
1 

 

Monaural Multi-Talker Speech Recognition using 

Factorial Speech Processing Models 
 

Mahdi Khademian a, Mohammad Mehdi Homayounpour a, *1 

a Laboratory for Intelligent Multimedia Processing (LIMP), Computer Engineering and IT Department, 

Amirkabir University of Technology, Tehran, Islamic Republic of Iran 

 

Abstract 

A Pascal challenge entitled monaural multi-talker speech recognition was developed, targeting 

the problem of robust automatic speech recognition against speech like noises which significantly 

degrades the performance of automatic speech recognition systems. In this challenge, two 

competing speakers say a simple command simultaneously and the objective is to recognize speech 

of the target speaker. Surprisingly during the challenge, a team from IBM research, could achieve 

a performance better than human listeners on this task. The proposed method of the IBM team, 

consist of an intermediate speech separation and then a single-talker speech recognition. This paper 

reconsiders the task of this challenge based on gain adapted factorial speech processing models. It 

develops a joint-token passing algorithm for direct utterance decoding of both target and masker 

speakers, simultaneously. Comparing it to the challenge winner, it uses maximum uncertainty 

during the decoding which cannot be used in the past two-phased method. It provides detailed 

derivation of inference on these models based on general inference procedures of probabilistic 

graphical models. As another improvement, it uses deep neural networks for joint-speaker 

identification and gain estimation which makes these two steps easier than before producing 

competitive results for these steps. The proposed method of this work outperforms past super-

human results and even the results were achieved recently by Microsoft research, using deep neural 

networks. It achieved 5.5% absolute task performance improvement compared to the first super-

human system and 2.7% absolute task performance improvement compared to its recent 

competitor. 
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1. Introduction 

Robustness of automatic speech recognition systems (ASR) against diverse speech processing 

environments and adverse disturbing noises still remains as one of the important research areas in 

speech recognition systems (Baker et al., 2009; Li et al., 2014). Among all diversities and 

conditions in everyday environments which ASR systems must manage, dealing with the Babble 

noise and presence of competing speakers is one of the challenging problems of these systems. 

This problem is known as the cocktail party problem (Haykin and Chen, 2005) in which a person 

(or a system) wants to focus and follow the conversation of a speaker in a place where some people 

talk simultaneously. Roughly speaking, two groups of approaches are developed for addressing 

this problem. Approaches in the first group incorporate signals captured from several microphones 

or capturing channels and perform low level signal processing techniques such as the beam 

forming and blind source separation which reduce footprints of the competing audio sources. 

These approaches accomplish their speech processing tasks using the improved captured and 

processed signals. Approaches in the second group use only one recording channel and perform 

high level speech processing and machine learning techniques and accomplish their tasks in the 

presence of the competing audio sources which seems to be more challenging. 

An interesting competition entitled “Monaural speech separation and recognition challenge”, 

addressing the challenges related to the second group of approaches was developed in 2006 (Cooke 

et al., 2010). In this challenge, two competing speakers are simultaneously issuing a command and 

the objective is to recognize the command of the target speaker. The task uses a simple grammar 

for commands and it has a small vocabulary. 

The problem of monaural multi-talker speech recognition becomes more difficult when speech 

of the masker speaker has higher energy than the target. The problem becomes worse when the 

masker speaker voice is similar to the target voice; i.e. when the two speakers have the same gender 

or two speakers are the same. Several teams attended this competition with different techniques 

for handling the problem (Cooke et al., 2010). Among the competitors, surprisingly, a team from 

IBM research presented a technique that outperforms the other techniques and even human 

listeners (Hershey et al., 2010). In their work, the task was accomplished in three main steps. First, 

the identity of speakers and gain is estimated using high resolution Gaussian Mixture Models 

(GMM) as speaker models. In the main step, speech of both speakers are separated from the mixed-
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speech signal using factorial speech processing models. In this step, expected value of source 

features given the observed feature and joint acoustic states are considered for source estimation, 

then source separation is performed. In the third step, two separated speeches are decoded using a 

single-talker recognition system (Hershey et al., 2010). This team further developed their system 

to support mixture of speeches of more than two speakers and separate their voices only by one 

recording channel! Later researches continue to work on this dataset. To the best of our knowledge, 

only one work outperforms IBM’s super-human results from the Microsoft research. This work 

incorporates a pair of Deep Neural Networks for acoustic inference over semi-joint hidden Markov 

models (HMM) (Weng et al., 2015); a network for the generation of senone posteriors of high 

energy utterances (or instantaneous high energy frames) and a network for low energy utterances. 

Then they perform decoding over these senone posteriors. 

The method presented in this paper is a model based approach based on factorial speech 

processing models for recognizing monaural mixed-speech signals which is applied for the 

“Monaural speech separation and recognition challenge”. It directly performs joint-decoding over 

the model to decode both utterances of the target and masker speaker, simultaneously. Direct 

speech recognition of this work is done by a joint-decoder which is developed by extending the 

token passing algorithm to support inference over factorial speech processing models constructed 

with grammar and dictionary. While joint-decoding over the models with grammar and dictionary 

increases complexity of decoder, at the same time it provides significant performance 

improvement over the past developed systems. Additionally, this work uses Deep Neural Networks 

for speaker identification and gain estimation as one important step for determining audio sources 

of the factorial model. Moreover, this paper presents a detailed inference procedure over the 

factorial models using the general inference procedures of probabilistic graphical models. 

After this introduction, the next section briefly describes the challenge. It also presents a 

detailed description of steps for applying factorial speech processing models to this challenge, first 

by deriving inference procedures for the factorial speech processing models, then developing the 

joint-token passing algorithm for performing the joint-decoding. Section 3 describes the methods 

for determining and adapting source models. Section 4 presents experiments, scoring procedure 

and results. Section 5 will conclude the paper. 



4 

 

2. Factorial speech processing models for single channel speech recognition 

The objective of the monaural speech separation and recognition challenge is to recognize 

some keywords of a target speaker from a mixed-speech of the target and a masker speaker (Cooke 

et al., 2010). Mixed-speech signals of this task are artificially created from speech materials of the 

Grid corpus (Cooke et al., 2006). This corpus contains simple six-word slot commands from 34 

different speakers. Each command is a sequence of command words, color, preposition, a letter, a 

digit and an adverb depicted in Fig. 1. 

 

Fig. 1.  Task grammar consists of a sequence of six-word slots (w is not included in letters). Grammar is provided in the 

HTK HParse (Young et al., 2009) grammar definition syntax. The recognized letter and digit of the target speaker are used 

for scoring. 

Mixed-speech signals are created by selecting two utterances from the Grid corpus, one for the 

target speaker and the other for the masker. The target speaker always uses “white” as the 

command color and the masker does not. This is the clue for discrimination of the target and 

masker voices. Two speech signals are mixed by the following time domain relation: 

 𝑦 = 𝑥𝑎 + 𝑔𝑥𝑏 (1) 

in which 𝑥𝑎 is the speech signal for the target and 𝑥𝑏 is for the masker. The challenge is designed 

for different signal energy ratios of the target and masker which is called Target to Masker Ratio 

(TMR). This is adjusted by the gain coefficient, 𝑔,  in (1). Objective keywords of the task are the 

letter and digit of the target speaker which is used for scoring. The next sub-section provides an 

overview of factorial models of speech processing, which are used in this work for performing the 

task. Then the inference and decoding procedures of these models are presented. 

