipulated for r, s make R11(r, s)
disjoint from R4(x↔ z).

Proposition 23. R12(ϕ,ψ) = {xyxϕ(x, y)z2zyzψ(y, z)x} is a singleton realm
escaped by

xyxϕ(x, y)z2zyzψ(y, z)x zx−→ xyz2yzψ(y, z)zx ∈ R5 ∪R6 ∪R9

and by its (x↔ z)-image (with ϕ and ψ exchanged).

Proposition 24. R13(ψ) = {xyxz2zzyψ(y, z)x} is a singleton realm escaped by

xyxz2zzyψ(y, z)x zx−→ xyz2zyψ(y, z)zx ∈ R5 ∪R6 ∪R8 ∪R9,

xyxz2zzyψ(y, z)x xz−→ yxxz2zxzy ∈ R7(x↔ y).

Proposition 25. R14(m, τ, σ) = {xm+2yτ(x, y)z2zyzyσ(y, z)x} is a singleton
realm escaped by

xm+2yτ(x, y)z2zyzyσ(y, z)x xz−→ xm+1yτ(x, y)xz2zyx

to (R6 ∪R9)(x↔ z) if τ contains y, else to (R5 ∪R8)(x↔ z), and by

xm+2yτ(x, y)z2zyzyσ(y, z)x zx−→ x(zx)m+1y2yzyσ(y, z)zx

to R12(y ↔ z).
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Proposition 26. R15(s) = C(xyyz2yzs+3x) is a realm formed by an x-cycle,

{xyyz2zjyzs−j+3x | 0 ≤ j ≤ s+ 3},

by an infinite y-path,
{xyxryz2yzs+3x | r ≥ 0},

and by infinitely many x-paths

{xyxr+1yz2yzs+3x
yx−→ xy(yx)r+1yz2zs+3yx

zx−→ xyyz2zs+2yzx | r ≥ 0}·

R15(s) is escaped by the z-arrows from its z-caps, namely,

xyyz2zyzs+2x
xz−→ yyxz2zyx ∈ R4,

xyyz2z2yzs+1x
xz−→ yyxz2zxzy ∈ R13(x↔ y),

xyyz2zk+3yzs−kx
xz−→ yyxz2z(xz)k+2y ∈ R12(x↔ y), 0 ≤ k ≤ s,

xy(yx)r+1yz2zs+3yx
xz−→ y(yx)r+2z2z(xz)s+2y ∈ R14(x↔ y).

Proposition 27. R16(σ) = C(xyyz2σ(y, z)x), where |σ|y , |σ|z ≥ 2, is an x-cycle
escaped by (not necessarily all) arrows of the form

xyyz2zr+3y · · ·x xz−→ yyxz2z(xz)r+2y ∈ R14(x↔ y),

xyyz2zzy · · ·x xz−→ yyxz2zxzy ∈ R13(x↔ y),

xyyz2zyz · · ·x xz−→ yyxz2zyx ∈ R4,

xyyz2zys+2z · · ·x xz−→ yyxz2zys+2x ∈ R11,

xyyz2ys+2z · · ·x xy−→ xy2yx ∈ R0,

xyyz2yzy · · ·x xy−→ (xy)2z2yzx ∈ R4,

xyyz2yzzy · · ·x xy−→ (xy)2z2yzzx ∈ R7,

xyyz2yzr+3y · · ·x xy−→ (xy)2z2yzr+3x ∈ R15.

Proposition 28. R17(ψ) = {xm+2yϕ(x, y)z2zyyzψ(y, z)x}, where ψ is not of
the form (yz)ky if ϕ is empty, is a singleton realm escaped by

xm+2yϕ(x, y)z2zyyzψ(y, z)x zx−→ x(zx)m+1y2yyzψ(y, z)zx ∈ (R13∪R14)(y ↔ z),

xm+2yϕ(x, y)z2zyyzψ(y, z)x xz−→ xm+1yxz2zyyx ∈ (R7 ∪R15 ∪R16)(x↔ z).

