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Abstract

New methods and new systems are needed to ®lter or to selectively distribute the increasing volume of
electronic information being produced nowadays. An e�ective information ®ltering system is one that
provides the exact information that ful®lls user's interests with the minimum e�ort by the user to
describe it. Such a system will have to be adaptive to the user changing interest. In this paper we
describe and evaluate a learning model for information ®ltering which is an adaptation of the
generalized probabilistic model of Information Retrieval. The model is based on the concept of
`uncertainty sampling', a technique that allows for relevance feedback both on relevant and nonrelevant
documents. The proposed learning model is the core of a prototype information ®ltering system called
ProFile. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

New information services deal with a variety of processes concerning the acquisition and the
delivery of information. With the increasing availability of information in electronic form, it
becomes more important and feasible to have automatic methods to ®lter and selectively
disseminate information. Users may receive large amounts of information, like for example
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electronic mail or news, and systems for information ®ltering (IF) are required to select only
those documents which are relevant to some user information need.

Information or document ®ltering, also known as selective dissemination of information, is
concerned with determining the information relevant to the user. The representation of the
user's interest and information need (the user pro®le ) may consist of a set of weighted
keywords given by the user or induced by the system. When a user would like to have
documents classi®ed into di�erent classes representing her/his di�erent interests, then we prefer
to talk of class pro®les.

IF and information retrieval (IR) have been described as two faces of the same coin (Belkin
& Croft, 1992). Much of the past research in IF has been based on the assumption that
e�ective IR techniques were also e�ective IF techniques. Many of the IF approaches proposed
at the TREC conferences, for example, were based on past successful IR approaches. This view
has been challenged by Callan (1996) and by the proposer of the TREC-5 Filtering track
(Harman, 1996). The idea is that di�erent techniques and evaluation methods are required in
order to design and evaluate e�ective IF and IR systems. In particular, IF requires more
complex techniques of learning through relevance feedback than IR, since it is important to
predict user's needs with a minimal amount of information provided by the user. An IF system
that would require a long and painful training cannot be considered e�ective, despite its
®ltering performance. An IF system is e�ective when it performs reasonably well, while
requiring a short training and a minimal interaction with the user.

In this paper we describe a learning model for IF which is an adaptation of the generalized
probabilistic model of IR (Amati & van Rijsbergen, 1995). Two classes of learning models can
be employed in IF: the relevance sampling and the uncertainty sampling. The ®rst class
contains the conventional learning techniques of IR, which basically process relevant
documents using relevance feedback (Harman, 1992). The second class of models allows for
relevance feedback also on the documents which were not considered relevant (Lewis & Gale,
1994). Our model belongs to the second class. In IR it has been observed that the uncertainty
sampling is superior over the relevance sampling especially when the training set is very small
(Lewis & Gale, 1994; Lewis, 1995). Our results indeed show that one needs very few documents
in the training set to have good performance. The main contribution of this paper is in
showing that our adaptation of the generalized probabilistic model of IR requires very little
amount of training before achieving a stable level of e�ective performance compared to other
training algorithms. Our study also aims at selecting the learning strategies which best combine
positive and negative relevance feedback at di�erent recall needs of the users and lengths of the
user pro®les. Our experiments show that starting from scratch and with small incremental
training sessions a user can expect a reasonable e�ective performance of the system.

In the rest of the paper we describe and evaluate the learning algorithm of our IF system:
ProFile. In Section 2 we give our view of the ®ltering task and compare it with the routing
task introduced by TREC. In Section 3 we describe the current implementation of ProFile. In
Sections 4 and 5 we describe in detail the probabilistic learning model at the heart of ProFile.
In Section 6 we relate ProFile with other IF systems and research on the use of learning
algorithms in IR. Finally, in Section 7, we report the results of an experimental investigation
about the e�ectiveness of ProFile.
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2. Filtering or routing?

In order to avoid confusion with terminology, we would like to clarify our use of the term
`®ltering', as opposed to the term `routing' that TREC introduced since its ®rst event (Harman,
1993).
In the context of TREC, the routing task investigates the performance of systems that use

standing queries to search a new stream of documents. A standing query is provided by an
initial query (a natural language text describing the user information need) and a set of
documents known to be relevant to that query (the training set). The documents in the new
stream are ranked in relation to the standing query, in the same way as an IR system would
do. In the routing subtask of ®ltering at last TREC 7, the required system output is a ranked
set of 1000 documents and the evaluation measure is the average uninterpolated precision,
namely the sum of all the precision values obtained by the position of the relevant documents
in the ranked list, normalized with respect to the total number of relevant documents in the
collection (Hull, 1998b).
In TREC, the ®ltering task is a routing task in which the system must decide whether or not

to retrieve each individual document. Instead of producing a ranked list of documents, ®ltering
systems retrieve an unordered set of documents for each query. The decision of retrieving a
document or not is obtained through the application of a utility function in which correct
decisions (retrieving a relevant document or not retrieving a nonrelevant document) and wrong
decisions (retrieving a nonrelevant document or not retrieving a relevant document) have
di�erent bene®ts and costs. However, it is the introduction of the concept of time (Hull, 1998a)
that really makes routing and ®ltering di�erent in the context of TREC. The explicit use of
time is to prevent the system from being trained with too many documents before ®ltering (as
imposed by the last TREC 7 adaptive ®ltering subtask (Hull, 1998b)) or from ®ltering by
ranking instead of exploiting a binary decision function. Indeed, the ®ltering task assumes that
the user wants to be noti®ed about each potentially relevant document immediately after it
appears in the stream. A ®xed threshold is then compared with the document weight to assess
documents as relevant or not. In many ®ltering systems the choice of this threshold is learned.
It is the matching value whose set of retrieved documents in a test collection maximizes the
chosen utility function, e.g. F1, F2, F3, ranked and unranked average set precision (Hull,
1998a, b). This utility function can be also used to evaluate the system.
Although we believe that TREC ®ltering is closer to what goes on in operational IF systems