($command_word  $color  $preposition $letter $digit $adverb) 

$command_word = bin | lay | place | set ; 

$color = white | blue | green | red ; 

$preposition = at | by | in | with ; 

$letter = a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | x | y | z ; 

$digit = one | two | three | four | five | six | seven | eight | nine | zero ; 

$adverb = again | now | please | soon ; 
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2.1. Factorial speech processing models 

Factorial models of speech processing are generative models for modeling the combination of 

multiple audio sources into one (or even multiple) observable mixed-audio signals. It is applicable 

for robust-ASR systems (Hershey et al., 2012) and is tailored exactly for the challenge of this 

paper. Fig. 2 shows the graphical model of a factorial speech processing model. This model is 

based on factorial hidden Markov models which are used for modeling processes with multiple 

independent underlying Markov chains (Koller and Friedman, 2009). In this figure, the two source 

Markov processes are the speech process of speaker 𝑎 and 𝑏. Conditional probability distribution 

(CPD) of the Markov chain of the audio sources are 𝑝(𝑠𝑡+1
𝑎 |𝑠𝑡

𝑎) and 𝑝(𝑠𝑡+1
𝑏 |𝑠𝑡

𝑏) which are modeled 

parametrically by stochastic matrices. Each chain of a factorial speech processing model contains 

an HMM for modeling its audio source which is known as acoustic modeling (Young, 1996) in 

conventional speech recognition applications. These are shown in Fig. 2, by the dashed boxes 

around each audio source (source 𝑎 and 𝑏). 
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Fig. 2.  Factorial Speech Processing Model for recognition of two audio sources only by one recording channel. In this 

graphical model, 𝒚𝒕 is the feature vector of captured signal at time frame 𝒕 and is observable (other variables are hidden), 

𝒔𝒕
𝒂 and 𝒔𝒕

𝒃 are hidden states of the two audio sources, 𝒎𝒕
𝒂 and 𝒎𝒕

𝒃 are mixture components of the audio sources when the 

Gaussian mixture model is used for acoustic modeling and 𝒙𝒕
𝒂 and 𝒙𝒕

𝒃 are hidden feature vectors of the audio sources. 

Conventionally, in speech processing applications, Gaussian mixture models are used for 

observation distributions of HMM and left-to-right topology is used for modeling the Markov 
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chain of that HMM. The observation probability distribution of HMMs is modeled by the 

following CPD: 

 𝑝(𝒙𝑡
𝑎|𝑠𝑡

𝑎) = ∑ 𝑝(𝒙𝑡
𝑎|𝑚𝑡

𝑎, 𝑠𝑡
𝑎)𝑚𝑡

𝑎 𝑝(𝑚𝑡
𝑎|𝑠𝑡

𝑎) (2) 

where 𝑝(𝒙𝑡
𝑎|𝑚𝑡

𝑎 = 𝑖𝑚, 𝑠𝑡
𝑎 = 𝑖𝑠) = 𝒩(𝒙𝑡

𝑎; 𝝁(𝑖𝑠,𝑖𝑚), 𝚺(𝑖𝑠,𝑖𝑚)) is the 𝑖𝑚 Gaussian component of the 

GMM of state 𝑖𝑠, and 𝑝(𝑚𝑡
𝑎|𝑠𝑡

𝑎) models the component weights by a stochastic matrix. The 

observation model of the second chain is similar to the first one. 

Factorial speech processing models have additional CPD for combining source features 

comparing them to factorial hidden Markov models which is called the acoustic interaction 

function. This CPD provides a probabilistic relationship between the source and the combined 

features, i.e. 𝑝(𝒚𝑡|𝒙𝑡
𝑎, 𝒙𝑡

𝑏). In these models, source features are not observable but the combined 

feature is. By the acoustic interaction function we can infer the posterior distribution of source 

features and then the posterior distribution of source states in an “evidential reasoning” pattern 

(Koller and Friedman, 2009). The number of Markov chains in factorial models of speech 

processing depends on the number of audio sources in the mixed-signal. 

For the recognition task of monaural speech separation and recognition challenge, we can 

consider one audio source of the factorial model as the clean source model of the target speaker 

and the other as the model of masker. Then based on mixed-signal feature vectors, we can infer 

acoustic states of the audio sources which are used for decoding. The next sub-section describes 

the way that inference is done over the factorial models of speech processing. 

2.2. Inference 

The objective of inference in models in the form of Fig. 2 is to find the most probable states of 

the sources in a period of time given the observed feature vectors of that period: 

 𝑠1:𝑇
∗𝑎,𝑏 = argmax

𝑠1:𝑇
𝑎,𝑏

𝑝(𝑠1:𝑇
𝑎,𝑏|𝒚1:𝑇) (3) 

But the main objective of inference in our task is to find the sequence of spoken words of each 

speaker; more specifically, the mentioned letter and digit of the target speaker. Decoding the most 

probable acoustic states into the sequence of spoken words is done by a joint-decoder. In this sub-

section, acoustic and temporal inference over the factorial model is described and in the next sub-

section the decoding procedure is discussed. 
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2.2.1. Acoustic inference 

The graphical model of Fig. 2 is not used directly in the applications. In fact, an intermediate 

step during the inference is marginalizing-out hidden feature vectors of audio sources (𝒙𝑎 and 𝒙𝑏). 

This step will merge three CPDs including 𝑝(𝒙𝑎|𝑠𝑎, 𝑚𝑎), 𝑝(𝒙𝑏|𝑠𝑏, 𝑚𝑏) and 𝑝(𝒚|𝒙𝑎, 𝒙𝑏) into state 

conditional likelihood, 𝑝(𝒚|𝑠𝑎, 𝑚𝑎, 𝑠𝑏 , 𝑚𝑏). Probabilistically we have: 

 𝑝(𝒚|𝑠𝑎, 𝑚𝑎, 𝑠𝑏 , 𝑚𝑏) = ∬ 𝑝(𝒚|𝒙𝑎, 𝒙𝑏)𝑝(𝒙𝑎|𝑠𝑎, 𝑚𝑎)𝑝(𝒙𝑏|𝑠𝑏, 𝑚𝑏)𝑑𝒙𝑎𝑑𝒙𝑏 (4) 

As a result, the model of Fig. 2 will be simplified to the graphical model of Fig. 3. This form 

of marginalization is seen before in noise-robust automatic speech recognition when one audio 

source is clean speech and the other is the disturbing noise (Hershey et al., 2012). Depending on 

the feature space and source models, several approaches are suggested for the calculation of (4). 

For example, for high resolution power spectral features, the max-model (Roweis, 2003) is used 

for marginalizing-out source feature vectors. This feature space is usually used for enhancement 

applications. The objective of our task is to recognize utterances of the audio sources (speakers) 

where the audio sources are modeled by GMMs. Usually for this application, MFCC features are 

used for source modeling. By using an appropriate mismatch function (Gales and Young, 1996) 

which combines source features into the observed feature vector, we can approximate each state 

conditional distribution by one Gaussian. This technique is known as approximation by the vector 

Taylor series (Moreno et al., 1996), VTS, which will be discussed later. 
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Fig. 3.  Simplified Factorial Hidden Markov Model of Fig. 2 by marginalizing-out source feature vectors 
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2.2.2. VTS based acoustic inference 

Returning to the time domain expression (1) for creating the mixed-speech signal, here the 

expressions for combining clean source features and then state-conditional likelihoods of mixed-

speech features are developed. The gain coefficient is omitted temporarily and will be reconsidered 

in section 3.2, in details. After framing, windowing and by use of short-term discrete Fourier 

transform we have the following relation between the frames’ complex feature vectors: 

 𝒚𝑡 = 𝒙𝑡
𝑎 + 𝒙𝑡

𝑏 (5) 

where vector elements contain different frequency bins. In the power spectrum we have: 

 |𝒚𝑡|2 = |𝒙𝑡
𝑎|2 + |𝒙𝑡

𝑏|
2

+ 2|𝒙𝑡
𝑎||𝒙𝑡

𝑏| cos 𝜽 (6) 

in which 𝜽 is the phase difference between 𝒙𝑡
𝑎 and 𝒙𝑡

𝑏 complex vectors at different frequency bins 

(𝑡 subscript is removed in subsequent expression and provided as needed for notational brevity). 