Note that in Proposition 28 the condition stipulated for ψ make R17(ϕ) disjoint
from R7 ∪R15.
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Proposition 29. Every y-cap of the form xm+1yxϕ(x, y)z2yzs+2x, where ϕ 6=
xky if m = 0, defines the realm

R18(m, s, ϕ) = {xm+1yxϕ(x, xky)z2yzs+2x | k ≥ 0},

which is an infinite y-path if ϕ contains y and a y-loop otherwise, and is escaped
by

xm+1yxϕ(x, xky)z2yzs+2x
yx−→ (xy)m+1yxϕ(yx, (yx)ky)z2zs+2yx, k ≥ 0,

to (R17 ∪R17)(x↔ z).

Note that in Proposition 29 the conditions stipulated for ϕ make R18(ϕ) disjoint
from R7 ∪R15.

Proposition 30. R19(n) = {xyxz2zn+3yψ(y, z)x} is a singleton realm escaped
by

xyxz2zn+3yψ(y, z)x zx−→ xyz2zn+2yψ(y, z)zx ∈ R6 ∪R8 ∪R9,

xyxz2zn+3yψ(y, z)x xz−→ yxxz2z(xz)n+2y ∈ R16(x↔ y).

Proposition 31. R20(m,σ) = C(xym+3z2σ(y, z)x), where |σ|z ≥ 2, is an x-cycle
escaped by the arrows of the form

xym+3z2zr+3y · · ·x xz−→ ym+3xz2z(xz)r+2y ∈ R14(x↔ y),

xym+3z2zzy · · ·x xz−→ ym+3xz2zxzy ∈ R19(x→ z → y → x),

xym+3z2zys+1z · · ·x xz−→ ym+3xz2zys+1x ∈ R11 ∪R11(x↔ z),

xym+3z2ys+2z · · ·x xy−→ xy2yx ∈ R0,

xym+3z2yzy · · ·x xy−→ (xy)m+3z2yzx ∈ R10,

xym+3z2yzr+2 · · ·x xy−→ (xy)m+3z2yzs+2x ∈ R18.

Proposition 32. R21(r, s, ϕ, ψ) = {xyr+2xϕ(x, y)z2zys+1zψ(y, z)x} is a single-
ton realm escaped by

xyr+2xϕ(x, y)z2zys+1zψ(y, z)x zx−→ xyr+2z2ys+1zψ(y, z)zx

to R16 ∪R20 if s > 0 or ψ contains y, else to R7 ∪R15 ∪R20, and by

xyr+2xϕ(x, y)z2zys+1zψ(y, z)x xz−→ yr+2xϕ(x, y)xz2zys+1x

to (R6 ∪R9 ∪R16 ∪R20)(x↔ z).
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Proposition 33. R22(t, ϕ, ψ) = {xyxxϕ(x, y)z2zt+2yψ(y, z)x} is a singleton
realm escaped by

xyxxϕ(x, y)z2zt+2yψ(y, z)x zx−→ xyz2zt+1yψ(y, z)zx

to R5 ∪R6 ∪R8 ∪R9, and by

xyxxϕ(x, y)z2zt+2yψ(y, z)x xz−→ yxxϕ(x, y)xz2z(xz)t+1y

to (R20 ∪R21)(x↔ y).

Proposition 34. R23(m, r, ϕ, ψ) = {xm+2yϕ(x, y)z2zyr+3zψ(y, z)x} is a single-
ton realm escaped by

xm+2yϕ(x, y)z2zyr+3zψ(y, z)x zx−→x(zx)m+1y2yr+3zψ(y, z)zx∈(R14∪R19)(y↔z),

xm+2yϕ(x, y)z2zyr+3zψ(y, z)x xz−→ xm+1yϕ(x, y)xz2zyr+3x ∈ R20(x↔ z).