than routing, our experience in running our IF system, ProFile, taught that users tend to
behave in a di�erent way from news clipping services and library pro®ling systems. The users
of our system prefer to see a list of documents ordered by their estimated relevance, instead of
an unordered set. Users with little time would look only at the documents at the top of the list,
while users interested in a more extensive search would look quite further down in the list. The
list does not need to comprise the entire set of the selected documents of the incoming stream.
The peculiar feature of ProFile is the construction of the threshold. It is not determined by a

utility measure which is function of relevance and retrieval parameters, as it is obtained in the
current practice of ®ltering systems. On the contrary, the initial threshold in ProFile is 0 and is
determined by a utility measure which only depends on relevance feedback (see Section 5). The
documents with positive and small weights are considered with low relevance in the model. The
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user may always set the threshold higher or lower than the current value, if he thinks the
system is biased towards retrieving too many or too few documents respectively. The choice of
the actual value of the threshold is thus left to the user and it is a function of the recall need of
the user. In general, it is chosen to provide a list long enough to satisfy the most extensive
search. In our operational implementation of ProFile, the list of retrieved documents is
updated every day. New documents can appear at any point in the list depending on their
relevance weight. Once a document has been seen by the user and assessed, it is removed from
the list and stored according to user instructions.

Since it is the user in ProFile that actually chooses the threshold value and thus the level of
recall to use, we have to evaluate the system by computing the precision at di�erent recall
points and not by using aggregate values as in TREC.

Our study was indeed aimed at ®nding the best learning strategies with small and incremental
training sets at di�erent recall needs of the users and lengths of the user pro®les.

Fig. 1. ProFile architecture.
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Given the way our IF system works, it looks like a combination of a routing and a ®ltering
system, although more similar to a TREC routing system than a TREC ®ltering system. Our
evaluation of its e�ectiveness therefore attempts to follow the guidelines of the TREC routing
track and not of the ®ltering track.
Nevertheless, we decided to adopt the term `®ltering' for describing our system, because this

is what our users believe the system actually does. This view is in partial agreement with the
®nding of Fidel and Crandall (1997).

3. The pro®le system

The ProFile (probabilistic ®ltering) system has been developed at Fondazione Ugo Bordoni
in Rome (Italy) in 1996 and has been in used since then by many researchers of that institution
for ®ltering the Usenet News (Amati, D'Aloisi, & Giannini, 1995; Amati, Crestani, Ubaldini, &
De Nardis, 1997). Despite being born with the purpose of ®ltering netnews, ProFile can be
adapted to ®lter any incoming stream of information, like email, newswires or newspaper
articles.

3.1. Pro®le architecture

The ProFile system is made up of two components:

. the FIFT system (fub information ®ltering tool) (Amati et al., 1995), a customized version of
SIFT, a ®ltering system developed at Stanford (see Section 6);

. the ProFile probabilistic learning system, that is the heart of the adaptation and tuning that
ProFile performs on the users' queries.

Fig. 1 gives an outline of the architecture of ProFile. In Section 3.2 we describe how ProFile
works, while most part of the remaining of the paper will be devoted to explaining the
probabilistic learning model employed by ProFile.

3.2. Pro®le at work

In ProFile each user may de®ne a number of conceptual classes to classify the ®ltered
documents: each class has its own pro®le. IF systems have two ways of assigning a document
to a conceptual class. The ®rst one consists of ranking documents according to a similarity
values with the pro®les of conceptual classes. A document is then assigned to the conceptual
class with the highest level of similarity. This technique is appropriate when conceptual classes
cover the set of all possible documents. Di�erently, another technique consists in de®ning a
relation to be satis®ed by each couple class-document. If the document satis®es the relation,
then it is classi®ed into that class, otherwise it is discarded. If a document satis®es relations
with more than one class, then it is either classi®ed into all classes or one is chosen (an
arbitrary one or the one with the strongest relation, if that can be quanti®ed). The model used
by ProFile follows this second approach by exploiting semantic information theory (Bar-Hillel
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& Carnap, 1953; Hintikka, 1970) and decision theory (Je�rey, 1965). Details of the
probabilistic model used by ProFile will be given in Section 4.
ProFile operates according to the following steps:

1. Initial de®nition of the pro®les. The user de®nes a set of pro®les corresponding to conceptual
classes in which he wants to ®lter and classify the incoming stream of documents. ProFile
requires from the user a set of keywords for an approximate initial description of each
conceptual class.

2. Training phase. The initial description of the user interests is used as a query by the FIFT
system. FIFT ®lters out of the document collection a set of documents that will be used as
the `training set'. The user go through the documents of the training set and assigns them
relevance values with respect to each conceptual class. The relevance values are chosen from
a scale of eleven values of interests (from 0 to 10). The user does not need to go through all
the documents retrieved. The number of documents used in the training phase constitutes
the training data. ProFile learning system performs an adaptation of the original description
of the user interests according a probabilistic learning model to take into consideration the
training data. The training phase can go on as long as the user requires, with as many
retrieval runs, user relevance feedback and learning mode.

3. Filtering phase. The user decides to activate the ®ltering phase when he believes that the
de®nition of the conceptual classes built by FIFT using relevance feedback are accurate
enough. The ®ltering phase is made up of two subphases:
3.1. Filtering. ProFile ®lters the documents and delivers to the appropriate user's conceptual

class. The user can see the ®ltered documents classi®ed into his personal conceptual
classes.

3.2. Tuning. The user can modify the pro®les providing additional information. This can be
achieved by giving relevance values to the ®ltered documents in the same way it is done
in the training phase. The additional information enables ProFile to tune to the user
perception of relevance and adapt the pro®les of the conceptual classes. This phase can
be repeated as many times as the user wants.