In the terminology of noise-robust ASR, this expression is called “mismatch function” when one 

of the source signals is the disturbing noise (Gales and Young, 1996). Then, by using Mel scale 

averaging filters we have: 

𝒚̃ = 𝐖|𝒚 |
2, 𝒙̃ 

𝑎 = 𝐖|𝒙 
𝑎|2, 𝒙̃ 

𝑏 = 𝐖|𝒙 
𝑏|2 

in which 𝐖 is the weighing matrix for Mel filters (each row contains weighting elements for each 

Mel filter). Now for the Mel filter bank features, equation (6) is transformed to: 

 𝒚̃ = 𝒙̃ 
𝑎 + 𝒙̃ 

𝑏 + 2𝜶√𝒙̃ 
𝑎𝒙̃ 

𝑏 (7) 

where 𝜶 is called the phase factor and is equal to: 

 𝜶 =
𝐖|𝒙 

𝑎||𝒙 
𝑏| cos 𝜽

√𝒙̃ 
𝑎𝒙̃ 

𝑏
 (8) 

Considering random values for 𝜽 in [−𝜋, 𝜋], alpha becomes stochastic in the range of [−1,1] (Van 

Dalen, 2011). Moreover 𝜶 can be considered independent from source feature vectors by an 

additional simplifying assumption (Leutnant and Haeb-Umbach, 2009). Thus, it can be considered 

as an internal independent stochastic variable in the mismatch function. It is traditionally ignored 

in many applications (Van Dalen, 2011) or considered as a constant for all frequency bins (Li et 

al., 2009). By taking the logarithm and left multiplying the [truncated] DCT matrix, we have the 

following relation between the feature vectors in the Cepstrum domain: 
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 𝒚 
 

 
c = 𝐂 𝐥𝐨𝐠 (𝐞𝐱𝐩(𝐂−1 𝒙 

𝑎
 

c ) + 𝐞𝐱𝐩(𝐂−1 𝒙 
𝑏

 
c ) + 2𝜶 𝐞𝐱𝐩 (

1

2
𝐂−1( 𝒙 

𝑎
 

c + 𝒙 
𝑏

 
c ))) (9) 

where   
c  in 𝒚 

 
 

c  denotes Cepstral features (   
c  will be removed in subsequent expressions, from now 

on, all feature vectors are considered as MFCC features). Equation (9) is known as the most 

applicable mismatch function in noise-robust ASR where one of the audio sources is considered 

as the disturbing noise; i.e. 𝒚 = 𝐟(𝒙 
𝑎, 𝒙 

𝑏 , 𝜶). This equation constructs a non-linear relationship 

between feature vectors of the audio sources and observable features. It can be considered as a 

deterministic CPD of 𝑝(𝒚 |𝒙 
𝑎, 𝒙 

𝑏) in Fig. 2. A linear approximation of (9) could be established by 

first-order vector Taylor series expansion around 𝒙0
𝑎, 𝒙0

𝑏 and considering a constant alpha as: 

 𝒚 = 𝐟(𝒙 
𝑎, 𝒙 

𝑏 , 𝛼) ≅ 𝒇0 + 𝐆(𝒙 
𝑎 − 𝒙0

𝑎) + 𝐇(𝒙 
𝑏 − 𝒙0

𝑏) (10) 

in which 𝒇0 = 𝒇(𝒙0
𝑎, 𝒙0

𝑏 , 𝛼), 𝐆 =
𝝏𝒇

𝝏𝒙𝑎|
𝒙0

𝑎,𝒙0
𝑏,𝛼

and 𝐇 =
𝝏𝒇

𝝏𝒙𝑏|
𝒙0

𝑎,𝒙0
𝑏,𝛼

. 

Expression (10) can be viewed as the sum of two transformed vector random variables. By 

assuming that 𝒚 has Gaussian distribution and considering the expansion point as the source 

variable means, the Gaussian parameters become: 

 𝝁𝒚 = 𝒇(𝝁𝒙𝑎 , 𝝁𝒙𝑏 , 𝛼) (11) 

 𝚺𝐲 = 𝐆𝝁𝒙𝑎𝐆𝑇 + 𝐇𝝁𝒙𝑏𝐇𝑇 (12) 

At this point, only inference over the static part of feature vectors is done. For performing 

inference over the dynamic coefficients, consider the following expression for discrete 

differentiation of feature vectors: 

 𝚫𝒚𝑡 = ∑ 𝑤𝑖𝒚𝑡−𝑖𝒊 , ∑ 𝑤𝑖 = 0 (13) 

in which 𝑤𝑖s are weights for differentiation. For example, for a context window of size 5, 𝑤𝑖s are 

{− 1 4⁄ , − 1 2⁄ , 0, 1 2⁄ , 1 4⁄ }. Considering expression (13), assuming that dynamic coefficients 

can also be modeled by a Gaussian and by one practical approximation, Gaussian parameters for 

delta and acceleration coefficients can be extracted similar to static parts as follows: 

 𝝁𝚫𝒚 = 𝐆𝝁𝚫𝒙𝑎 + 𝐇𝝁𝚫𝒙𝑏 (14) 

 𝚺𝚫𝐲 = 𝐆𝝁𝚫𝒙𝑎𝐆𝑇 + 𝐇𝝁𝚫𝒙𝑏𝐇𝑇 (15) 

 𝝁𝚫𝚫𝒚 = 𝐆𝝁𝚫𝚫𝒙𝑎 + 𝐇𝝁𝚫𝚫𝒙𝑏 (16) 

 𝚺𝚫𝚫𝐲 = 𝐆𝝁𝚫𝚫𝒙𝑎𝐆𝑇 + 𝐇𝝁𝚫𝚫𝒙𝑏𝐇𝑇 (17) 
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For a detailed derivation, the reader is referred to the appendix of (Li et al., 2009). Now the 

acoustic inference can be done by the following expression: 

𝑝(𝒚|𝑠𝑎 = 𝑖𝑠, 𝑚𝑎 = 𝑖𝑚, 𝑠𝑏 = 𝑗𝑠, 𝑚𝑏 = 𝑗𝑚) = 𝒩(𝒚𝒔; 𝝁𝒔𝒚(𝑖𝑠,𝑖𝑚,𝑗𝑠,𝑗𝑚), 𝚺𝒔𝒚(𝑖𝑠,𝑖𝑚,𝑗𝑠,𝑗𝑚)) ×

𝒩(𝒚𝚫; 𝝁𝚫𝐲(𝑖𝑠,𝑖𝑚,𝑗𝑠,𝑗𝑚), 𝚺𝚫𝐲(𝑖𝑠,𝑖𝑚,𝑗𝑠,𝑗𝑚)) × 𝒩(𝒚𝚫𝚫; 𝝁𝚫𝚫𝐲(𝑖𝑠,𝑖𝑚,𝑗𝑠,𝑗𝑚), 𝚺𝚫𝚫𝐲(𝑖𝑠,𝑖𝑚,𝑗𝑠,𝑗𝑚)) (18) 

in which 𝒚 = [𝒚𝒔, 𝒚𝚫, 𝒚𝚫𝚫]′.  The expansion point for calculating means and covariance matrices 

are determined by the source states and GMM components. For example, 𝝁𝚫𝐲(𝑖𝑠,𝑖𝑚,𝑗𝑠,𝑗𝑚) =

𝐆𝝁𝚫𝒚𝑖𝑠,𝑖𝑚
𝐆𝑇 + 𝐇𝝁𝚫𝒚𝑗𝑠,𝑗𝑚

𝐇𝑇. Now, state conditional likelihoods for different joint-source states 

and GMM components can be calculated by (18). At this moment, we are prepared to perform 

temporal inference in the graphical model of Fig. 3 which is covered in the next sub-section. 