Proposition 35. R24(m, s, ϕ) = {xm+1yyϕ(x, y)z2yzs+2x | k ≥ 0}, where ϕ
contains x if m = 0, is a singleton realm escaped by

xm+1yyϕ(x, y)z2yzs+2x
yx−→ (xy)m+1yϕ(yx, y)z2zs+2yx ∈ R17 ∪R23,

xm+1yyϕ(x, y)z2yzs+2x
xy−→ xm+1yxyϕ(x, xy)z2yzs+2x ∈ R18.

Proposition 36. R25(m, s, ϕ, ψ) = {xm+1yϕ(x, y)z2yzs+1yψ(y, z)x}, where ϕ
contains x if m = 0, is a singleton realm escaped by

xm+1yϕ(x, y)z2yzs+1yψ(y, z)x
yx−→ (xy)m+1ϕ(yx, y)z2zs+1yψ(y, z)yx

to R6 ∪R9 ∪R12 ∪R14 ∪R16 ∪R17 ∪R20 ∪R21 ∪R23, and by

xm+1yϕ(x, y)z2yzs+1yψ(y, z)x
xy−→ xm+1yϕ(x, xy)z2yzs+1x

to R10 ∪R18.

Proposition 37. R26+r(m, r, ϕ, ψ) = {xm+1yϕ(x, y)z2yr+2zψ(y, z)x}, where ϕ
contains x if m = 0, is a singleton realm escaped by

xm+1yϕ(x, y)z2yr+2zψ(y, z)x
yx−→ (xy)m+1ϕ(yx, y)z2yr+1zψ(y, z)yx

to R25 if r = 0, else to R26+r−1, and by

xm+1yϕ(x, y)z2yr+2zψ(y, z)x
xy−→ xm+1y2yx ∈ R0 ∪R1.

The following realm forms are indexed from the first infinite ordinal ω on.
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Proposition 38. Rω+s(m, s, ϕ, ψ) = {xm+2yϕ(x, y)z2zs+2yψ(y, z)x} is a sin-
gleton realm escaped by

xm+2yϕ(x, y)z2zs+2yψ(y, z)x zx−→ x(zx)m+1y2zs+1yψ(y, z)zx

to R25(y ↔ z) if s = 0, else to R26+s−1(y ↔ z), and by its (x↔ z)-image.

Here we stop introducing new realms and sum up what we have done. Let us
call the realms with the indices 3, 4, 5, 6, 7, 8, 9, 11, 15, 16, 20, together with
their isomorphic copies, the realms of the first kind and all the remaining ones the
realms of the second kind.

Theorem 4.1. The realms of the first kind are non-trivial strong components (i.e.
containing at least two caps) covering all caps with the first term of the form
xym+1z, hence by the symmetry (x ↔ z) also all z-caps with the second term
zym+1x, and all caps of the form

xyxk+1yz2yzs+1x or xy(yx)k+1yz2zs+1yx,

where 0 ≤ s ≤ 1, contained in R4 for s = 0 and in R7 for s = 0.
The realms of the second kind are unions of singleton strong components and

they cover all the remaining of caps.

Proof. For [Em,n] = xym+1z2zryzsx, where r + s = n ≥ 1, we have [E0,1] ∈ R3,
[E0,2] ∈ R5, and [E0,n] ∈ R8 for n ≥ 3, [E1,1] ∈ R4, [E1,2] ∈ R7, and [E1,n] ∈ R15

for n ≥ 3, [Em,1] ∈ R11(x↔ z) for m ≥ 2, and [Em,n] ∈ R20 for m,n ≥ 2.
For [E]m,σ = xym+1z2σ(y, z)x, where |σ|y ≥ 2, we have [E]0,σ ∈ R4 if σ ∼

(yz)k+1y and [E]0,σ ∈ R6 ∪R9 otherwise, [E]0,σ ∈ R11 ∪ R16, and [E]m,σ ∈ R20

for m ≥ 2.
The y-caps with the first term non linear in x are covered by the realms with

the indices 10, 18, 24, 25, and 26 + r for r ≥ 0.
The z-caps with the first term non linear in x and the second one non linear in

z are covered by the realms with the indices 12, 13, 14, 17, 19, 21, 22, 23, and
ω + s for s ≥ 0, and by their (x↔ z)-copies. 2

5. Parametrization of path traces

For our pourposes, we can define a parametrization of a set S as a calculable
surjective function Φ : D→ S whose domain is one of the sets defined recursively
by stipulating that
• the set N of naturals is a domain;
• if C, D are domains then C ×D and D∗ are domains.