The initial training phase is very important for the e�ectiveness of ProFile. Indeed, in the limit
case of no relevant document is in the training set (i.e. no document has been marked as
relevant by the user before starting the ®ltering phase) the system will not retrieve any
document and the user will not have any chance for correcting his pro®le with the tuning
phase. On the other hand, in a preliminary experimental investigation we observed increasing
recall, but decreasing precision for training sets which have more relevant documents than
nonrelevant ones.
We should remind that in IR and IF, the performance of a system are measured either by

precision at di�erent values of recall or by utility measures which depend on the four sets of
the relevance/retrieval contingency table (Hull, 1998b). Recall (R) is de®ned as the proportion
of all documents in the collections that are relevant to a query and that are actually retrieved.
Precision (P) is the proportion of the retrieved set of documents that is also relevant to the
query. We will make extensive use of these measures in the remainder of the paper.
We observed that the best training set is obtained when the relevance values are equally
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distributed. Our way of training the system is similar to uncertainty sampling (Lewis & Gale,
1994; Lewis, 1995). Lewis and Gale (1994) observed better performance in IF using uncertainty
sampling instead of relevance sampling (Ghosh, 1991), in particular when the sample size is
small in comparison with the number of positive examples in the set of nonevaluated data.
This is an important feature of ProFile, because the ®rst set of evaluated document in the
training set is very small. Typically, a user wants to activate the ®ltering phase after only 20 or
30 documents have been examined.
In Section 7 we describe the evaluation framework used and results achieved by ProFile. A

special attention is given to the performance of our learning model, in particular when little
training data is provided. We intend to evaluate the e�ect of using negative data in the
relevance feedback, that is using the information provided by documents the user indicated as
nonrelevant. In IR the use of negative data in relevance feedback has been received with
contrasting views. Salton considered it positively (Salton & McGill, 1983a), while other
researchers considered it dangerous (Aalbersberg, 1992) or even harmful (Dunlop, 1997). We
believe that it depends on the particular retrieval model. We intend to prove that our model
makes an e�ective use of negative data in relevance feedback and that the presence of negative
data speeds up the learning of the parameters of a IF system.

4. A probabilistic learning model for IR

In this section we describe in detail the probabilistic learning model of ProFile. The model is
derived from the generalized probabilistic model of IR presented in (Amati & van Rijsbergen,
1995).

4.1. Learning theory

At the abstract level IF can be seen as a process dealing with a repetitive event: a document
is delivered to the user or not according to his current pro®le. A pro®le is a description of
what the user is interested at. We assume that the document is represented by a set of terms
(phrases, manually or automatically assigned index terms). The semantic relations between
terms in the set T are implicitly explained by means of the set O(t ) of documents which have
been examined by the ®lter up to the current instant of time t. In statistics this set can be
considered as a sample of the population. Relations between terms are often expressed using
frequency values. The user relevance assessments also provide a way of expressing semantic
relations between terms.
A learning theory (Renyi, 1969) for IF is a triple hO, A, Pi. O depends on a temporal

parameter t, O(t ) being the set of all documents processed before the time t. Here we assume
that O is the set of documents which have constituted the data stream up to the current
moment, so that t can be omitted. A is the power set of O, namely the set of all subsets of O.
P is de®ned by the user starting from the mutually exclusive elementary events, that is the
elements d of O. This function is lifted from the elementary events to all the events ei of the
space A by using the additivity axiom.

G. Amati, F. Crestani / Information Processing and Management 35 (1999) 633±654 639



In a ®nite space, a probability can be then obtained by conditioning. When

P�e2� > 0

the conditioning of P is de®ned as:

P�e1je2� � P�e1 ^ e2�
P�e2� :

Functions de®ned from O to the set of real numbers are called random variables. In our model
a random variable is associated to each term t $ T. With a little abuse of language we denote
this random variable with t itself. Given a document d $ O, the value t(d ) of the random
variable t is the statistics on the term t in the document d. For example it can be either the tf
weighing (the relative frequency of t in d ) or the normalized idf weighing (de®ned as
idf�t� � �ÿlog�n=N ��=log N, where n is the number of documents in which t occurs and N is the
number of documents in the collection (Salton & McGill, 1983a)) or the normalized
combination of tf and idf(t ) (de®ned as c� �1ÿ c��ÿlog�n=N � � tf �=log N�max�<1, where
max is the maximum number of occurrences of the term in a document in the collection and c
an arbitrary constant 0 R c < 1 (Turtle, 1990)). In this paper we analyze the simplest case of
the relative frequency of the terms, that is when little amount of information is provided to the
system.
In other words if we denote by hatdid$O,t$T the matrix ht(d )id$O,t$T, then the column

associated to d is the vector ht(d )it$T made out of the statistics of the set of terms in the
document d, while the random variables t $ T are obtained by the rows of the matrix. In IR
the matrix ht(d )id$O,t$T is called the inverted ®le of the collection O.
We can de®ne the conditioning expectation of a discrete random variable t with respect to the

measure P as:

EP�t� �

X
d2O

t�d�P�d�

P�O� �1�

Note that if 0 R t(d ) R 1 then 0 R EP(t ) R 1.
In Amati and van Rijsbergen (1995), an IR model is introduced as follows. P corresponds to

a subjective measure R of relevance on the event space O, its form is a scale of relevance
weights R(d ), with 0 R R(d ) R 1, arbitrarily generated by the user. In ProFile, for example, we
used a scale of 11 degree of relevance that are naturally mapped to the [0, 1] interval, but the
whole continuous interval could be used. hR(d )id$O may be de®ned as a subjectively held
vector and can be seen as a person's belief at the current instant of time. The dual measure of
nonrelevance, NR(d )=1ÿR(d ), can be also de®ned. hNR(d )id$O can be seen as a person's
disbelief on O.
As already pointed out, a random variable t takes the values t(d ) by means of statistics.