2.2.3. Temporal inference 

For extracting exact temporal inference expressions, at first, a clique tree is constructed from 

the simplified factorial model of Fig. 3. This clique tree is depicted in Fig. 4 which is an arbitrary 

tree constructed by first eliminating the state variable of source b and then a. 
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Fig. 4. A clique tree constructed from the simplified factorial hidden Markov model of Fig. 3. Involved factors in each 

inference step are listed in the callout boxes. Involved variables in each inference step are listed in the boxes. Eliminated 

variables by the max operator are relative compliment of involved variables in all variables in the involved factors. Newly 

generated factors are noted over the arrows. 

Based on the constructed clique tree, the following recursions are extracted to do temporal 

inference: 

 𝜏𝑡
𝑏(𝑠𝑡

𝑎, 𝑠𝑡+1
𝑏 ) = max

𝑠𝑡
𝑏,𝑚𝑡

𝑎,𝑚𝑡
𝑏

𝜏𝑡−1
𝑎 (𝑠𝑡

𝑎 , 𝑠𝑡
𝑏)𝑝(𝑠𝑡+1

𝑏 |𝑠𝑡
𝑏)𝑝(𝑚𝑡

𝑎|𝑠𝑡
𝑎)𝑝(𝑚𝑡

𝑏|𝑠𝑡
𝑏)𝑝(𝒚𝑡|𝑠𝑡

𝑎, 𝑚𝑡
𝑎 , 𝑠𝑡

𝑏 , 𝑚𝑡
𝑏) (19) 

 𝜏𝑡
𝑎(𝑠𝑡+1

𝑎 , 𝑠𝑡+1
𝑏 ) = max

𝑠𝑡
𝑎

𝜏𝑡
𝑏(𝑠𝑡

𝑎, 𝑠𝑡+1
𝑏 )𝑝(𝑠𝑡+1

𝑎 |𝑠𝑡
𝑎) (20) 

where in these two recursions, 𝑝(𝑠𝑡+1
𝑎 |𝑠𝑡

𝑎) and 𝑝(𝑠𝑡+1
𝑏 |𝑠𝑡

𝑏) are state transition matrices of two underlying 

Markov chains, 𝑝(𝑚𝑡
𝑎|𝑠𝑡

𝑎) and 𝑝(𝑚𝑡
𝑏|𝑠𝑡

𝑏) are component weights of GMM observation models of source 
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HMMs and 𝑝(𝒚𝑡|𝑠𝑡
𝑎 , 𝑚𝑡

𝑎 , 𝑠𝑡
𝑏 , 𝑚𝑡

𝑏) is the result of acoustic inference. The importance of breaking this 

joint-state maximization problem into two single-variable problems is the reduction of operations 

by a factor of number of chain states. In other words, instead of jointly doing maximization over 

〈𝑠𝑡
𝑏, 𝑠𝑡

𝑎〉, at each step one source state variable is optimized in a dynamic programming manner (the 

presence of 𝑚𝑡
𝑎, 𝑚𝑡

𝑏 is not important in the first recursion since the number of GMM components 

are not significant relative to the number of states). The initial factor 𝜏0
𝑎(𝑠0

𝑎, 𝑠0
𝑏) is defined as: 

 𝜏0
𝑎(𝑠1

𝑎 , 𝑠1
𝑏) = 𝑝(𝑠1

𝑎)𝑝(𝑠1
𝑏) (21) 

in which 𝑝(𝑠1
𝑎) and 𝑝(𝑠1

𝑏) are state priors of two underlying Markov chains. At each step, a back 

pointer to the previous maximized state is used for the final backtracking: 

 𝜓𝑡
𝑏(𝑠𝑡

𝑎, 𝑠𝑡+1
𝑏 ) = argmax

𝑠𝑡
𝑏

(𝜏𝑡−1
𝑎 (𝑠𝑡

𝑎, 𝑠𝑡
𝑏)𝑝(𝑠𝑡+1

𝑏 |𝑠𝑡
𝑏) max

𝑚𝑡
𝑎,𝑚𝑡

𝑏
𝑝(𝑚𝑡

𝑎|𝑠𝑡
𝑎)𝑝(𝑚𝑡

𝑏|𝑠𝑡
𝑏)𝑝(𝒚𝑡|𝑠𝑡

𝑎 , 𝑚𝑡
𝑎, 𝑠𝑡

𝑏, 𝑚𝑡
𝑏)) (22) 

 𝜓𝑡
𝑎(𝑠𝑡+1

𝑎 , 𝑠𝑡+1
𝑏 ) = argmax

𝑠𝑡
𝑎

𝜏𝑡
𝑏(𝑠𝑡

𝑎, 𝑠𝑡+1
𝑏 )𝑝(𝑠𝑡+1

𝑎 |𝑠𝑡
𝑎) (23) 

This algorithm which is derived here using general inference procedures of probabilistic 

graphical models is called the two-dimensional Viterbi algorithm (Hershey et al., 2010). For more 

details about clique tree construction and general inference over the graphical models, the reader 

can refer to (Koller and Friedman, 2009; Murphy, 2002). 

2.3. Joint-decoding 

For the recognition task of the challenge, different decoding methods can be used. In the 

simplest method, for speech recognition in a single chain, whole word acoustic models can be used 

for the creation of a composite HMM. This can be done since the challenge has a small vocabulary. 

The composite HMM is created by concatenation of states of the whole word HMMs, allowing 

transitions between the different words in the adjacent word-slots. Single chain composite HMM 

models can now be considered in a factorial model with multiple-chains as source models for 

performing inference. This method of inference has some limitations. First, this method cannot be 

used in the tasks with medium and large vocabulary size since considering whole word acoustic 

models is not applicable in these scenarios. Second, explicit construction of the composite HMM 

in the tasks with complex grammar and language-models is very difficult. Third, acoustic states in 

whole word HMMs have overlap with each other which makes acoustic inference on factorial 

models, inefficient. 
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The more efficient method is to use sub-word acoustic units. The past proposed method for 

decoding single chain HMMs with sub-word acoustic units is called token passing algorithm. It is 

a conceptual framework for decoding in large vocabulary continuous speech recognition tasks 

(Young, 1996; Young et al., 2009). 

In the token passing algorithm, a word lattice network based on the task grammar is created 

which models allowable transitions between words of the task. Then a lexicon is used for phonetic 

transcription of words appearing in the network into a sequence of phonemes. Now based on the 

network and lexicon, a set of hypotheses of phoneme sequences is used for decoding. These 

hypotheses and their scores are represented by tokens. Each token preserves a history of states 

using a pointer to its previous token and it has a score which is the acoustic score of the whole 

state sequence; the states of different hypotheses of phoneme sequences. At the final time-frame, 

the best sequence is selected for backtracking by considering its score. Therefore, for each time-

frame, the acoustic state of phoneme in the phoneme sequence, the phoneme and the active word 

are determined and feature vectors of the command are decoded into the command words. 

However, this method is applicable for single chain models. 

The token passing framework can be considered for performing the decoding in the factorial 

models of speech processing, which is called joint-decoding. For the joint-decoding, a new notion 

of state is constructed to perform the inference. In a single chain phoneme based decoding, word_id 

in the word lattice network, phoneme_id in the phonetic transcription of the word and acoustic 

state of phoneme, construct a rich state which can be used in decoding. In multiple chain models, 

the Cartesian product of this rich state can be considered as a joint-state. In Fig. 5 we can see joint-

states of joint-tokens which are represented by the split ovals. Each part of this oval represents a 

token with a rich state where the token’s corresponding word and phoneme are written in the oval 

instead of their ids. Additionally, phoneme state is denoted in the parenthesis in front of the 

phoneme name. 