The number of stars intervening in the construction of the domain D of Φ, the
star-depth of D, is a sort of complexity measure of the parametrization.

Let S be a subgraph of [EP ], and let [E0], [E], [F ] ∈ S. Denote by
• TrS([E], [F ]) the set of the traces of the S-paths from [E] to [F ];
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• Tr(0)
S ([E], [F ]) the set of the traces of the S-paths from [E] to [F ] with all

intermediate vertices different from [E0];
• TrS([E],−) the set of the traces of the S-paths from [E] to some cap of S.

As a rule, the subscript S will be suppressed when clear from the context (e.g.
when it denotes a realm currently dealt with).

Lemma 1. We have the relation

Tr([E], [F ]) = Tr(0)([E], [F ]) ∪ Tr(0)([E], [E0])Tr([E0], [E0])Tr(0)([E0], [F ]),

where Tr([E0], [E0]) is a monoid generated by Tr(0)([E0], [E0]) (possibly reduced
to {∆}, for the identity substitution ∆).

For a realm R and a cap [E] ∈ R, every escape path from R starting at [E] has
a beginning (initial segment) in TrR([E],−).

For most of the realms described in the preceding section, the parametrization of
Tr(0)([E], [F ]), for [E0] suitably chosen and [E] 6= [F ], poses no problem and will be
left to the reader. We will concentrate on the parametrization of Tr(0)([E0], [E0]),
easily convertible into a parametrization of Tr([E0], [E0]).

Proposition 39. Every realm Rα with α ∈ {12, 13, 14, 17, 19, 21, 22, 23, 25} ∪
{26+r | r ≥ 0}∪{ω+s | s ≥ 0} is formed by a single cap [E0] with Tr([E0], [E0]) =
{∆}.

Proposition 40. Every realm Rα with α ∈ {1, 10, 18, 24} is either a y-loop or an
infinite y-path and we have

Tr([E],−) = {(y 7→ xky) | k ≥ 0}

for every [E] ∈ R.

Proposition 41. Every realm Rα with α ∈ {6, 9, 16, 20} is, for some m ∈ N and
w ∈ {y, z}∗, an x-cycle of the form

{[Ei] = xym+1z2viuix | w = uivi, |ui| = i, 0 ≤ i < |w| − 1},

parametrized by

Tr(0)([Ei], [E0]) = {(x 7→ vix)} for i ≥ 1,
T r([E0], [E0]) = {(x 7→ wkx) | k ≥ 0}
Tr(0)([E0], [Ej ]) = {(x 7→ ujx)} for j ≥ 1,
T r(0)([Ei], [Ej ]) = {(x 7→ tx)} for uj = uit,
T r(0)([Ei], [Ej ]) = ∅ for i > j ≥ 1.

Consequently,

Tr([Ei], [Ej ]) = {(x 7→ viw
kuj) | k ≥ 0} ∪ Tr(0)([Ei], [Ej ]).
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Lemma 2. A monoid M generated by a pair of substitutions (x 7→ yvx) and
(y 7→ xuy), where x, y /∈ alph(uv), can be parametrized by the homomorphism

Φxu,yv : (N× N)∗ →M : (m,n) 7→ (x 7→ yvx)m(y 7→ xuy)n.