Since t(d ) is related to frequencies we may suppose that 0 R t R 1. ER (t ) can be considered as
a relevance/frequency weight of the term t, while ENR (t ) as a nonrelevance/frequency weight
of the term t.
When the system must decide whether a term is relevant or not on the basis of the expected
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measures of relevance and nonrelevance of documents, an error can occur and then a loss is
produced. To make this decision the system computes the expected monetary value of decision
theory (Amati & van Rijsbergen, 1995), that is:

EMV�t� � l1ER�t� ÿ l2E:R�t�, �2�

where l1 is the `gain' when t is relevant to the user, while l2 is the `loss' when t is not relevant
to the user. The event `t is relevant' produces a bene®t whenever EMV(t )>0. EMV can be
equivalently given by the formula:

EMV1�t� � log
l1 � ER�t�
l2 � E:R�t� : �3�

4.2. Decision theory and semantic information

Since the ®fties, the concept of information has been central in communication theory.
Hintikka (1970) rightly argues that what is now known as information theory was ®rst known
as theory of transmission of information. He then suggested to call it statistical information
theory in contrast to semantic information theory (Carnap, 1950; Bar-Hillel & Carnap, 1953).
The basic connection between these two areas was the assumption of the entropy expression as
a measure of information content either of a binary vector conveying information or of a
logical sentence, respectively. The interpretations of this mathematical function however are
deeply di�erent: frequency is presupposed to be the basis in one case, while a purely logical
characterization is sought in the second one. This di�erence has split the research into
independent studies on the nature of information. The development of the semantic
interpretation of information has been ignored, but we believe that it can be useful in the
context of IR. Indeed, we show how to generalize the semantic information theory of Hintikka
(1970) and how the probabilistic model can be easily derived in our framework as a particular
case. We do not resort to the Bayesian inference as in van Rijsbergen (1979) but instead use
utility theory.
Let us assume that the user has to decide whether to use the term t or not. t has the `a

priori' relevance value ER (t ). Suppose also that t is relevant to the information need of the
user. l1 would be then the `award' if he takes t while l2 would be the `cost' if he discards t
(with a priori probability ENR (t )). In the above formula what we actually gain or lose in
taking t is unclear. However, if `t is relevant', then the user will gain the amount of
information of nonrelevance of t: let us denote it by infNR (t ). On the other hand, the loss l2
can be quanti®ed by the amount of information of relevance of t, that is infR(t ). In both
information theories (semantic and frequency-based) the amount of information is taken to be
inversely proportional to probability, that is infP(e )=ÿlog P(e ) or by the similar entropy
expression. They share the principle that a sentence is more informative if it excludes more
alternatives, that is, if it has a low probability (in particular tautologies are not informative at
all because no alternatives can be excluded). Hintikka (1970), following Popper's notion of
falsi®er, suggests to use as a measure of information of a sentence the relative number of
alternatives that the sentence excluded, more generally this can be formalized as
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inf(e )=1ÿP(e ). In our case we have to assign the amount of information to random variables
instead to sentences. By analogy, following the suggestion from Je�rey (1965) and observing
that the conditioning expectations do not go beyond the value 1, we may de®ne the amount of
information as:

infP�t� �def 1ÿ EP�t�:
Let us de®ne Nt = 1ÿt, then:

Inf:R�t� � 1ÿ E:R�t� � :R�1� ÿ
�
O
td:R � E:R�:t�

InfR�t� � 1ÿ ER�t� � ER�:t�:
Substituting the values of the ls into Eq. (3), we have

log
E:R�:t� � ER�t�
ER�:t� � E:R�t� > 0:

The absolute relevance of the term must satisfy the constraint:

w�ti � � log
ER�ti � � E:R�:ti �
ER�:ti � � E:R�ti � > 0: �4�

4.3. The IR probabilistic model

Let us apply the model hO, P(O ), Ri with a particular relevance measure R. We assume that
1. R is the counting measure for the relevance of documents i.e. R takes a value R(d )=0 or

R(d )=1 for every document according to the user relevance feedback;
2. ai

d is the counting document-term matrix, that is:

adi �
�
1, if the ith term occurs in d;
0, otherwise:

In the following nR denotes the cardinality of the relevant set of documents, N the cardinality
of O, r i the cardinality of the set of relevant documents in which the term ti occurs, nNR

i the
cardinality of the set of nonrelevant documents in which the term ti occurs, and ®nally n i the
cardinality of the set of documents in which the term ti occurs.
By de®nition of ai

d, the value ad$O ai
dR(d ) is the cardinality r i of the set of relevant

document in which the term ti occurs. Substituting r i into Eq. (1) we get ER (ti)=r i/nR.
Analogously, since:X

d2O
adi:R�d� �

X
d2O

adi �1ÿ R�d�� �
X
d2O

adi ÿ
X
d2O

adi R�d� � ni ÿ ri,
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we have

E:R�ti � � ni ÿ ri

Nÿ nR
:

Finally

ER�:ti � � 1ÿ ER�ti � � nR ÿ ri

nR

and

E:R�:ti � � 1ÿ E:R�ti � � Nÿ nR ÿ ni � ri

Nÿ nR
:

The weight w(ti) de®ned as in Eq. (4) satis®es the following relation:

w�ti � � log
ER�ti � � E:R�ti �
ER�ti � � E:R�ti � � log

�ri=nR ÿ ri �
�ni ÿ ri=Nÿ nR ÿ ni � ri � > 0: �5�

This is the well known weighing formula of the probabilistic model of IR (Robertson & Sparck
Jones, 1976; van Rijsbergen, 1979; Crestani, Lalmas, van Rijsbergen, & Campbell, 1998).
More generally, wt can be used as a weight of relevance of the term t for the user and it

must be greater than 0: greater is the value of wt, higher is the degree of relevance of t. The
vector hwtit$T in ProFile can be thus considered as a weighted description of the user's pro®le.
Note that if we used the vector hER (t )it$T as a description of user's pro®le we would not take
into account neither the nonrelevant documents nor the documents where t does not occur.
Hence the vector hwtit$T is a more informative description of the user pro®le.
This result shows that relation of Eq. (4) generalizes the probabilistic model of IR.