The joint-state of each token is used for doing the acoustic and temporal inference. The joint-

state conditional likelihood of each frame is calculated using (18). This likelihood is calculated by 

considering the relation (18) conditioned on the joint-state of the joint-tokens in the active token 

list. Then the joint-tokens are propagated through the word lattice network, within a word through 

the phonemes and states of a phoneme to update the list and moving to the next frame. These steps 
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are depicted by their corresponding examples in Fig. 5. The joint-token passing algorithm for 

phoneme based joint-decoding is simply stated in Fig. 6 to provide a clear insight into the problem. 

Selected best
Joint-token

red     by
   d(3)     ay(3)

-235.12

red     by
   d(3)     ay(3)

-283.62Score Update by
joint-state likelihood

at       by
 ae(1)       ay(3)

-283.62

by     by
   b(1)     ay(3)

-283.62

red     by
   d(3)     ay(3)

-283.72

Remain in
third state of d

Next word

Next word

red     by
   d(2)     ay(3)

-242.16

Next phoneme state

red      by
   d(3)      ay(3)

-243.36

...

...

...

...

1

2

2

2

2

3

red      by
   d(3)      ay(3)

-243.36

Best joint-token is selected
for joint-state tokens in the 

dashed box

red      by
   d(3)      ay(3)

-243.47

Remain in
third state of ay

4

red      y
   d(3)      w(1)

-243.47
Next word

4

...

red      z
   d(3)      z(1)

-243.47
Next word

4

blue        at
   uw(1)      ae(3)

-799.54

...

blue        at
   uw(1)       ae(3)

-799.54

3

blue        at
   uw(1)        t(1)

-799.54

Next Phoneme

4

...

...

...

...

...blue        at
uw(1)      t(1)

-799.54

Selected best
joint-token

5

5

5

5

The weak joint-token
is removed

6

Moving forward on the first chain 

Moving forward on the second chain 

 

Fig. 5. Schematic representation of joint-token passing algorithm. Joint-tokens are represented by split ovals which are 

copied, updated and discarded in the steps of algorithm to perform the joint-decoding. The active chain on the factorial 

model designated by dashed part of the ovals. Dummy token scores are stated just above the ovals. Moreover, the related 

algorithm steps are denoted on the arrows. 

As we can see, steps 1-3 in the algorithm are related to the first chain expansion in (19) and 

steps 4-5 are related to the second chain expansion in (20). The best joint-tokens in each joint-state 

are selected according to their scores. This is equivalent to the maximization steps of (19) and (20) 

which is depicted also in Fig. 5 by steps 3 and 5. In this figure, we can see the joint-token <red 

d(3), by ay(3) -243.36> is selected due to its score which is greater than <red d(3), by ay(3) -

283.72>. Moreover after each iteration of algorithm the weak tokens, the tokens with low scores, 

can be removed. This can be done by selecting some threshold or maintaining active token list size 

by some limit. 
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Fig. 6. Phoneme based joint-decoding by joint-token passing algorithm over factorial speech processing models (this can be 

considered as an extension to the single chain token passing algorithm by using the two dimensional Viterbi algorithm for 

performing joint-decoding in factorial speech processing models). 

Token scores are mainly affected by the joint-state likelihoods rather than state transition 

probabilities in each acoustic model. Moreover since in the challenge appearance of words in each 

word slot are equally likely, no other score updating due to this is involved in the steps of algorithm 

which can be considered for more general tasks. 

The algorithm can support multiple phonetic transcription of a word. Also we can consider 

multiple chains in the factorial models of speech processing. The extension is straightforward by 

considering that going forward in the time must be performed chain-by-chain and then returning 

to the first chain; similar to the two-dimensional Viterbi algorithm. In fact, in the two-dimensional 

Viterbi algorithm, the dynamic programming is run within a time-frame in addition to running in 

time, which reduces the computational complexity of inference. 

Initialization: 

1. Extract features from the mixed-speech utterance after framing and windowing. 

2. Construct the word lattice network of each chain. 

3. Select the first word in each network. Based on the phonetic transcription of the selected word 

provided by the lexicon, a token is initialized with the score 0 and a null pointer to its previous 

token. The token joint-state consists of chain1 and chain2 rich states <(word_id, phoneme_id, 

phoneme_state), (word_id, phoneme_id, phoneme_state)>. In these rich states, the first 

phoneme state is the entering state of the hidden Markov model of its corresponding phoneme. 

Main Loop (for each time-frame): 

1. Update the token scores by (18) using features of the current time-frame. 

2. Go forward on the chain 1. This includes creating a copy of the token which may pass over 

state transitions within a phoneme, going to the next phoneme of a word or going to the next 

word in the word lattice network. Only rich states related to chain 1 are updated while the 

pointer to the previous token is preserved. Updating token score should be done by considering 

the state transition probability within a phoneme (other decoding considerations such as word 

insertion penalties and language model scores can be considered here for updating token score 

which are not related to the challenge of this paper). 

3. Best token in each joint-state is selected and the others are discarded. 

4. Go forward on the chain 2. 

5. Best token in each joint-state is selected and the others are discarded. 

6. Remove the weak tokens (the tokens with low scores). 

Termination: 

1. Update the token scores by (18) using features of the last time-frame. 
2. Find the best token. 

3. Do backtracking by the back-pointer of the best token until reaching the initial token (the token 

with a null back-pointer). 
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3. Determining and adapting source models 

Using speaker adapted source models in the factorial models for the mixed-speech recognition 

task of “monaural speech separation and recognition challenge”, significantly improves 

recognition performance. This happens since discriminative features of speaker voices are also 

clues for improving acoustic inference within time-slices rather than dynamic constraints which 

applies to the whole utterance. Additionally, any adaptation related to the gain effect of the 

expression (1) for synthetizing the mixed-speech signal also significantly improves recognition 

performance. In the mixed-speech recognition task of the challenge, utterances of two speakers 

among 34 speakers of the GRID dataset are randomly selected for synthetizing each mixed-speech 

signal. During the test phase, using speaker labels of the test files is prohibited and therefore the 

identity of speakers for each utterance is unknown to the recognizer. On the other hand, TMR is 

also unknown to the recognizer. Identifying speakers and gain estimation is needed for determining 

audio source models of factorial models and adapting model parameters for improving inference 

and recognition performance which are described in the next two sub-sections. 

3.1. Speaker identification 

In the challenge, model based methods such as the IBM system use speaker conditional 

likelihoods of each frame for the calculation of speaker id posteriors over the frames of the input 

mixed-speech signal. Then the speaker identification is done by voting high confidence identified 

frames which yields relatively precise speaker identification. This method is applied based on an 

underlying assumption which states that for the high resolution spectral features we can assume 

that one source is dominant in each time-frequency cell after the short-term discrete Fourier 

transform analysis. In the proposed method, we simply use a deep neural network for joint-speaker 

identification which also yields competitive results with relative simplicity and lower test-time 

computations compared to the previous methods.  

A deep feed forward architecture with 34 sigmoid output neurons are selected for construction 

of the network. In addition, high resolution Mel-scale filterbank energies in a context-window 

including 2𝜏 + 1 frames are selected as the network input (see Fig. 7). High resolution features of 

the synthetized mixed-speech signals with speaker identities are provided for the training phase. 

For each mixed-speech signal, two output neurons are designated as the desired output value 
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except for the case where one speaker is presented as both target and masker in the signal. The 

network architecture and its input and target values are illustrated in Fig. 7. All neuron activation 

functions have logistic sigmoid shape. 

... ... ... ...

...

x1 x2 xn-1

zt

xt
0

...

zt
1

zt
34

yt yt+1yt-1 yt+τ yt-τ 

......