Proposition 42. Every realm Rα with α ∈ {8, 15} contains, for some m ∈ N
m ∈ {0, 1} and n ∈ N, the cap [E0] = xym+1z2yzn+3x an x-cycle of the form for
which

Tr(0)([E0], [E0]) = {(x 7→ yzn+3x), (y 7→ xy)},
hence

Tr([E0], [E0]) = Φx, yzn+3((N× N)∗).

Proposition 43. The realm R11(r, s), r ≤ s, r + s ≥ 2, is formed of an x-cycle
and of an z-cycle meeting at [E0] = xyr+1z2zys+1x, hence

Tr(0)([E0], [E0]) = {(x 7→ zys+1x), (z 7→ xyr+1z)},

T r([E0], [E0]) = Φxyr+1, zys+1((N× N)∗).

Proposition 44. The realm R5 is divided into two disjoint parts, an x-cycle H
with a y-loop at [E0] = xyz2yzzx and an y-cycle H(x ↔ y) with a y-loop at
[F0] = yxz2xzzy, connected by two z-arrows in such a way that

Tr(0)([E0], [F0]) = {gx,y = (x 7→ yx)(z 7→ xz)(y 7→ zy)},

T r(0)([F0], [E0]) = {gy,x = (x↔ y)gx,y(x↔ y)}.
Consequently, we have the parametrization homomorphisms

Φy,xzz : (N× N)∗ → TrH([E0], [E0])

and

Ψ : ((N×N)∗×(N×N)∗))∗ → Tr([E0], [E0]) : (m,n) 7→ Φx,yzz(m)gx,yΦy,xzz(n)gy,x

(where m and n are strings of pairs of naturals).

Proposition 45. The realm R7 is divided into two disjoint parts H and H(x ↔
y), containing the caps [E0] = xyyz2yzzx and [F0] = xzzy2zyyx, connected in
such a way that

Tr(0)([E0], [F0]) = {hx,y = (x 7→ yx)(z 7→ xz)(y 7→ zy)(x 7→ yx)},

T r(0)([F0], [E0]) = {hy,x = (y ↔ z)hx,y(y ↔ z)}·
Consequently, we have the parametrization homomorphisms

Φy,xzz : (N× N)∗ → TrH([E0], [E0])
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and

Ψ : ((N×N)∗×(N×N)∗))∗ → Tr([E0], [E0]) : (m,n) 7→ Φx,yzz(m)hx,yΦy,xzz(n)hy,x

(where m and n are strings of pairs of naturals).

Proposition 46. For the cap [E0] = xyyz2yzzx of R4 we have

Tr(0)([E0], [E0]) = {fk,m = (y 7→ xky)(x 7→ yx)(z 7→ (xy(yx)ky)mz)(x 7→ zx)},

whence the parametrization homomorphism

Ω : (N× N)∗ → Tr([E0], [E0]) : (k,m) 7→ fk,m.

We come to a conclusion. Let E be an equation with [E] in three cap variables,
and let R[E] denote the realm of caps reachable from [E] in EP .

The parametrizations obtained in Proposition 39–46 can be combined, for any
[F ] ∈ R[E], into a (cascade composite) parametrization of Tr([E], [F ]). By Propo-
sition 11, the family

F =
⋃
{Tr([E], [F ])(x 7→ 1) | [F ] ∈ R[E], x ∈ pivot(F )}

is universal for E. Moreover, every Ef involves less variables than E, hence
F operates a reduction of E to a parametric family of simpler equations. The
fact that F is parametric is crucial for the treatment of the family of equations
{Ef | f ∈ F}. The latter should be divided into caps and the caps treated by the
method we have outlined here.

Of course, the work we have done here for the caps in three variables must be
continued, in order to see whether the parametrization for the caps in four and
more variables goes as smoothly. The goal is to get a general theorem on the
existence of an algorithm calculating a parametrization of a universal family of
solutions for an arbitrary equation (with or without constants). Such an algorithm
will certainly be rather complex to be of practical use. However, it may help
establish decidability results concerning various properties of solutions to a given
equation.
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