5. Pro®le's learning model

The expected probability of relevance for IR can be easily adapted to de®ne a ®ltering
function. Let us assume that n conceptual classes C1, C2, . . . , Cn are associated to a single user.
These conceptual classes can possibly be reduced to two: the user's class of relevant documents
and the set of uncertain documents. Let us examine one document x=hxtit$T, on the set T of
terms, at a time from a stream of documents. Then the probabilistic model hO, A, RCi, as
described above, can be applied to each class.
Let RC (O ) be the sum of all assessment values RC (d ) given to the processed documents up

to the current instant of time. The vector of all weights hwt
Cit$T, as de®ned by Eq. (3), will be

matched with the new document x by a similarity function SIM (e.g. the vector space
similarity function). In ProFile we use a variant of the vector space similarity function (Salton
& McGill, 1983a). For the inner product, for example, we would get the equation:
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SIM�x,hERC
�t� >t2T� �

X
t

x t

X
d

atdr
C
d

RC�O�

,X
t

X
d

atdr
C
d

RC�O� �

X
t

X
d

xta
t
dr

C
dX

t

X
d

atdr
C
d

, �6�

where RC (d ) is denoted by rCd . Note that in the above formula rCd can assume any real value
since we are not restricting to considering a two-valued relevance probability RC. This formula
is not e�ectively usable since we need to store all the matrix (ad

t ) and the vector (rCd ) to be able
to compute the similarity function, that is (|T|+n ) � |O| values where n is the number of
conceptual classes.
Similar considerations apply when adopting other similarity functions instead of the Salton's

similarity coe�cient. This problem can be avoided by computing the conditioning expectation
ERC

(t ) of the relevance of each term t by means of Eq. (1) and incrementally updating this
measure as soon as a new document is processed. In this way we need to store (1+|T|) � n
global parameters, that is the values RC (Oold) and E old

RC
(t ). Suppose now that a new document

y=hy(t )it$T is incoming, so that Onew=Oold [ { y }. Then the relation among the new values,
E new

RC
(t ) and RC (Onew) and the old values, E old

RC
(t ) and RC (Oold), is ruled by the following

transition equations, derived from the Eq. (1) and by the de®nition of Onew:

E new
RC
�t� � E old

RC
�t�RC�Oold� � ytr

C
y

RC�Oold� � rCy
�7�

RC�Onew� � RC�Oold� � rCy : �8�

Applying some algebra to Eq. (1) we easily get the nonrelevance parameters for t:

E:RC
�t� �

X
d2O

atd:RC�d�X
d2O
:RC�d�

�

X
d2O

atd�1ÿ rCd �X
d2O
�1ÿ rCd �

�

X
d2O

atd ÿ
X
d2O

atdr
C
d

jOj ÿ RC�O� �

X
d2O

atd ÿ ERC
�t�RC�O�

jOj ÿ RC�O� :

By de®ning a t=ad$O ad
t , we ®nally get:

E:RC
�t� � at ÿ ERC

�t�RC�O�
jOj ÿ RC�O� : �9�

This formula shows that we need to store other 1+|T| global parameters that is a t and |O|.
When a new document y=hytit$T is incoming we can set up the equations for the transition
from the old to the new parameters as follows:

jOnewj � jOoldj � 1 �10�

atnew � atold � yt: �11�
Once ERC

(t ) and E:RC
(t ) are computed and observing that
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ERC�:t� � 1ÿ ERC
�t�

E:RC
�:t� � 1ÿ E:RC

�t�,
we can now substitute them into the weights wt of Eq. (4) and obtain the new value

wC�t� � log
ERC
�t�E:RC

�:t�
ERC
�:t�E:RC

�t� : �12�

To summarize, ProFile works in the following way:
1. For each incoming document and for each conceptual class C the user provides a relevance

measure RC, 0 R RC R 1.
2. (|Terms|+1)(n + 1) global parameters are needed to de®ne a probabilistic model of ®ltering,

where n is the number of the conceptual classes. These are the conditioning expectations
ERC

(t ), a t, |O| and RC (O ).
3. By applying the decision theory we are able to provide a term t with a weighting formula

wC (t ) (see Eq. (12)). The weight wC (t ) depends on the values ERC
(t ), E:RC

(t ), ERC
(Nt ) and

E:RC
(Nt ). E:RC

(t ) is obtained by the Eq. (9); ERC
(Nt ) and E:RC

(Nt ) are equal to
1ÿERC

(t ) and 1ÿE:RC
(t ) respectively.

4. When a new document y=hytit$T is examined, the global parameters are updated according
to Eqs. (7), (8), (10) and (11).

5. Finally, any similarity function SIM can be applied to the vectors x=hxtit$T and
wC=hwC (t )it$T to compute a real number value for the membership of x to C. The
conceptual classes containing the document x are such that: SIM(x, wCj

)>sC, where sC is a
threshold value. From a theoretical point of view sC must be equal to 0. However, this
threshold is experimentally greater than 0. Note also that if the user always gives the
maximum uncertain value 1

2 to each document in the stream of documents then wC is the
null vector.

6. Related work

Most current models of IF have their origins in the studies of the use of relevance feedback
in IR. The learning process required by ®ltering is, in fact, very similar to the learning process
used by relevance feedback. In both cases an initial description of the user information need
(the query or topic) is augmented/modi®ed through the provision of additional relevance
information. The additional relevance information is often provided in the form of documents
that are relevant to the same user information need expressed in the query. It is the task of the
learning process to extract statistical relevance information from these documents to adapt a
user relevance pro®le. However, despite these apparent similarities, IF and IR di�er greatly in
other respects, as was pointed out in Belkin and Croft (1992).
The probabilistic model of IR combine frequency values with relevance assessments using

the Bayes' theorem. In van Rijsbergen (1979) relevance as well as the set of terms are taken as
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elementary events. On the contrary, in Maron (1961) the absolute probability of a document is
given by the number of its uses divided by the number of total uses, while relevance is a
subjective weight attached to each couple term-document and interpreted as the conditioning
probability of a term given a document.
In relevance feedback models of IR it has been argued that the estimation of the prototype