Context window of
2τ+1 frames

xt

 

Fig. 7. Joint-speaker identification network. 

The joint-speaker identification network is pre-trained layer-wise by restricted Boltzmann 

machines (RBM) generatively, which is necessary before the training phase. Then the network is 

trained by error back-propagation using speaker labels. 

In the test-phase, for each context-window of frames of each utterance, network output is 

extracted. At first, uncertain neurons (neurons with low activation values) are eliminated by a 

threshold as follows: 

 𝑧𝑡
𝑖 = {

0 𝑧𝑡
𝑖 < 𝜆

𝑧𝑡
𝑖 𝑧𝑡

𝑖 ≥ 𝜆
, ∀ 𝑖 ∈ {1,2,3, … ,34}, 𝑡 ∈ {1,2,3, … , 𝑇} (24) 

Then for these context-windows, two best speaker ids are selected for final voting as follows: 

 𝑠𝑡
𝑗

= {𝑧𝑡
𝑗

𝑗 ∈ {𝑐1, 𝑐2}

0 𝑜𝑤
 (25) 

in which 𝑐𝑖s are the indices of sorted activation values within a context-window; i.e. 

𝐬𝐨𝐫𝐭((𝑧𝑡
𝑖)𝑖=1

34 ) = (𝑧𝑡
𝑐𝑖)𝑖=1

34 . Now speaker voting is done by the following summation: 

 𝑠𝑖 = ∑ 𝑠𝑡
𝑖𝑇

𝑡=1  (26) 

At this step speaker scores are sorted and speaker indices are stored in 𝑐𝑖s; i.e. 𝐬𝐨𝐫𝐭((𝑠𝑖)𝑖=1
34 ) =

(𝑠𝑐𝑖)𝑖=1
34 . Then, recognized speakers are selected using a second threshold, 𝜃, and the limit of 

maximum two speakers. The 𝜃 threshold is used to eliminate the second speaker in the same 

speaker test utterance cases. 
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 {𝑐𝑖|𝑠𝑐𝑖 > 𝜃, ∀𝑖 ∈ {1,2}} (27) 

Two thresholds, 𝜆 and 𝜃 can be tuned by the validation set which will be discussed in the 

experiments. 

3.2. Gain estimation and model adaptation 

Recalling the expression (1) for the generation of mixed-speech signal, relative speech signal 

energy of the speaker a and b can be modeled by a gain coefficient (𝑔). Here, at first, by 

considering one audio source, the effect of gain coefficient in each step of feature extraction is 

investigated. Starting from the power spectrum of speech frames (|𝒙|2), for extracting MFCC 

features we have: 

 𝒙′
 

c = 𝐂 𝐥𝐨𝐠(𝐖|𝑔𝒙|2) (28) 

again, 𝑔 is the gain, 𝐖 is the matrix of Mel shaped averaging filters, and 𝐂 is the [truncated] DCT 

matrix. Then we have: 

 𝒙′
 

c = 𝐂(𝐥𝐨𝐠(𝐖|𝒙|2) + 2 𝐥𝐨𝐠(𝑔𝟏)) = 𝒙 
c + 𝒙0 (29) 

where 𝟏 is column vector of one and 𝒙 
c  is the original MFCC features. Then, 𝒙0 is the gain 

compensated vector as: 

 𝒙0 = 2 log(𝑔) 𝐂 × 𝟏 = [𝑔0, 0,0, … ,0]𝑇 (30) 

where the 𝑔0 is defined as: 

 𝑔0 = 2 log(𝑔)√𝑚 (31) 

in which 𝑚 is the number of Mel filters in the filterbank (the number of columns of 𝐖). 

As we can see in (30), gain factor only affects the first MFCC coefficient (MFCC’s 0th order 

coefficient). For the delta and acceleration features based on (13), we can observe that the gain has 

no effect on delta coefficients and consequently on acceleration coefficients. Therefore, only the 

first element of each feature vector is affected by the gain coefficient and we must adjust the related 

parameters of the source models for the adaptation. Equation (29) shows that a constant vector is 

added to the original MFCC features. Therefore, only Gaussian mean vectors must be updated and 

covariance matrices remain unaltered. In fact, only the first element of Gaussian means in the 

source models must be adjusted. 
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In the test phase, the gain coefficient and therefore 𝑔0 is unknown and it must be estimated. 

The general method for this estimation is to use maximum likelihood estimators where for the 

appropriate gain coefficient, the likelihood of test utterance when decoded in the adapted model is 

maximized. i.e.: 

 𝑔̂∗ = argmax
𝑔𝑖

𝓛∗(𝒚1:𝑇|𝑔𝑖) (32) 

The method is applicable in this way, because factorial speech processing models are 

generative models which model the way clean audio sources are mixed for creating output signals. 

Therefore, a more matched parameter set yields to a greater decoding likelihood for the test 

utterance. During the challenge, model based methods have used this technique in their gain 

estimation step. 

In our work, we use deep architectures for this step once again. In fact, similar architecture to 

joint-speaker identification is used here for gain estimation except that a linear neuron is used for 

estimating the gain coefficient. During the training phase, mixed-speech training utterances with 

various gains are synthetized for the network with its gain as the desired output. Feature extraction 

and framing is similar to joint-speaker identification by deep networks. This method for estimating 

the masker gain is straightforward compared to the past MLE methods. However, it is applicable 

to the task of this paper, since only the gain of the masker utterance is adjusted in this task. At the 

final step, based on the estimated gain, model parameters are updated and inference is done for 

decoding. 

4. Experiments 

The monaural speech separation and recognition challenge is designed based on the GRID 

dataset (Cooke et al., 2006). Speech material of this task consists of 1000 utterances of 34 speakers 

which are partitioned evenly for the training and test phase. Synthetized mixed-speech of randomly 

selected joint-speakers are extracted from 500 utterances of the test part for each speaker in 6 

different TMRs including 6, 3, 0, -3, -6 and -9 dBs. For each TMR, 600 and 300 mixed-speech 

signals are synthetized for the test and development set respectively. While identification of joint-

speakers and the mixed-speech TMR can be understood by the filenames and folders, it cannot be 

used in the test phase. In this task, recognition of the letter and digit of the target speaker is the 

objective and the scoring is done by the scoring scripts which are provided by the organizers. The 
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target speaker always uses the “white” color and the masker does not and we can use this clue to 

identify the target speaker. For this challenge, recognition performance of human listeners is 

evaluated for comparing automated systems with humans as the gold standard (Fig. 11). 

In this section, source modeling, feature extraction, grammar definition and extraction of the 

task dictionary are explained. Then based on experiments conducted on the development set, 

selection of feature space and tuning speaker identification hyperparameters are done and the 

results are provided. Finally, the main experiments are conducted and the results are compared to 

the past super-human results. 

4.1. Source Models, Grammar and Lexicon 

Three state HMM monophones are selected as source acoustic models which are trained by the 

HTK tool (Young et al., 2009). The models are first initialized by the TIMIT dataset (Garofolo et 

al., 1993), then re-estimated by training speech utterances from 34 speakers of the challenge 

corpus. The number of mixture components is increased from 8 to 32 for each monophone state. 

Then models are adapted for each speaker and the number of mixture components is decreased to 

8 and 4 components which are used in the experiments. The four component speaker adapted 

models are used for feature selection and phase factor adjustments and the eight component models 

are used for the main experiments. MFCC features are used for acoustic modeling and feature 

extraction is done by the Voicebox toolbox (Brookes, 1997). For feature extraction, 27 Mal-scale 

filters are used and framing is done by 10ms frame shift and 25ms frame length. Number of 13 

through 23 MFCC coefficients (excluding delta and acceleration coefficients) are extracted using 

the truncated DCT matrix (its effect will be discussed further in the experiments). 

HMM initialization by the TIMIT dataset requires no Grammar and Dictionary and 40 

monophones (including silence model) are trained by the TIMIT dataset. For HMM re-estimation, 

due to the word level transcription of training speech materials, the definition of lexicon and 

Grammar is required. We use the BEEP dictionary (Robinson, 1997) for the phonetic transcription 

of 51 different words of the challenge (see Fig. 1). Additionally, the word lattice network is created 

based on the task grammar which is already provided in (Cooke et al., 2010) and also presented in 

Fig. 1.  
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4.2. Feature selection and phase factor determination 

Before initiating the main experiments, selection of appropriate features for this task and 

adjusting the phase factor in the mismatch function of (9) for performing the acoustic inference 

must be done. At this step, MFCC features and their first and second order derivatives are selected 

as the feature type. Now, various static phase factors are selected for the test on the development 

set. Configuration of feature extraction is similar to the task baseline system except that MFCC 

0th’s coefficient is used in features instead of the logarithm of frame energy and 27 filters are used 

in the Mel-scale filter bank. 

At this step, no speaker identification and gain adaptation is carried out and identity of the 

speakers are considered to be known during the tests. Since at this step, gain adaptation is not 

performed yet, only performance of the system in near zero TMRs are considered for phase factor 

(alpha) selection; i.e. 3, 0 and -3 dB TMRs. Fig. 8 shows the average performance of these three 

TMRs against different alpha values. The best alpha value is selected for the next experiments. 

Alpha candidates are selected almost similar to the work of (Li et al., 2009) and the selected alpha 

is 2. This alpha value is not valid regarding its support set (the reader is referred to (Li et al., 2009) 

or (Van Dalen, 2011) for explanations of this theoretical contradiction).  

 

Alpha Avg. Perf.

-1.0 48.6%

-0.5 73.0%

0.0 75.6%

0.5 76.4%

1.0 76.7%

1.5 76.6%

2.0 76.9%

2.5 76.4%

3.0 76.1%

5.0 75.5%

 

Fig. 8. The average task performance over TMRs 3, 0 and -3 dB against different static phase factors (alpha values). 

For selecting the appropriate feature type, a different combination of MFCC features are 

selected for evaluation on the development set which their results are listed in Table 1. These 

feature types are used for source modeling and acoustic inference with the selected alpha value. 

Again here, only system performance is considered for near zero TMRs. 
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Table 1: List of features with their properties for evaluation on the development set for feature type selection. Average 

performance over 3, 0 and -3 dB TMRs are listed in the last column. 

Feature type Truncated 

DCT Matrix 

Size 

Including 

delta coeff. 

Including 

accel. coeff. 

Total 

feature 

dimension 

Clean speech 

recognition 

performance 

Average 

Task 

Performance 

MFCC0(13) 13x27 no no 13 95.16 % 74.78 % 

MFCC0(26) 26x27 no no 26 96.46 % 75.22 % 

MFCC0D(26) 13x27 yes no 26 97.75 % 77.00 % 

MFCC0D(38) 19x27 yes no 38 98.01 % 80.16 % 

MFCC0D(42) 21x27 yes no 42 98.08 % 78.95 % 

MFCC0D(46) 23x27 yes no 46 97.72 % 79.56 % 

MFCC0DA(39) 13x27 yes yes 39 97.76 % 76.89 % 

Two feature types are selected for the main experiments. The first is the de facto 

MFCC0DA(39) and the second is MFCC0D(38). 

4.3. Speaker identification results 

Joint-speaker identification of this task is done by a deep neural network. The network contains 

5 layers, including 4 hidden layers (each layer has 2500 logistic sigmoid neurons) and one output 

layer which consists of 34 neurons for joint-speaker identification. The network is fed with 

concatenation of 21 high resolution power spectral features (𝜏 = 10) which are extracted by 

installing a dense Mel-scale filterbank on the frame power spectrum (110 filters are included in 

the filterbank). Pre-training of the network is done layer-wise by RBMs and then it is fined-tuned 

with the speaker labels by the DeeBNet toolbox (Keyvanrad and Homayounpour, 2014). About 

7000 training utterances are synthetized by mixing target and masker speaker utterances extracted 

from the training data in different TMR values similar to the test data. The related speaker labels 

are attached to the training data for the network fine-tuning. 

Speaker adaptation hyperparameters , 𝜆 = 0.99 and 𝜃 = 0.1, are adjusted by the development 

set according to (27). Based on the selected thresholds, speaker identification results are 

summarized in Table 2 and compared to the IBM system speaker identification results. 

Table 2: Joint-speaker identification accuracy of the proposed method compared to the past IBM super-human system in 

different TMRs. It can be seen that while the proposed method performs the job in one phase it has competitive results to 

the past two-phase system.  

TMR (dB) -9 -6 -3 0 3 6 Avg. 

The Proposed System 

(DNN based, one-phase) 
94.3 % 98.0 % 99.3 % 99.3 % 99.0 % 95.0 % 97.5 % 

IBM System 

(GMM based, two-phase) 
96.5 % 98.1 % 98.2 % 99.0 % 99.1 % 98.4 % 98.2 % 
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The IBM system, uses GMM speaker models and speaker likelihoods for speaker identification 

in two steps. At first, a list of speaker candidates (called finalists) are selected based on speaker id 

posteriors. In the second phase, different combinations of joint-speakers are selected from the 

speaker finalists to then performing a search for finding the best joint-speakers beside their 

associated gain. Joint-speaker ids which their gain adapted models maximize utterance likelihood 

are selected as the identified speakers. Comparing our system to IBM’s super-human system, it 

can be seen that competitive results are achieved in a single phase identification. As another 

observation, we can see that in near zero TMRs both systems perform better than the cases when 

one speaker dominates the other (speech of one speaker masks the other speaker and prevents 

correct identification). 

4.4. Joint-decoding by gain adapted models, pushing forward past super-human results 

For the main experiments, speaker identification and TMR information cannot be used during 

the decoding. Joint-identification of speakers and gain estimation is done by the trained deep neural 

networks and the rest of the recognition procedure is carried as mentioned before which is 

illustrated in Fig. 9. 

 

Fig. 9. Recognition procedure for mixed-speech signals. 

The role of the two target identifiers shown in this figure are explained as follows. The joint-

speaker identification network can identify those speakers which have some speech footprints in 

the mixed-speech signal, even in extreme TMRs; i.e. 6, -6 and -9 dBs. But it cannot determine the 

masker speaker which is needed for further model adaptation. For resolving this ambiguity, the 

gain adapted model which maximizes the likelihood of the test utterance is selected as the masker 

model. After that, joint-decoding is performed based on the proposed algorithm (see Fig. 6). At 

this step, another check for the possible target-masker swapping is done for reporting the 

Speaker Identification 
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Feature Extraction 
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Swap Target and Masker Models (if needed), 

Adapt Masker Model (MFCC, 0th coeff.) 
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recognized letter and digit of the target speaker. This step provides no change on extreme TMRs, 

since the adapted masker model can distinguish between the target and masker utterances during 

the joint-decoding. 

Recognition results of the selected feature types based on the proposed procedure are provided 

in Table 3. Additionally, recognition results when we select and adapt source models based on test 

file information (oracle speaker ids) are also provided in this table which removes the effect of the 

speaker identification phase. As it was expected based on the results of Table 1, the MFCC-delta 

features perform better than the MFCC-delta-acceleration features. This can be explained by the 

approximation involved during the acoustic inference of the dynamic coefficients. The 

approximation assumes that source states are not changed during the extraction of dynamic 

coefficients of each frame. Moreover, by comparing the results to the oracle system, we can see 

more performance upgrade for this task is possible when we use a more accurate speaker identifier. 