vector of a class of relevance should be made also from the remainder of the collection. In
NewsWeeder (Lang, 1995) this is partially recovered by computing linear regression from the
rating categories. The probabilistic model of IR solves this problem just for two classes of
relevance (Crestani et al., 1998). This method is known as the complement method (Harper &
van Rijsbergen, 1978). NewsWeeder uses a ®nite number of user's rating categories (the ®rst
for the class of most relevant documents up to the last for the class of completely irrelevant
documents) partitioning the training set, it then uses the tf � idf (term-frequency multiplied by
inverse-document-frequency, see Salton & McGill, 1983a) to assign a new document to exactly
one category. This approach is a breakthrough from the classical two-valued interpretation of
relevance proposed in IR. On the other hand, this approach considers these categories
unrelated and only in the predictive phase a comparison is made by using a similarity function
between the prototype vector of a category (centroid according to Salton's terminology) and
the new document.
In SIFT (Yan & Garcia-Molina, 1995) the user describes the topics of his interest. However,

this initial representation is not e�ective or complete and relevance feedback is needed to
correct the de®nition of the pro®le. Typically, the system must learn a pro®le containing
thousands of weighted terms, starting from a vector of a few initial terms, in order to be
e�ective.
These proposals do not o�er a general way to directly combine relevance with the frequentist

analysis of a data stream. In Amati and van Rijsbergen (1995) a learning model proposes a
natural interpretation of relevance as well as a way to amalgamate it with rank-frequencies
theory. This is the probabilistic model used by ProFile and described in Sections 5 and 4.
Okapi (Robertson, Walker, Hancock-Bealieu, Gull, & Lau, 1993) and InRoute (Callan,

1996) are other two examples of ®ltering systems based on probabilistic models. The
classical Robertson±Sparck Jones weighting function, which is at the basis of the Okapi
system, was shown to be poorly e�ective (Robertson et al., 1993). The reason is that the
Robertson±Sparck Jones weighting function does not take into account the statistics about
the observed document, like the within-document term frequency and the document length
(Robertson, Walker, Hancock-Bealieu, Jones, & Gatford, 1995). Many new weighting
functions have been then tried as variations of the Robertson-Sparck Jones weighting
function wRSJ. The wRSJ has been corrected by a multiplicative factor which takes into account
any extra relevant document parameter. ProFile has a di�erent weighting philosophy: it is the
term weighting w itself that includes the document statistics. In particular w is the weighting
wRSJ when the within-document term frequency reduces to the simple binary value of
occurrence nonoccurrence of the term in the document. In addition, ProFile allows for
nonbinary relevance judgment values which cannot be considered in the Robertson-Sparck
Jones weighting function.
InRoute assumes the same weighting philosophy of Okapi: the initial term weighting given

by the idf function is corrected by a linear combination p1+p2 � ntf � idf, where the beliefs p1,
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p2 satisfy the condition p1+p2=1 and ntf is a normalized within-document term frequency

formula. InRoute stores and updates the idf weights for only those terms that appear in at

least one pro®le. This term selection allows for a fast and e�ective use of the inverted ®le,

provided that the set of terms of the pro®les do not change in time and the number and the

size of pro®les are small.

In SMART (Salton & McGill, 1983b) the relevance feedback interaction is similar to that

used in IR, where the system takes into account also the number of relevant and irrelevant

documents among the selected ones. Similarly to what happens in IR, the user is asked to

make a sharp decision on relevance. This is not an easy task because of the presence of

documents with uncertain relevance (i.e. di�erent from completely nonrelevant or completely

relevant). In ProFile the relevance feedback consists of choosing arbitrary degrees of relevance

values, which are interpreted in the model as a subjective probability distribution on the

incremental set of ®ltered documents. The user is thus able to express his rate of uncertainty.

In general, graded relevance feedback and on-line adaptability seem necessary for the

development of e�ective and personalized ®ltering systems in which long-term requests are

subscribed and a selection of only few documents for training is required. This makes a

nontrivial di�erence from IR, which is usually concerned with retrieving documents from a

relatively static database by means of only few sessions of interaction and retrieval.

In NewsWeeder, relevance feedback consists in rating values of interest. In contrast to

ProFile which has a single pro®le for each topic of user's interest, NewsWeeder considers the

associated class of documents with the same degree of interest (a rating category) as a pro®le,

and the ®lter classi®es documents into these categories. The learning phase of NewsWeeder is

o�-line: indeed the system learns a new model of user's interests each night by taking into

account the overall history of user's relevance assignment on the training documents which

must be saved and kept for each user as a pro®le. In Lang (1995) ®ltering results are reported,

comparing precision against the number of training examples. These results were built only

with two users. For the user A the system has a precision of 59%, and for the user B the

system has a precision of 44% with respect to very large training sets (some thousands of

documents). We consider this evaluation very poor.

A further comparison of ProFile with other many IF systems proposed in the literature

would take far too much space. In fact, in recent years a large number of IF systems have been

proposed. One application area that has been heavily targeted is news ®ltering (Kilander,

1995). Moreover, much e�ort has been devoted to IF in the context of the TREC initiative, as

the increasing number of participants to the two sessions of `routing' and `®ltering' proves (see

TREC-5; Harman (1996) for example). The area of IF brings together many di�erent

experiences from other areas, like machine learning, data mining, knowledge representation,

human±computer interaction. The main contribution of IR, and in particular of TREC, to the

IF community is in providing sound evaluation techniques. We believe that a sound set of

evaluating techniques was really needed in IF, where researchers have been evaluating their

work in many di�erent and sometimes arguable ways. We intend to take advantage of the

TREC contribution by adapting the TREC evaluation guidelines to the evaluation of ProFile,

as reported in Section 7.
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7. Evaluation framework and results

In this section we report on the evaluation of the performance of the proposed IF learning
model, in particular when little training data is provided.
The collection we used is the TREC-5 B (Harman, 1996) a subset of the collection used in

the experiments done in 1996 in the context of the TREC 5 initiative. The collection is made of
selected full text articles of the Wall Street Journal (years 1990±1992). Some of the
characteristics of this test collection are reported in Table 1. We used a set of 50 queries (or
topics, as they are called in TREC) with the corresponding set of relevant documents that were
used for the training and for the evaluation.
The evaluation was performed according to a routing system (see Section 2). The retrieval

e�ectiveness measures we used are recall and precision, already de®ned in Section 3. The
motivation of using the standard precision function at di�erent recall values was explained in
Section 2. We remind that these measures are related in such a way that high precision brings
low recall, and vice versa. In other words, if one desires high precision, he has to accept low
recall, and vice versa. In order to give a measure of the learning performance of the ®ltering
algorithm, recall and precision have been evaluated with di�erent dimensions and compositions
of the set of training examples. The results reported in the following tables are averaged over
the entire set of 50 topics.