Table 3: Recognition results of the two selected feature types. It can be seen that acceleration coefficients gain no 

performance improvement over MFCC-delta features. Moreover recognition results when we use oracle speaker identifier 

are provided in this table. 

TMR (dB) 

Feature Type 

-9 -6 -3 0 3 6 Avg. 

MFCC0D(38), oracle speaker ids 79.8 % 85.0 % 84.8 % 83.4 % 89.5 % 92.5 % 85.8 % 

MFCC0D(38) 76.6 % 83.2 % 83.3 % 81.9 % 88.4 % 89.9 % 83.9 % 

MFCC0DA(39) 70.6 % 78.3 % 80.0 % 79.6 % 85.9 % 86.6 % 80.2 % 

Detailed recognition accuracy for MFCC-delta features for different TMRs over three sets of 

test utterances is also provided in Table 4.  As it can be seen, speaker difference clues can improve 

recognition accuracy which is apparent when the results of the “Same Talker” condition are 

compared to the other cases. Additionally, on the other axis of the “Same Talker” condition we 

can see that the only distinguishing factor is the relative energy of voices of target and masker 

speakers. In this case, recognition performance is degraded in near zero conditions (see Fig. 10 for 

the gain adapted case). On the other hand, it was expected that the best results can be achieved in 

“Different Gender” test utterances for the best TMRs, i.e. 3 and 6 dBs. 

Table 4: Detailed recognition accuracy for MFCC-delta features (MFCC0D-38) for different TMRs over three sets of test 

utterances. 

TMR (dB) 

Joint-Speaker Sets 

-9 -6 -3 0 3 6 Avg. 

Same Talker 74.7 % 77.2 % 72.4 % 64.5 % 79.2 % 84.6 % 75.4 % 

Same Gender 79.3 % 88.3 % 89.1 % 91.6 % 92.7 % 92.2 % 88.9 % 

Different Gender 76.3 % 85.3 % 90.3 % 92.5 % 94.8 % 93.8 % 88.8 % 

Overall 76.6 % 83.2 % 83.3 % 81.9 % 88.4 % 89.9 % 83.9 % 
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A further comparison for decoding results of gain adapted source (masker) models and 

unaltered models can be done by investigating Fig. 10. It can be seen that gain adaptation is 

substantially beneficial in the same talker condition. This is due to the fact that both source models 

are the same and no other discriminative clue is available in this case except their first dimension 

parameters which is changed in the gain adaptation phase. Moreover, it can be seen that gain 

adaptation is more beneficial in extreme TMR conditions in all test sets and has no benefit in zero 

TMR. In the zero TMR case, some minor adaptation may occur due to the variation of the volume 

of speaker voice in different recording trials. 

 

Fig. 10. Effect of masker model gain adaptation by comparing gain adapted model results and gain ulaltered masker model 

results in different test sets. It can be seen that gain adaptation is substantially beneficial in the same talker condition. Even 

in this case in zero TMR, as we expected, no improvement is achieved by some minor gain adaptations. In these tests, oracle 

speaker ids are used for source model selection. 
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For the final comparison, the past best-achieved results for this challenge, to the best of our 

knowledge, are provided in Fig. 11. The first super-human system was the IBM system (Hershey 

et al., 2010; Rennie et al., 2010) and the second one was the recent Microsoft DNN based 

recognizer (Weng et al., 2015). The IBM super-human system has two phases for performing 

recognition. The first phase is to separate speech of the target and masker speakers, which its 

results were amazing at that time, especially their extension to the task which supports up to five 

interfering speakers. Then based on the separated speech it performs decoding. The speech 

separation phase of the IBM system was done based on factorial models. In their system, the 

feature vector state-conditional posteriors are calculated in the inference phase for the speech 

reconstruction. In their work, various configurations are considered for this task, but their best 

performance is provided in Table 5 and also plotted in Fig. 11. 

 
Fig. 11. Comparison of results of our implemented system (LIMP VTS based system) and the past super-human results. 

Human listener performance is also provided in this figure. The plot shows that in all TMRs, except -9 dB, the proposed 

method outperforms the two other systems. For the extreme TMR of -9 dB, the energy difference between the sources makes 

the Microsoft DNN based system superior to the proposed system. This is due to using the difference of the frame’s 

instantaneous energy which is significant in this TMR. Moreover, it can be seen that the DNN based system performs more 

similar to human listeners in extreme TMR conditions (6, -6 and -9 dB). 

Recently, a DNN based recognizer from Microsoft research outperforms the IBM system. The 

system was not based on speaker adapted models but it uses energy difference clues by training a 

set of two DNNs for senone posterior extraction. One DNN is trained for high energy frames and 

the other for low energy frames. It can be seen that this system performs well in extreme TMRs 

where it can incorporate more energy difference clues in the mixed-speech signal. Since it uses 

instantaneous frame energy and it controls energy switching time-stamps, near zero TMR results 
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are also surprising. Comparing the results to human listeners, it can be seen that human listeners 

cannot perform well in near zero TMRs while highly specialized joint-decoding systems can 

perform far better than humans in these conditions. 

Table 5: Recognition results of IBM and Microsoft super-human systems. The last row is the result of the proposed system 

(also provided in Table 3 and in details in Table 4). 

TMR (dB) 

Feature Type 

-9 -6 -3 0 3 6 Avg. 

IBM factorial based system 84.6 % 82.2 % 77.3 % 79.2 % 77.9 % 69.1 % 78.4 % 

Microsoft DNN based system 88.9 % 84.1 % 77.5 % 78.7 % 79.3 % 78.7 % 81.2 % 

LIMP factorial based system 76.6 % 83.2 % 83.3 % 81.9 % 88.4 % 89.9 % 83.9 % 

5. Conclusion 

In this paper, factorial speech processing models were presented by the language of 

probabilistic graphical models. Conditional probability distributions of these models are described; 

especially detailed derivation of their centric CPD, the CPD which combines source audio features. 

Moreover, the inference algorithm over these models is derived using the factor graphs. The idea 

of token passing for large vocabulary continuous speech recognition is extended in this work to 

support decoding of the task of monaural speech separation and recognition challenge. Therefore, 

a joint-token passing algorithm based on the idea of token passing is developed to perform joint-

decoding on factorial speech processing models by the two-dimensional Viterbi algorithm. 

Moreover, a set of two task specific deep neural networks is suggested and used in this work for 

joint-speaker identification and gain estimation. Based on these networks, source speaker models 

are first selected and then adapted for compensating gain mismatch for the masker speaker in the 

test phase of the challenge. We can see that the developed single phase joint-speaker identification 

network makes the joint-speaker identification comparable to the past best system in the challenge. 

Additionally, we can see that gain adaptation is very effective in improving the system 

performance simply by adjusting one dimension of masker source models. 

The proposed system of this work outperforms two past super-human systems for this 

challenge. Comparing it to the IBM factorial system, this superiority is due to performing direct 

inference over the mixed-speech signal which incorporates all uncertainty during the inference. 

Moreover, source modeling of low resolution feature spaces in our work is more accurate and 

convenient rather than facing with high resolution spectral features which was necessitated by the 

separation phase of the IBM system. Comparing it to the Microsoft DNN based recognizer, since 
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we used speaker adapted models rather than only high and low energy DNNs, the proposed system 

performs better than the DNNs by using discriminating information of the speakers. In a fair 

comparison, it can be mentioned that the Microsoft system uses only two main DNN models which 

is a more generic solution than our task specific speaker adapted models. As a future work, it is 

expected that by performing DNN based acoustic inference using speaker adapted DNNs, even the 

best-achieved results of this task can be more improved. The problem is to develop a mechanism 

for training jointly speaker adapted DNNs for performing acoustic inference. 
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