At each run we trained the system with only very few documents. In ProFile this training
phase corresponds to the initial phase in which users assess a small number of documents
retrieved by FIFT. We remind that ProFile does not exploit the idf function, hence the whole
information which we use in the experiment is contained in this small set of documents. The
training data of each run was a subset of up to 64 documents randomly chosen among the
known relevant and nonrelevant documents (i.e. those marked as relevant and nonrelevant by
TREC assessors). The ®ltering runs shown in Tables 3 and 4 are thus incremental. The ®gures
reported in those tables should be read as percentage variation of the precision of a base run.
In Table 2 we report the base run, performed using only the information provided by the text
of the topics, without any additional information.
Before commenting the results reported in the tables, it is important to notice that for all the

Table 1
The Wall Street Journal 1990±1992 document collection

Data sets: WSJ 1990±92

Number of documents 74.520

Size in MB 247
Number of queries 50
Unique terms in documents 123.852

Unique terms in queries 3.504
Avarage document length 550
Avarage document length (unique terms) 180
Avarage query length 40

Avarage number of rel. doc. per query 35
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runs reported in this evaluation we did not exploit any statistical information concerning the
entire collection, like for example the idf weighting function used by many IR systems. The
knowledge of such information would have required the processing of the whole collection in
advance, something that can be done for IR applications, but not for IF applications. This
explains why our base run produced rather low performance compared with those an IR
system could have produced. Moreover, we only used a simple stop list (i.e. a list of term not
to be used in the indexing of documents and queries (van Rijsbergen, 1979) and we did not
employ any stemming function (i.e. a function that reduces words to stems (Frakes, 1992)),
since we wanted the system to be language-independent. Although with these settings we
considerably reduced the retrieval e�ectiveness compared with IR techniques, we wanted our
experimentation to be as general as possible and therefore language-independent (no use of
stemming) and collection-independent (no use of date stamp on document or information
concerning their domain). The hypothesis is that the system cannot absolutely know and
process in advance the incoming data and, similarly, making some `educated guesses' on the
content and term distributions in the stream cannot be possible. A di�erent approach was
followed by Allan (1996). Allan assumes that the statistical information about the full
collection can be determined by the statistical information extracted from a sample of relevant
and nonrelevant documents, namely from the set of documents which have been processed up
to a given time. Of course in statistics this technique works when the sample data are not
biased. In IR this amounts to say that sampling works the better the larger the sample and the
more homogeneous in content the documents are. It would not work for a stream of

Table 2
Performance of ProFile for the base run

Rec. 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Prec. 0.68 0.49 0.40 0.33 0.28 0.22 0.17 0.11 0.08 0.04 0.01

Table 3
Precision increment in percentage w.r.t. the base run by using only relevant documents (R) as training. AT means
all terms of the training data and of the topic in the pro®le, TT only terms in the topic and HF only high frequency
terms and terms in the topic

Recall 4R-TT 8R-TT 16R-TT 32R-TT 32R-HF 32R-AT

0.0 +0.25 +4.00 +5.95 +8.18 +13.15 ÿ8.50
0.1 +0.20 +5.96 +6.71 +10.78 +16.28 ÿ8.70
0.2 +1.72 +2.76 +9.51 +8.84 +3.63 ÿ7.39
0.3 +0.45 +3.78 +12.82 +8.69 +3.17 ÿ13.34
0.4 +0.77 +1.98 +7.33 +4.52 ÿ6.94 ÿ23.99
0.5 +1.28 +2.82 +9.60 +4.96 ÿ16.45 ÿ30.7
0.6 +0.68 +2.09 +6.05 +6.54 ÿ22.25 ÿ37.76
0.7 ÿ0.28 ÿ1.22 +1.61 +6.05 ÿ18.71 ÿ36.70
0.8 +1.16 ÿ3.14 ÿ10.22 +5.12 ÿ20.14 ÿ39.06
0.9 +2.40 ÿ13.24 ÿ10.65 +3.40 ÿ16.42 ÿ43.27
1.0 ÿ1.18 ÿ11.82 ÿ5.89 +10.31 ÿ18.32 ÿ53.09
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documents coming from many and very heterogeneous sources like net news articles, for which
small samples can be easily inadequate to represent all possible information needs.

Tables 3 and 4 report the comparative increments in ®ltering performance, with regards to
the base run, of three di�erent training strategies. The three strategies are:

TT strategy: it consists of using and modifying the weights of only the topic terms (TT), that
is only those terms present in the original topic and not learning new terms from the
training data;
HF strategy: it consists of using and modifying the weights of the topic terms and of only
high frequency terms (HF) in the training data; by HF terms we mean terms which occur in
at least log2 N documents in the training collection.
AT strategy: it consists of using and modifying the weights of all terms of the training data
including the topic terms.

As we will show, there is no strategy that score consistently better than the others for di�erent
levels of training, but it will be necessary to move from one strategy to another with varying
sizes of the training and with di�erent user requirements in terms of his preferred combination
of recall and precision levels.
Table 3 reports the results of the three training strategies using only relevant information. It

can be noticed that the best results are achieved using only the topic terms, that is the TT
strategy. The worst performance is obtained by the AT strategy, which seems to introduce a lot
of noise by using all terms in the training data. The performance of the HF strategy lies in
between, since less noise is introduced. However, we can notice that the HF strategy does
improve the performance for low levels of recall, therefore helping us inferring that the terms
introducing noise are the least frequent ones.
Table 4 shows the comparative performance of the three strategies using both relevant and

nonrelevant information. Notice that now the performance of the AT strategy and HF strategy
are better than before. In actual fact, they are better than those obtained by the TT strategy,
given the same amount of information used. This can be explained by the contribution to the

Table 4
Precision increment in percentage w.r.t. the base run with a balanced set of relevant (R) and nonrelevant (N) docu-
ments

Recall 4R-4N-TT 8R-8N-TT 16R-16N-TT 16R-16N-HF 16R-16N-AT

0.0 +0.12 +2.50 +5.81 +9.11 +8.8
0.1 +0.2 +3.34 +14.43 +18.32 +19.07
0.2 +0.99 +0.96 +8.88 +17.21 +19.83

0.3 ÿ0.14 +4.41 +10.03 +15.89 +18.60
0.4 +2.56 +2.96 +9.25 +9.72 +4.83
0.5 ÿ0.39 +1.74 +9.12 +9.71 +0.78

0.6 ÿ3.77 +2.22 +14.76 +11.25 +2.25
0.7 +2.71 +2.16 +21.70 +14.85 ÿ1.57
0.8 +1.49 +0.48 +6.22 +4.76 ÿ4.58
0.9 +2.36 +1.46 +16.14 +13.00 ÿ1.44
1.0 +1.80 +2.61 ÿ22.57 ÿ12.49 ÿ17.55
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learning given by negative information (nonrelevant documents). This information helps in
weighting in a better way the terms, and even terms not present in the topic come to play an
active role in the training. However, we can still notice that not all terms can be useful in the
training, since the AT strategy is still worse that the HF strategy. This helps us conclude that
some terms can still be harmful in the training for high levels of recall.
By comparing the two tables we can notice that if we use the same amount of absolute

information, we have better results by using all relevant information, especially for low amount
of training. For example, if we compare the performance of using 16 relevant documents
(column 16R-TT of Table 3) with the performance of using eight relevant and eight
nonrelevant documents (column 8R-8N-TT), we have better performance when using 16
relevant documents, although this e�ects seems to reverse with a large number of documents in
the training set. However, if we consider that the nonrelevant information can be obtained
easily by randomly picking documents from the entire collection, given the very low
probability of randomly selecting a relevant document, we could say that the nonrelevant
information `comes for free'. In this case it is fair to compare runs using the same amount of
relevant information, like for example the two runs 16R-TT and 16R-16N-TT. From this
comparison we can see that adding `free' (or perhaps `cheap') nonrelevant information
increases the performance, in particular for low levels of recall. Similar conclusions can be
obtained by comparing 4R-TT with 4R-4N-TT and 8R-TT with 8R-8N-TT. The conclusion
that can be obtained for these data is that if the information need of an end user is stable in
the long-term, learning is in general no faster using only relevant documents compared with
using a balanced training set, that is a set containing both relevant and nonrelevant
documents2.
The results reported in Tables 3 and 4 show that the system is robust in learning new terms

when the amount of relevant information is balanced by a similar amount of nonrelevant
information. Indeed, the performance of the system is stable by using either HT terms or all
terms (AT) in the training. In both cases the precision is signi®cantly better than that obtained
by tuning the terms TT in the topic. This allows us to conjecture that adopting ProFile
learning algorithm can be successfully applied to ®lter a language-independent document
source. This conjecture will have be checked carefully and this is one of the future directions of
our work.

Table 5
Average precision and recall values after retrieving K documents for the run 16R-16N-HF

K Precision (%) Recall (%)

10 71.1 5.5
20 59.1 8.9
40 51.4 14.3

80 31.3 27.3

2 The use of only nonrelevant documents in the training was experimented too, but as expected provided so poor
results that we decided not to report them.
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Table 5 reports the precision and recall ®gures at particular ranking points, that is after the
user has inspected a number K of documents. The results reported refer to our best learning
strategy, the 16R-16N-HF. It shows how many documents our users have to inspect to satisfy
their precision and recall requirements. We chosen the value of K in realistic terms, that is we
chose it close enough to the number of documents a user is really willing to inspect in real
applications. Values higher than these (and 80 is already quite high a value) will be unrealistic.
The results show that, after having been trained with as little as 32 documents, ProFile can
already achieve quite good performance. Table 5 shows, for example, that among the ®rst 10
documents retrieved by ProFile on average seven are relevant and that among the ®rst 20 at
least 11 are relevant. The user can then select anyone of the relevant and nonrelevant
documents, mark them accordingly, and use them for the tuning phase, further improving the
performance of the ®ltering. ProFile will balance the number of relevant documents marked by
the user with nonrelevant document chosen at random from the collection, since the learning
strategy employing a balanced combination of relevant and nonrelevant has proved to be the
best strategy.

8. Conclusions and future works

In this paper we presented a probabilistic learning algorithm and its current implementation:
the ProFile IF system. The ®rst results of the evaluation of ProFile are encouraging and prove
our theoretical conclusions. A more extensive evaluation is however needed, in particular with
regards to ®nding the best possible learning strategies. We believe that many aspects of the
training phase (i.e. the training data, the form of the initial topic, the combination of positive
and negative training examples, etc.) depend on the application and on the document collection
being used. To prove that, we intend to test ProFile using di�erent collections of documents
and in di�erent application areas. The following two directions will be explored:

. The use of ProFile for multilingual news ®ltering. In this context it will be necessary to set a
threshold on the ranked list of news items so that items above that level will be retrieved
and presented to the user and those below it will be discarded. Setting such a threshold at an
optimal level is not trivial, since it is user- and application-dependent.

. Testing the learning algorithm with multiple levels of relevance. In the evaluation presented in
this paper ProFile learning only uses `binary' information about the relevance of a document
(a document is either relevant or not), because such was the information available for the
TREC test collection. However, ProFile is capable of using more detailed information about
the relevance of a document. We will test ProFile using test collections with documents
classi®ed according to several classes of relevance. Examples of such collections are: the
Cystic Fibrosis Database with eight classes of relevance (Shaw, Wood, Wood, & Tibbo,
1991), the Cran®eld test collection with ®ve classes (Cleverdon, Mills, & Keen, 1966) and the
STAIRS collection with six classes (Blair, 1996). With more precise relevance information we
expect higher performance levels.

We believe our initial results, presented in this paper, provide a very good starting point for
the above further experimentations.
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